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' 'N 1891 Stackel' solved the problem of deter-
s ~ mining the quantities II; in the Hamiltonian
equation

Q, (1/HP) (88/Bx~)'+ V—ng ——0,

D'-' logII -' 0 logHP 8 logII&'" d logII&~ 8 logII -'

+
Bx~l9xl„. 8X& BXg

8 logH~' 8 logHI, '
+

'
=0, (i j, k~).

where uI is a constant, so that the variables are
separable, that is, so that the solution is of the
form e =Q; X;, where X; is a function of x, alone.
The complete solution is: given any e' functions

q;;, where q,; is a function of x; alone, q
'& is the

cofactor of y;; in the determinant q(WO) of the
functions p;, ; then H = y/y". The potential
function V in any such coordinate system is

Proceeding from this result I derived all the real
forms of II; for Euclidean 3-space, ten in number
in addition to the Cartesian case II,=1; and
showed that the condition (2) is automatically
satisfied in Euclidean 3-space. In a note in this
journal' I listed the ten possible forms of II;.

For each of the ten possible forms Eq. (1)
gives the expression for the potential function V
in the particular coordinates x, of each canonical
form. Recently Professor Wigner raised the
question as to whether it is possible to obtain
the expression for V in Cartesian coordinates in
each of the ten cases, as a possible aid to those
making an investigation of particular problems.
This paper gives an answer to this question,
deriving the possible forms of U in Cartesian
coordinates x, y, s.

What follows after the expressions for the H's
in each case are the expressions of Cartesian
coordinates x, y, s in terms of the corresponding
x;. Then follow xi as functions of x, y, s, except
in the last two cases where a general solution is
impossible. For the possible cases the form of V

given in Cartesian coordinates.

when f; is an arbitrary function of x;.
In 1927 Robertson' showed that for the

Schroedinger equation

g;(1/H) (8/Bxi) P(H//FIP ) (8$/Bxi) 5
+k'(E V)P = 0,—

H=g, H, , (i=1, , n),

to admit by separation of the variables a solution
of the form g; X;, where X, is a function of x;
alone, the functions II; must be of the Stackel
form, the potential function be of the form (1),
and the Stackel determinant q be such that

where 8; is a function of x; at most. Is

In 1934 I showed' that a necessary and suf-

ficient condition that functions H; be of the
Stackel form is that the following equations be
satisfied:

II '=1 H '=x ' H '=1
X =XI COSXg, f=Xl, SlnX2, 8 =Xg,

xp ——(x'+y') &, tanx2 ——y/x, x~ ——s,
1'= ~L(x'+y') '5+ LE (ylx) l(x'+y') 5+f(s),

(8' logH, '/Bx, 8x,)
where here, and in what follows, p, f, and f are

+(~ logH& /~xi)(~ logHi /~xf) =0~ (~+&) arbitrary functions of their arguments.

' Paul G. Stackel, Ueber die Integration des Hamilton-
jacobischen Differential gleichunger Mittelst separation
der variabeln, Habilitationschrift, Halle.

s H. P. Robertson, "Bemerkung uber separierbare Sys-
teme in der %'ellenmechanik, " Math. Ann. 98, 749-752
{1927).' L. P. Eisenhart, "Separable systems of Stackel, " Ann.
Math. 35, 284-305 (1934).

l I. HP = H2"- = 2a'(cosh2xi —cos2x~), H = 1,

where here, and in later cases, a is an arbitrary
constant.

4 L. P. Eisenhart, "Separable systems in Euclidean
3-space, " Phys. Rev. 45, 427-428 (1934).
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x =a coshxy cosx2, y =a sinhxI sinxg, 8 =x;I,
sinh'xl ——A+8, sin'x2 ———A+8, xl ——z,

A = (1/2a') (x'+y' —a'), 8 = (A '+ (y'/a')) '

l' = [a'-'/(A '+ (y'/a')) &
I

X [z (A+8)+0 ( —A+8) j+f(-)

XII' ——FIz'-' ——xi'+x2'-, II3' = 1,
x = —,'(xl' —x2'), y =x,x„z=x2,

x '=x+(y' —X2)l x '= —x+(y' —x')' x =z
V=[1/2(y -")':j[.( +(y -") )

+4 ( x+(—y' x') ')—'+f(z)

Before proceeding vvith the other cases we
remark that it is evident from the expressions in

Cases I, II, and III that, if one puts s=x3=0,
one has cases of separable systems in Euclidean
2-space. It can be shown that these are the only
possibilities.

'=x ' II '=x 'SIn'x
x = XI slnx2 cosx3, p =x1 slnxp s111x3, 8=xy cosx2,

xl ——r=(x'+y2+z2)&, cosxl=z/r, tanx2 ——y/x,
V= ~(r)+(I/")4(z/r)+ [f(y/')/(x-'+y') j
V. HP =H2'=x2'[k'cn '(xl k)+k-"cn '(x2 k')7-

FI3'= i

Hl H2 xl +X2 1 H2 XIX2 1

x = xlx2 cosx2, y = xlx2 slllx2, z =
2 (xl x2 ),

xp = r+z, x2' = r z, —tanx2 ——y/x,
I'=(1/2r)L~((r+z)')+0((r-z)') 3

+LI/(x '+y-') jf-(y/1)

Vl I. 81 =Hl =0"(Slnll "Xl+slll X2),
FIP =a' sinh'x1 sin'-'x2,

x=a sinhxI sinx2 cosx3, y=a sinhxI sinx2 sinx~,
8' =a coshxg cosxo,

sinh'xl ——A+8, sin'x. = —A+8, tanx2 ——y/x,

where

A = (1/2a')(r' —a'), 8 = (A'+(x'+y')/a')&
V= (1/2a'8)[z((lA+8)'*) +1I'((—A+8)&)]

+f(y/x)/(x'+y')

VI I I. HP =H2' ——a'(sinh'xl+cos'x2),
FI3' =a' cosh'XI s1n'X2,

x=a coshx& sinx2 cosx3, y=a coshx& sinx. sinx3,
s'= a sinhx~ cosx2,

cosh'x~ =2+8, cos'x~ ———3+8, tanx& ——y/x,

where

A = (1/2a') (r' —a'), 8 = (A'+ (z'/a')) '

V= (I/2a28) [z ((A+8) &)

+0(( A+8) *')—]if(y/x)

x =xldn(xl, k)sn(x2, k'),
y =xlsn(xl, k)dn(x2, k'),

=xlcn"(x k)cn(x1 l. , k').
where n&x~&P)x2&y&x;~. From these ex-
pressions we haveMaking use of the relations

sn'-'+ cn"- = 1, dn, '+ k'sn'-' = 1, dn'-' —k'rn'- = k'-', x'/(a x')+y'/(P —x)+z'/(y —x)=I-
(i=1, 2, 3);

we obtain from the above

k'cn'(x„k) =A+8, k"cn'(x2, k') = —A+8,
x2 —r2

where

consequently, the x; are roots of the cubic

t' —at'+bt —c =0,

where

where the constants k and k' of the elliptic I+ II* =L(x xt)(x*' x2)/f(x~)1~

functions are in the relation 0'+4"= i.' f(x*)=4(a —x*)(P—x )(V —x*) (2,i k &),"=[n,(--.)j/(--'p)(-'-'»,
'

y'=[II;(p-.;)j/(p- )(p-~),
"=[rr.(y-', )]/(y- )(~-p)',

A = (1/2r') (k'x' k"y'+(¹—k—'-')z-')

8 = (A-'+ (k'k"z'/r')1,
V = (1/2r'8) [22((A +8)&/k)

iy( A iB)&/k') jif(r)—
'Cf. Benjamin 0. Peirce, 3 ShorI, Table of Intef rais

(Ginn and Company, Boston, 1929), pp. 84-87.

a=n+P+p —r2,

& =cP+PV+Vc (P+V)x'—
(&+~)y'—(~ip)z",—

c = nPy —Pyx2 —ycly2 —aPz2.

If in Eq. (i) we put

t =u+(a/3)



ENUMERATION OF POTENTIALS

ii=(a/3)+(p)' »=a/3 x3 = (a/3) (p) *'—

p n~ust be positive. Also there are the conditions
n&xi) p)X2&y)x~ to be satisfied. In this case

Hi'=2P/f(xi) H2'= p/f(—»), Hi'=2p/f(xt)

where f(x;) =4(n x;)—(P —x,)(y —x~), and thus
f(xi) and f(x3) are positive, and f(xi) negative,

I' = (I/O) [(s if(»)/2) —s ~f(x~) + (s 3f(X3)/2) ]
where y; is an arbitrary function of x;.

When p and q are different from zero the cubic
equation (i) above, having three real solutions,
xi&x2& xa, is irreducible, that is, it is impossible
to And x; as functions of x, y, and z. However for
I&articular numerical values of p and q, such that
p and (p'/27) —(q-"/4) are positive, real solutions
of Eq. (iv) are'

2(p/3) ~ cos(e/3), 2(p/3) ~ cos[(8+2w)/3j,
2 (p/3) l cos[(8+4m) /37,

where 8 is given by

cos~ = —(3q/2p) (3/p) '.

Hy means of a table of cosines 8 can be found,
and then the numerical values of the three roots
of Eq. (iv). This process yields a numerical ex-
pression for V involving three arbitrary functions
of constants x;.

H2=(x, x,)(x, x„)—/f(x;), —
f(x;) =4(a —x~)(P —xf),

where x, &a&X2&P&X3.

x = (xi+xm+xg —R P)/2,
y = [n,(--.,)»(p--),

'

"=[n,(p-,»/(-- p)

Cf. H. B. Fine, College Algebra {Ginn and Company,
Boston, 1905), pp. 483-491.

the resulting equation in (ii) is

u' —Pu'+ q =0, P = isa-'—b,

q = —(2/27) a'+ (ab/3) —c. (iv)

I'or q=o, which is an equation of the third
degree in x'-', y'-', z'-', the expressions for x; are

x =aI'x+a2'y+a3'z+bj
y =Qy'X+62'g+C3'Z+62,
Z =Cy X+C2 'I/+83 Z+53i

where the a's and 6's are constants, the former
subject to the conditions

i a~'ai'= ~j~i a ja b gji.

6;&, 8'~ are 1 for j=k; 0 for j4k.
In view of these conditions we have

II -= Q(BX/Bx;)'-= Q(8x/Bx;)'-,

0 = Q (coax/8x, ) (coax/coax, )
= P(Bx/Bx;)(Bx/Bx, ) (i')

Accordingly, the general form of V is obtained
by substituting the above expressions for x, y, z,
interims of x, y, and z, in the previous results.

From these expressions we have

y'/(a —x;)+s'/(P —x,) =2x —x;, (i=1, 2, 3).

Consequently, the roots x; are solutions of an
equation of the form (iv), where in this case

a = —(2x+n+P), b = aP+2x(o:+P) —y'-' —s'-',

c =Py'-+ as-' —2xaP.

Unless q=o, the equation is irreducible. The
procedure in this case is the same as with type
IX where now c, 6, c are the new functions of x,
y, and z.

The foregoing results are the solution of the
problem in one system of Cartesian coordinates.
They are such that

H,' = (ax/ax;) '+ (ay/ax;) '-+ (as/ax, )
'-'

Q(c—=lx/Bx;)
Q(BX/ lxi;)( cl/x8 x)=0 (~W j),

where Q denotes summation over x, y, and
There is, however, no preferred system of

Cartesian coordinates. If x, y, z and x, y, z are
two such systems, they are related as follows:


