Enumeration of Potentials for Which One-Particle Schroedinger Equations Are Separable

L. P. EISENHART Fine Hall, Princeton, New Jersey (Received March 2, 1948)

N 1891 Stäckel¹ solved the problem of deter- \mathbf{I} mining the quantities H_i in the Hamiltonian equation

$$\sum_{i}(1/H_{i}^{2})(\partial\theta/\partial x_{i})^{2}+V-\alpha_{1}=0$$

where α_1 is a constant, so that the variables are separable, that is, so that the solution is of the form $\theta = \sum_{i} X_{i}$, where X_{i} is a function of x_{i} alone. The complete solution is: given any n^2 functions φ_{ij} , where φ_{ij} is a function of x_i alone, φ^{ij} is the cofactor of φ_{ij} in the determinant $\varphi(\neq 0)$ of the functions φ_{ij} ; then $H_i^2 = \varphi / \varphi^{ij}$. The potential function V in any such coordinate system is

$$V = \sum_{i} (f_{i}(x_{i})/H_{i}^{2}), \qquad (1)$$

when f_i is an arbitrary function of x_i .

In 1927 Robertson² showed that for the Schroedinger equation

$$\sum_{i} (1/H) (\partial/\partial xi) [(H/H_i^2) (\partial \psi/\partial xi)] + k^2 (E-V) \psi = 0,$$

$$H = \prod_i H_i, \quad (i = 1, \dots, n),$$

to admit by separation of the variables a solution of the form $\prod_i X_i$, where X_i is a function of x_i alone, the functions H_i must be of the Stäckel form, the potential function be of the form (1), and the Stäckel determinant φ be such that

$$\varphi = \prod_{i} (H_i/\theta_i), \qquad (2)$$

where θ_i is a function of x_i at most.

In 1934 I showed³ that a necessary and sufficient condition that functions H_i be of the Stäckel form is that the following equations be satisfied:

$$(\partial^2 \log H_i^2 / \partial x_i \partial x_j)$$

+
$$(\partial \log H_i^2 / \partial x_j) (\partial \log H_j^2 / \partial x_i) = 0, \quad (i \neq j)$$

$$\frac{\partial^2 \log H_i^2}{\partial x_j \partial x_k} - \frac{\partial \log H_i^2}{\partial x_j} \frac{\partial \log H_i^2}{\partial x_k} + \frac{\partial \log H_i^2}{\partial x_j} \frac{\partial \log H_i^2}{\partial x_k} + \frac{\partial \log H_i^2}{\partial x_k} \frac{\partial \log H_i^2}{\partial x_k} = 0, \quad (i, j, k \neq)$$

Proceeding from this result I derived all the real forms of H_i for Euclidean 3-space, ten in number in addition to the Cartesian case $H_i=1$; and showed that the condition (2) is automatically satisfied in Euclidean 3-space. In a note in this journal⁴ I listed the ten possible forms of H_i .

For each of the ten possible forms Eq. (1)gives the expression for the potential function Vin the particular coordinates x_i of each canonical form. Recently Professor Wigner raised the question as to whether it is possible to obtain the expression for V in Cartesian coordinates in each of the ten cases, as a possible aid to those making an investigation of particular problems. This paper gives an answer to this question, deriving the possible forms of V in Cartesian coordinates x, y, z.

What follows after the expressions for the H's in each case are the expressions of Cartesian coordinates x, y, z in terms of the corresponding x_i . Then follow xi as functions of x, y, z, except in the last two cases where a general solution is impossible. For the possible cases the form of Vis given in Cartesian coordinates.

1.
$$H_1^2 = 1, \quad H_2^2 = x_1^2, \quad H_3^2 = 1,$$

 $x = x_1 \cos x_2, \quad y = x_1 \sin x_2, \quad z = x_3,$
 $x_1 = (x^2 + y^2)^{\frac{1}{2}}, \quad \tan x_2 = y/x, \quad x_3 = z,$
 $V = \varphi [(x^2 + y^2)^{\frac{1}{2}}] + [\psi(y/x)/(x^2 + y^2)] + f(z),$

where here, and in what follows, φ , ψ , and f are arbitrary functions of their arguments.

11.
$$H_1^2 = H_2^2 = \frac{1}{2}a^2(\cosh 2x_1 - \cos 2x_2), \quad H_3^2 = 1,$$

where here, and in later cases, a is an arbitrary constant.

¹ Paul G. Stäckel, Ueber die Integration des Hamilton-Jacobischen Differential gleichunger Mittelst separation der variabeln, Habilitationschrift, Halle. ² H. P. Robertson, "Bemerkung über separierbare Sys-teme in der Wellenmechanik," Math. Ann. **98**, 749–752

^{(1927).} ³ L. P. Eisenhart, "Separable systems of Stäckel," Ann. Math. **35**, 284-305 (1934).

⁴ L. P. Eisenhart, "Separable systems in Euclidean 3-space," Phys. Rev. 45, 427-428 (1934).

$$x = a \cosh x_1 \cos x_2, \quad y = a \sinh x_1 \sin x_2, \quad z = x_3, \\ \sinh^2 x_1 = A + B, \quad \sin^2 x_2 = -A + B, \quad x_3 = z,$$

where

$$A = (1/2a^2)(x^2 + y^2 - a^2), \quad B = (A^2 + (y^2/a^2))^{\frac{1}{2}}, \\ V = \left[a^2/(A^2 + (y^2/a^2))^{\frac{1}{2}}\right] \\ \times \left[\varphi(A+B) + \psi(-A+B)\right] + f(z).$$

$$\begin{aligned} & \text{III.} \qquad H_1{}^2 = H_2{}^2 = x_1{}^2 + x_2{}^2, \quad H_3{}^2 = 1, \\ & x = \frac{1}{2}(x_1{}^2 - x_2{}^2), \quad y = x_1x_2, \quad z = x_3, \\ & x_1{}^2 = x + (y^2 - x^2)^{\frac{1}{2}}, \quad x_2{}^2 = -x + (y^2 - x^2)^{\frac{1}{2}}, \quad x_3 = z, \\ & V = \left[\frac{1}{2}(y^2 - x^2)^{\frac{1}{2}} \right] \left[\varphi(x + (y^2 - x^2)^{\frac{1}{2}})^{\frac{1}{2}} \\ & + \psi(-x + (y^2 - x^2)^{\frac{1}{2}})^{\frac{1}{2}} + f(z). \end{aligned}$$

Before proceeding with the other cases we remark that it is evident from the expressions in Cases I, II, and III that, if one puts $z=x_3=0$, one has cases of separable systems in Euclidean 2-space. It can be shown that these are the only possibilities.

IV. $H_1^2 = 1$, $H_2^2 = x_1^2$, $H_3^2 = x_1^2 \sin^2 x_2$, $x = x_1 \sin x_2 \cos x_3$, $y = x_1 \sin x_2 \sin x_3$, $z = x_1 \cos x_2$, $x_1 = r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$, $\cos x_2 = z/r$, $\tan x_3 = y/x$, $V = \varphi(r) + (1/r^2)\psi(z/r) + [f(y/x)/(x^2 + y^2)]$.

V.
$$H_1^2 = H_2^2 = x_3^2 [k^2 c n^2(x_1, k) + k'^2 c n^2(x_2, k')],$$

 $H_3^2 = 1,$

where the constants k and k' of the elliptic functions are in the relation $k^2 + k'^2 = 1.5$

$$x = x_3 dn(x_1, k) sn(x_2, k'),$$

$$y = x_3 sn(x_1, k) dn(x_2, k'),$$

$$z = x_3 cn(x_1, k) cn(x_2, k').$$

Making use of the relations

$$sn^2 + cn^2 = 1$$
, $dn^2 + k^2sn^2 = 1$, $dn^2 - k^2cn^2 = k'^2$,

we obtain from the above

$$k^2 cn^2(x_1, k) = A + B, \ k'^2 cn^2(x_2, k') = -A + B, \ x_3^2 = r^2,$$

where

$$\begin{split} A &= (1/2r^2)(k^2x^2 - k'^2y^2 + (k^2 - k'^2)z^2), \\ B &= (A^2 + (k^2k'^2z^2/r^2)^{\frac{1}{2}}, \\ V &= (1/2r^2B) \big[\varphi((A+B)^{\frac{1}{2}}/k) \\ &+ \psi(-A+B)^{\frac{1}{2}}/k') \big] + f(r). \end{split}$$

⁶ Cf. Benjamin O. Peirce, A Short Table of Integrals (Ginn and Company, Boston, 1929), pp. 84-87.

V1.
$$H_1^2 = H_2^2 = x_1^2 + x_2^2$$
, $H_3^2 = x_1^2 x_2^2$,
 $x = x_1 x_2 \cos x_3$, $y = x_1 x_2 \sin x_3$, $z = \frac{1}{2}(x_1^2 - x_2^2)$,
 $x_1^2 = r + z$, $x_2^2 = r - z$, $\tan x_3 = y/x$,
 $V = (1/2r) [\varphi((r+z)^{\frac{1}{2}}) + \psi((r-z)^{\frac{1}{2}})]$
 $+ [1/(x^2 + y^2)] f(y/x)$

VII.
$$H_1^2 = H_2^2 = a^2(\sinh^2 x_1 + \sin^2 x_2),$$

 $H_3^2 = a^2 \sinh^2 x_1 \sin^2 x_2,$

$$x = a \sinh x_1 \sin x_2 \cos x_3, \quad y = a \sinh x_1 \sin x_2 \sin x_3,$$
$$z = a \cosh x_1 \cos x_2,$$

$$\sinh^2 x_1 = A + B$$
, $\sin^2 x_2 = -A + B$, $\tan x_3 = y/x$,

where

$$\begin{aligned} A &= (1/2a^2)(r^2 - a^2), \quad B &= (A^2 + (x^2 + y^2)/a^2)^{\frac{1}{2}}, \\ V &= (1/2a^2B) \big[\varphi((A+B)^{\frac{1}{2}}) + \psi((-A+B)^{\frac{1}{2}}) \big] \\ &+ f(y/x)/(x^2 + y^2). \end{aligned}$$

VIII.
$$H_1^2 = H_2^2 = a^2(\sinh^2 x_1 + \cos^2 x_2),$$

 $H_3^2 = a^2 \cosh^2 x_1 \sin^2 x_2,$

 $x = a \cosh x_1 \sin x_2 \cos x_3, \quad y = a \cosh x_1 \sin x_2 \sin x_3,$ $z = a \sinh x_1 \cos x_2,$

 $\cosh^2 x_1 = A + B$, $\cos^2 x_2 = -A + B$, $\tan x_3 = y/x$,

$$A = (1/2a^{2})(r^{2} - a^{2}), \quad B = (A^{2} + (z^{2}/a^{2}))^{\frac{1}{2}}, V = (1/2a^{2}B) \left[\varphi((A+B)^{\frac{1}{2}}) + \psi((-A+B)^{\frac{1}{2}})\right] + f(y/x)$$

1X.
$$II_i^2 = [(x_i - x_j)(x_i - x_k)/f(x_i)],$$

$$f(x_i) = 4(\alpha - x_i)(\beta - x_i)(\gamma - x_i), \quad (i, j, k \neq),$$

$$x^2 = [\prod_i (\alpha - x_i)]/(\alpha - \beta)(\alpha - \gamma),$$

$$y^2 = [\prod_i (\beta - x_i)]/(\beta - \alpha)(\beta - \gamma),$$

$$z^2 = [\prod_i (\gamma - x_i)]/(\gamma - \alpha)(\gamma - \beta),$$

where $\alpha > x_1 > \beta > x_2 > \gamma > x_3$. From these expressions we have

$$\frac{x^2}{(\alpha - x_i) + y^2} \frac{(\beta - x_i) + z^2}{(\gamma - x_i) = 1}$$

(*i* = 1, 2, 3);

consequently, the x_i are roots of the cubic

$$t^3 - at^2 + bt - c = 0, (i)$$

where

$$a = \alpha + \beta + \gamma - r^{2},$$

$$b = \alpha\beta + \beta\gamma + \gamma\alpha - (\beta + \gamma)x^{2} - (\gamma + \alpha)y^{2} - (\alpha + \beta)z^{2},$$
 (ii)

$$c = \alpha\beta\gamma - \beta\gamma x^{2} - \gamma\alpha y^{2} - \alpha\beta z^{2}.$$

If in Eq. (i) we put

$$t = u + (a/3) \tag{iii}$$

the resulting equation in (ii) is

$$u^{3}-pu^{2}+q=0, \quad p=\frac{1}{3}a^{2}-b, \\ q=-(2/27)a^{3}+(ab/3)-c.$$
 (iv)

For q=0, which is an equation of the third degree in x^2 , y^2 , z^2 , the expressions for x_i are

$$x_1 = (a/3) + (p)^{\frac{1}{2}}, \quad x_2 = a/3, \quad x_3 = (a/3) - (p)^{\frac{1}{2}};$$

p must be positive. Also there are the conditions $\alpha > x_1 > \beta > x_2 > \gamma > x_3$ to be satisfied. In this case

$$H_{1^2} = 2p/f(x_1), \quad H_{2^2} = -p/f(x_2), \quad H_{3^2} = 2p/f(x_3),$$

where $f(x_i) = 4(\alpha - x_i)(\beta - x_i)(\gamma - x_i)$, and thus $f(x_1)$ and $f(x_3)$ are positive, and $f(x_2)$ negative,

$$V = (1/p) [(\varphi_1 f(x_1)/2) - \varphi_2 f(x_2) + (\varphi_3 f(x_3)/2)],$$

where φ_i is an arbitrary function of x_i .

When p and q are different from zero the cubic equation (i) above, having three real solutions, $x_1 > x_2 > x_3$, is irreducible, that is, it is impossible to find x_i as functions of x, y, and z. However for particular numerical values of p and q, such that p and $(p^3/27) - (q^2/4)$ are positive, real solutions of Eq. (iv) are⁶

$$\frac{2(p/3)^{\frac{1}{2}}\cos(\theta/3)}{2(p/3)^{\frac{1}{2}}\cos[(\theta+2\pi)/3]},$$

where θ is given by

$$\cos\theta = -\left(3q/2p\right)\left(3/p\right)^{\frac{1}{2}}.$$

By means of a table of cosines θ can be found, and then the numerical values of the three roots of Eq. (iv). This process yields a numerical expression for *V* involving three arbitrary functions of constants x_i .

X.
$$H_i^2 = (x_i - x_j)(x_i - x_k)/f(x_i),$$

 $f(x_i) = 4(\alpha - x_i)(\beta - x_i),$

where $x_1 > \alpha > x_2 > \beta > x_3$.

$$x = (x_1 + x_2 + x_3 - \alpha - \beta)/2$$

$$y^2 = [\prod_i (\alpha - x_i)]/(\beta - \alpha),$$

$$z^2 = [\prod_i (\beta - x_i)]/(\alpha - \beta).$$

⁶ Cf. H. B. Fine, *College Algebra* (Ginn and Company, Boston, 1905), pp. 483-491.

From these expressions we have

$$y^2/(\alpha - x_i) + z^2/(\beta - x_i) = 2x - x_i, \quad (i = 1, 2, 3).$$

Consequently, the roots x_i are solutions of an equation of the form (iv), where in this case

$$a = -(2x + \alpha + \beta), \quad b = \alpha\beta + 2x(\alpha + \beta) - y^2 - z^2,$$

$$c = \beta y^2 + \alpha z^2 - 2x\alpha\beta.$$

Unless q=0, the equation is irreducible. The procedure in this case is the same as with type IX where now a, b, c are the new functions of x, y, and z.

The foregoing results are the solution of the problem in one system of Cartesian coordinates. They are such that

$$H_i^2 = (\partial x/\partial x_i)^2 + (\partial y/\partial x_i)^2 + (\partial z/\partial x_i)^2 = \sum (\partial x/\partial x_i)^2, \sum (\partial x/\partial x_i)(\partial x/\partial x_j) = 0 \quad (i \neq j),$$

where \sum denotes summation over x, y, and z.

There is, however, no preferred system of Cartesian coordinates. If x, y, z and \bar{x} , \bar{y} , \bar{z} are two such systems, they are related as follows:

$$\begin{aligned} x &= a_1{}^1\bar{x} + a_2{}^1\bar{y} + a_3{}^1\bar{z} + b_1, \\ y &= a_1{}^2\bar{x} + a_2{}^2\bar{y} + a_3{}^2\bar{z} + b_2, \\ z &= a_1{}^3\bar{x} + a_2{}^3\bar{y} + a_3{}^3\bar{z} + b_3, \end{aligned}$$

where the *a*'s and *b*'s are constants, the former subject to the conditions

$$\sum_{i} a_{j}^{i} a_{k}^{i} = \delta_{jk}, \quad \sum_{i} a_{i}^{j} a_{i}^{k} = \delta^{jk},$$

where

$$\delta_{ik}$$
, δ^{ik} are 1 for $j = k$; 0 for $j \neq k$.

In view of these conditions we have

$$\begin{split} II_{i}^{2} &= \sum (\partial x/\partial x_{i})^{2} = \sum (\partial \bar{x}/\partial x_{i})^{2}, \\ 0 &= \sum (\partial x/\partial x_{i})(\partial x/\partial x_{j}) \\ &= \sum (\partial \bar{x}/\partial x_{i})(\partial \bar{x}/\partial x_{j}) \quad (i \neq j). \end{split}$$

Accordingly, the general form of V is obtained by substituting the above expressions for x, y, z, interims of \bar{x}, \bar{y} , and \bar{z} , in the previous results.