Enumeration of Potentials for Which One-Particle Schroedinger Equations Are Separable

L. P. Eisenhart
Fine Hall, Princeton, New Jersey

(Received March 2, 1948)

IN 1891 Stäckel ${ }^{1}$ solved the problem of determining the quantities H_{i} in the Hamiltonian equation

$$
\sum_{i}\left(1 / H_{i}^{2}\right)\left(\partial \theta / \partial x_{i}\right)^{2}+V-\alpha_{1}=0,
$$

where α_{1} is a constant, so that the variables are separable, that is, so that the solution is of the form $\theta=\sum_{i} X_{i}$, where X_{i} is a function of x_{i} alone. The complete solution is: given any n^{2} functions $\varphi_{i j}$, where $\varphi_{i j}$ is a function of x_{i} alone, $\varphi^{i i}$ is the cofactor of $\varphi_{i j}$ in the determinant $\varphi(\neq 0)$ of the functions $\varphi_{i j}$; then $H_{i}{ }^{2}=\varphi / \varphi^{i j}$. The potential function V in any such coordinate system is

$$
\begin{equation*}
V=\sum_{i}\left(f_{i}\left(x_{i}\right) / H_{i}{ }^{2}\right), \tag{1}
\end{equation*}
$$

when f_{i} is an arbitrary function of x_{i}.
In 1927 Robertson ${ }^{2}$ showed that for the Schroedinger equation

$$
\begin{gathered}
\sum_{i}(1 / H)(\partial / \partial x i)\left[\left(H / H_{i}{ }^{2}\right)(\partial \psi / \partial x i)\right] \\
+k^{2}(E-V) \psi=0 \\
H=\Pi_{i} H_{i}, \quad(i=1, \cdots, n)
\end{gathered}
$$

to admit by separation of the variables a solution of the form $\Pi_{i} X_{i}$, where X_{i} is a function of x_{i} alone, the functions H_{i} must be of the Stäckel form, the potential function be of the form (1), and the Stäckel determinant φ be such that

$$
\begin{equation*}
\varphi=\prod_{i}\left(H_{i} / \theta_{i}\right) \tag{2}
\end{equation*}
$$

where θ_{i} is a function of x_{i} at most.
In 1934 I showed ${ }^{3}$ that a necessary and sufficient condition that functions H_{i} be of the Stäckel form is that the following equations be satisfied:

$$
\begin{aligned}
& \left(\partial^{2} \log H_{i}{ }^{2} / \partial x_{i} \partial x_{j}\right) \\
& \quad+\left(\partial \log H_{i}{ }^{2} / \partial x_{j}\right)\left(\partial \log H_{j}^{2} / \partial x_{i}\right)=0, \quad(i \neq j)
\end{aligned}
$$

[^0]\[

$$
\begin{array}{r}
\frac{\partial^{2} \log H_{i}{ }^{2}}{\partial x_{j} \partial x_{k}}-\frac{\partial \log H_{i}{ }^{2} \partial \log H_{i}{ }^{2}}{\partial x_{j}}+\frac{\partial \log H_{i}{ }^{2}}{\partial x_{k}} \frac{\partial \log H_{j}{ }^{2}}{\partial x_{j}} \\
+\frac{\partial \log {H_{i}}^{2}}{\partial x_{k}} \frac{\partial \log H_{k}{ }^{2}}{\partial x_{j}}=0, \quad(i, j, k \neq) .
\end{array}
$$
\]

Proceeding from this result I derived all the real forms of H_{i} for Euclidean 3-space, ten in number in addition to the Cartesian case $H_{i}=1$; and showed that the condition (2) is automatically satisfied in Euclidean 3 -space. In a note in this journal ${ }^{4}$ I listed the ten possible forms of H_{i}.

For each of the ten possible forms Eq. (1) gives the expression for the potential function V in the particular coordinates x_{i} of each canonical form. Recently Professor Wigner raised the question as to whether it is possible to obtain the expression for V in Cartesian coordinates in each of the ten cases, as a possible aid to those making an investigation of particular problems. This paper gives an answer to this question, deriving the possible forms of V in Cartesian coordinates x, y, z.

What follows after the expressions for the H 's in each case are the expressions of Cartesian coordinates x, y, z in terms of the corresponding x_{i}. Then follow $x i$ as functions of x, y, z, except in the last two cases where a general solution is impossible. For the possible cases the form of V is given in Cartesian coordinates.

$$
\begin{gathered}
\text { I. } H_{1}{ }^{2}=1, \quad H_{2}{ }^{2}=x_{1}{ }^{2}, \quad H_{3}{ }^{2}=1, \\
x=x_{1} \cos x_{2}, \quad y=x_{1} \sin x_{2}, \quad z=x_{3}, \\
x_{1}=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}, \quad \tan x_{2}=y / x, \quad x_{3}=z, \\
V=\varphi\left[\left(x^{2}+y^{2}\right)^{\frac{1}{2}}\right]+\left[\psi(y / x) /\left(x^{2}+y^{2}\right)\right]+f(z),
\end{gathered}
$$

where here, and in what follows, φ, ψ, and f are arbitrary functions of their arguments.

1I. $H_{1}{ }^{2}=H_{2}{ }^{2}=\frac{1}{2} a^{2}\left(\cosh 2 x_{1}-\cos 2 x_{2}\right), \quad H_{3}{ }^{2}=1$, where here, and in later cases, a is an arbitrary constant.

[^1]$x=a \cosh x_{1} \cos x_{2}, \quad y=a \sinh x_{1} \sin x_{2}, \quad z=x_{3}$,
$$
\sinh ^{2} x_{1}=A+B, \quad \sin ^{2} x_{2}=-A+B, \quad x_{3}=z
$$
where
\[

$$
\begin{aligned}
& A=\left(1 / 2 a^{2}\right)\left(x^{2}+y^{2}-a^{2}\right), \quad B=\left(A^{2}+\left(y^{2} / a^{2}\right)\right)^{\frac{1}{2}}, \\
& V^{\prime}=\left[a^{2} /\left(A^{2}+\left(y^{2} / a^{2}\right)\right)^{\frac{1}{2}}\right] \\
& \times[\varphi(A+B)+\psi(-A+B)]+f(z) . \\
& \text { III. } \quad H_{1}{ }^{2}=H_{2}{ }^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}, \quad H_{3}{ }^{2}=1 \text {, } \\
& x=\frac{1}{2}\left(x_{1}{ }^{2}-x_{2}{ }^{2}\right), \quad y=x_{1} x_{2}, \quad z=x_{3}, \\
& x_{1}{ }^{2}=x+\left(y^{2}-x^{2}\right)^{\frac{1}{2}}, \quad x_{2}{ }^{2}=-x+\left(y^{2}-x^{2}\right)^{\frac{1}{2}}, \quad x_{3}=z, \\
& V=\left[1 / 2\left(y^{2}-x^{2}\right)^{\frac{1}{2}}\right]\left[\varphi\left(x+\left(y^{2}-x^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right. \\
& +\psi\left(-x+\left(y^{2}-x^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}+f(z) .
\end{aligned}
$$
\]

Before proceeding with the other cases we remark that it is evident from the expressions in Cases I, II, and III that, if one puts $z=x_{3}=0$, one has cases of separable systems in Euclidean 2 -space. It can be shown that these are the only possibilities.
IV. $\quad H_{1}{ }^{2}=1, \quad H_{2}{ }^{2}=x_{1}{ }^{2}, \quad H_{3}{ }^{2}=x_{1}{ }^{2} \sin ^{2} x_{2}$,
$x=x_{1} \sin x_{2} \cos x_{3}, \quad y=x_{1} \sin x_{2} \sin x_{3}, \quad z=x_{1} \cos x_{2}$, $x_{1}=r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{2}{2}}, \quad \cos x_{2}=z / r, \quad \tan x_{3}=y / x$,
$V=\varphi(r)+\left(1 / r^{2}\right) \psi(z / r)+\left[f(y / x) /\left(x^{2}+y^{2}\right)\right]$.

$$
\begin{gathered}
\text { V. } H_{1}{ }^{2}=H_{2}{ }^{2}=x_{3}{ }^{2}\left[k^{2} c n^{2}\left(x_{1}, k\right)+k^{\prime 2} c n^{2}\left(x_{2}, k^{\prime}\right)\right], \\
H_{3}{ }^{2}=1
\end{gathered}
$$

where the constants k and k^{\prime} of the elliptic functions are in the relation $k^{2}+k^{\prime 2}=1 .^{5}$

$$
\begin{aligned}
& x=x_{3} d n\left(x_{1}, k\right) \operatorname{sn}\left(x_{2}, k^{\prime}\right) \\
& y=x_{3} s n\left(x_{1}, k\right) d n\left(x_{2}, k^{\prime}\right) \\
& z=x_{3} c n\left(x_{1}, k\right) c n\left(x_{2}, k^{\prime}\right)
\end{aligned}
$$

Making use of the relations
$s n^{2}+c n^{2}=1, \quad d n^{2}+k^{2} s n^{2}=1, \quad d n^{2}-k^{2} c n^{2}=k^{\prime 2}$,
we obtain from the above

$$
\begin{gathered}
k^{2} c n^{2}\left(x_{1}, k\right)=A+B, \begin{array}{l}
k^{\prime 2} c n^{2}\left(x_{2}, k^{\prime}\right)=-A+B, \\
x_{3}{ }^{2}=r^{2},
\end{array}
\end{gathered}
$$

where

$$
\begin{aligned}
& A=\left(1 / 2 r^{2}\right)\left(k^{2} x^{2}-k^{\prime 2} y^{2}+\left(k^{2}-k^{\prime 2}\right) z^{2}\right) \\
& B=\left(A^{2}+\left(k^{2} k^{\prime 2} z^{2} / r^{2}\right)^{\frac{1}{2}},\right. \\
& V=\left(1 / 2 r^{2} B\right)\left[\varphi\left((A+B)^{\frac{1}{2}} / k\right)\right. \\
& \left.\left.\quad+\psi(-A+B)^{\frac{1}{2}} / k^{\prime}\right)\right]+f(r) .
\end{aligned}
$$

[^2]\[

$$
\begin{aligned}
& \text { VI. } \quad H_{1}{ }^{2}=H_{2}{ }^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}, \quad H_{3}{ }^{2}=x_{1}{ }^{2} x_{2}{ }^{2}, \\
& x=x_{1} x_{2} \cos x_{3}, \quad y=x_{1} x_{2} \sin x_{3}, \quad z=\frac{1}{2}\left(x_{1}^{2}-x_{2}{ }^{2}\right), \\
& x_{1}^{2}=r+z, \quad x_{2}{ }^{2}=r-z, \quad \tan x_{3}=y / x, \\
& V=(1 / 2 r)\left[\varphi\left((r+z)^{\frac{1}{2}}\right)+\psi\left((r-z)^{\left.\left.\frac{1}{2}\right)\right]}\right.\right. \\
& \quad+\left[1 /\left(x^{2}+y^{2}\right)\right] f(y / x) .
\end{aligned}
$$
\]

VII. $\quad H_{1}{ }^{2}=H_{2^{2}}=a^{2}\left(\sinh ^{2} x_{1}+\sin ^{2} x_{2}\right)$, $H_{3}{ }^{2}=a^{2} \sinh ^{2} x_{1} \sin ^{2} x_{2}$,
$x=a \sinh x_{1} \sin x_{2} \cos x_{3}, \quad y=a \sinh x_{1} \sin x_{2} \sin x_{3}$, $z=a \cosh x_{1} \cos x_{2}$,
$\sinh ^{2} x_{1}=A+B, \sin ^{2} x_{2}=-A+B, \tan x_{3}=y / x$,
where

$$
\begin{aligned}
& A=\left(1 / 2 a^{2}\right)\left(r^{2}-a^{2}\right), \quad B=\left(A^{2}+\left(x^{2}+y^{2}\right) / a^{2}\right)^{\frac{1}{2}} \\
& V=\left(1 / 2 a^{2} B\right)\left[\varphi\left((A+B)^{\frac{1}{2}}\right)+\psi\left((-A+B)^{\frac{1}{2}}\right)\right] \\
& \quad+f(y / x) /\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

VIII. $\quad H_{1}{ }^{2}=H_{2}{ }^{2}=a^{2}\left(\sinh ^{2} x_{1}+\cos ^{2} x_{2}\right)$,

$$
H_{3}^{2}=a^{2} \cosh ^{2} x_{1} \sin ^{2} x_{2}
$$

$x=a \cosh x_{1} \sin x_{2} \cos x_{3}, \quad y=a \cosh x_{1} \sin x_{2} \sin x_{3}$, $z=a \sinh x_{1} \cos x_{2}$,
$\cosh ^{2} x_{1}=A+B, \quad \cos ^{2} x_{2}=-A+B, \quad \tan x_{3}=y / x$, where

$$
\begin{aligned}
& A=\left(1 / 2 a^{2}\right)\left(r^{2}-a^{2}\right), \quad B=\left(A^{2}+\left(z^{2} / a^{2}\right)\right)^{\frac{1}{2}} \\
& V=\left(1 / 2 a^{2} B\right)\left[\varphi\left((A+B)^{\frac{1}{2}}\right)\right. \\
& \left.\quad+\psi\left((-A+B)^{\frac{1}{2}}\right)\right]+f(y / x) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1X. } \quad I_{i}{ }^{2}=\left[\left(x_{i}-x_{j}\right)\left(x_{i}-x_{k}\right) / f\left(x_{i}\right)\right], \\
& f\left(x_{i}\right)=4\left(\alpha-x_{i}\right)\left(\beta-x_{i}\right)\left(\gamma-x_{i}\right), \quad(i, j, k \neq), \\
& x^{2}=\left[\prod_{i}\left(\alpha-x_{i}\right)\right] /(\alpha-\beta)(\alpha-\gamma), \\
& y^{2}=\left[\prod_{i}\left(\beta-x_{i}\right)\right] /(\beta-\alpha)(\beta-\gamma), \\
& z^{2}=\left[\prod_{i}\left(\gamma-x_{i}\right)\right] /(\gamma-\alpha)(\gamma-\beta),
\end{aligned}
$$

where $\alpha>x_{1}>\beta>x_{2}>\gamma>x_{3}$. From these expressions we have

$$
\begin{gathered}
x^{2} /\left(\alpha-x_{i}\right)+y^{2} /\left(\beta-x_{i}\right)+z^{2} /\left(\gamma-x_{i}\right)=1 \\
(i=1,2,3)
\end{gathered}
$$

consequently, the x_{i} are roots of the cubic

$$
\begin{equation*}
t^{3}-a t^{2}+b t-c=0 \tag{i}
\end{equation*}
$$

where

$$
\begin{align*}
& a=\alpha+\beta+\gamma-r^{2}, \\
& b=\alpha \beta+\beta \gamma+\gamma \alpha-(\beta+\gamma) x^{2} \\
& \quad-(\gamma+\alpha) y^{2}-(\alpha+\beta) z^{2}, \tag{ii}\\
& c=\alpha \beta \gamma-\beta \gamma x^{2}-\gamma \alpha y^{2}-\alpha \beta z^{2} .
\end{align*}
$$

If in Eq. (i) we put

$$
\begin{equation*}
t=u+(a / 3) \tag{iii}
\end{equation*}
$$

the resulting equation in (ii) is

$$
\begin{gather*}
u^{3}-p u^{2}+q=0, \quad p=\frac{1}{3} a^{2}-b \tag{iv}\\
q=-(2 / 27) a^{3}+(a b / 3)-c
\end{gather*}
$$

For $q=0$, which is an equation of the third degree in x^{2}, y^{2}, z^{2}, the expressions for x_{i} are

$$
x_{1}=(a / 3)+(p)^{\frac{1}{2}}, \quad x_{2}=a / 3, \quad x_{3}=(a / 3)-(p)^{\frac{1}{2}} ;
$$

p must be positive. Also there are the conditions $\alpha>x_{1}>\beta>x_{2}>\gamma>x_{3}$ to be satisfied. In this case $H_{1}{ }^{2}=2 p / f\left(x_{1}\right), \quad H_{2}{ }^{2}=-p / f\left(x_{2}\right), \quad H_{3}{ }^{2}=2 p / f\left(x_{3}\right)$,
where $f\left(x_{i}\right)=4\left(\alpha-x_{i}\right)\left(\beta-x_{i}\right)\left(\gamma-x_{i}\right)$, and thus $f\left(x_{1}\right)$ and $f\left(x_{3}\right)$ are positive, and $f\left(x_{2}\right)$ negative,

$$
V=(1 / p)\left[\left(\varphi_{1} f\left(x_{1}\right) / 2\right)-\varphi_{2} f\left(x_{2}\right)+\left(\varphi_{3} f\left(x_{3}\right) / 2\right)\right]
$$

where φ_{i} is an arbitrary function of x_{i}.
When p and q are different from zero the cubic equation (i) above, having three real solutions, $x_{1}>x_{2}>x_{3}$, is irreducible, that is, it is impossible to find x_{i} as functions of x, y, and z. However for particular numerical values of p and q, such that p and $\left(p^{3} / 27\right)-\left(q^{2} / 4\right)$ are positive, real solutions of Eq. (iv) are ${ }^{6}$

$$
\begin{gathered}
2(p / 3)^{\frac{1}{2}} \cos (\theta / 3), \quad 2(p / 3)^{\frac{1}{2}} \cos [(\theta+2 \pi) / 3], \\
2(p / 3)^{\frac{1}{2}} \cos [(\theta+4 \pi) / 3],
\end{gathered}
$$

where θ is given by

$$
\cos \theta=-(3 q / 2 p)(3 / p)^{2}
$$

By means of a table of cosines θ can be found, and then the numerical values of the three roots of Eq. (iv). This process yields a numerical expression for V involving three arbitrary functions of constants x_{i}.

$$
\begin{gathered}
\text { X. } \quad H_{i}{ }^{2}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{k}\right) / f\left(x_{i}\right), \\
f\left(x_{i}\right)=4\left(\alpha-x_{i}\right)\left(\beta-x_{i}\right),
\end{gathered}
$$

where $x_{1}>\alpha>x_{2}>\beta>x_{3}$.

$$
\begin{aligned}
x & =\left(x_{1}+x_{2}+x_{3}-\alpha-\beta\right) / 2 \\
y^{2} & =\left[\prod_{i}\left(\alpha-x_{i}\right)\right] /(\beta-\alpha), \\
z^{2} & =\left[\prod_{i}\left(\beta-x_{i}\right)\right] /(\alpha-\beta)
\end{aligned}
$$

[^3]From these expressions we have
$y^{2} /\left(\alpha-x_{i}\right)+z^{2} /\left(\beta-x_{i}\right)=2 x-x_{i}, \quad(i=1,2,3)$.
Consequently, the roots x_{i} are solutions of an equation of the form (iv), where in this case

$$
\begin{gathered}
a=-(2 x+\alpha+\beta), \quad b=\alpha \beta+2 x(\alpha+\beta)-y^{2}-z^{2} \\
c=\beta y^{2}+\alpha z^{2}-2 x \alpha \beta .
\end{gathered}
$$

Unless $q=0$, the equation is irreducible. The procedure in this case is the same as with type IX where now a, b, c are the new functions of x, y, and z.

The foregoing results are the solution of the problem in one system of Cartesian coordinates. They are such that

$$
\begin{aligned}
& H_{i}{ }^{2}=\left(\partial x / \partial x_{i}\right)^{2}+\left(\partial y / \partial x_{i}\right)^{2}+\left(\partial z / \partial x_{i}\right)^{2} \\
& \equiv \sum\left(\partial x / \partial x_{i}\right)^{2} \\
& \sum\left(\partial x / \partial x_{i}\right)\left(\partial x / \partial x_{j}\right)=0 \quad(i \neq j),
\end{aligned}
$$

where \sum denotes summation over x, y, and z.
There is, however, no preferred system of Cartesian coordinates. If x, y, z and $\bar{x}, \bar{y}, \bar{z}$ are two such systems, they are related as follows:

$$
\begin{aligned}
& x=a_{1}{ }^{1} \bar{x}+a_{2}{ }^{1} \bar{y}+a_{3}{ }^{1} \bar{z}+b_{1}, \\
& y=a_{1}{ }^{2} \bar{x}+a_{2}{ }^{2} \bar{y}+a_{3}{ }^{2}+b_{2}, \\
& z=a_{1}{ }^{3} \bar{x}+a_{2}{ }^{3} \bar{y}+a_{3}{ }^{3} \bar{z}+b_{3},
\end{aligned}
$$

where the a 's and b 's are constants, the former subject to the conditions

$$
\sum_{i} a_{j}^{j} a_{k}^{i}=\delta_{j k}, \quad \sum_{i} a_{i}^{j} a_{t}^{k}=\delta^{j k}
$$

where

$$
\delta_{j k}, \delta^{j k} \text { are } 1 \text { for } j=k ; 0 \text { for } j \neq k
$$

In view of these conditions we have

$$
\begin{gathered}
H_{i}{ }^{2}=\sum\left(\partial x / \partial x_{i}\right)^{2}=\sum\left(\partial \bar{x} / \partial x_{i}\right)^{2} \\
0=\sum\left(\partial x / \partial x_{i}\right)\left(\partial x / \partial x_{j}\right) \\
=\sum\left(\partial \bar{x} / \partial x_{i}\right)\left(\partial \bar{x} / \partial x_{j}\right) \quad(i \neq j) .
\end{gathered}
$$

Accordingly, the general form of V is obtained by substituting the above expressions for x, y, z, interims of \bar{x}, \bar{y}, and \bar{z}, in the previous results.

[^0]: ${ }^{1}$ Paul G. Stäckel, Ueber die Integration des HamiltonJacobischen Differential gleichunger Mittelst separation der variabeln, Habilitationschrift, Halle.
 ${ }^{2}$ H. P. Robertson, "Bemerkung über separierbare Systeme in der Wellenmechanik," Math. Ann. 98, 749-752 (1927).
 ${ }^{3}$ L. P. Eisenhart, "Separable systems of Stäckel," Ann. Math. 35, 284-305 (1934).

[^1]: ${ }^{4}$ L. P. Eisenhart, "Separable systems in Euclidean 3-space," Phys. Rev. 45, 427-428 (1934).

[^2]: ${ }^{5}$ Cf. Benjamin O. Peirce, A Short Table of Integrals (Ginn and Company, Boston, 1929), pp. 84-87.

[^3]: ${ }^{6}$ Cf. H. B. Fine, College Algebra (Ginn and Company, Boston, 1905), pp. 483-491.

