PHYSICAL REVIEW

VOLUME

14,

NUMBER | JULY 1, 1948

Enumeration of Potentials for Which One-Particle Schroedinger Equations Are
Separable

L. P. EISENHART
Fine Hall, Princeton, New Jersey

(Received March 2, 1948)

N 1891 Stickel! solved the problem of deter-
mining the quantities H; in the Hamiltonian
equation

Z,(I/H.z)(60/6x1)2+ V—-ou =0,

where a; is a constant, so that the variables are
separable, that is, so that the solution is of the
form =3_; X, where X is a function of x; alone.
The complete solution is: given any »? functions
¢:j, where ¢,; is a function of x; alone, ¢ is the
cofactor of ¢;;in the determinant ¢(70) of the
functions ¢;;; then H;?=¢/¢%. The potential
function V in any such coordinate system is

V=2 i(fix)/H?),

when f; is an arbitrary function of x;.
In 1927 Robertson? showed that for the
Schroedinger equation

2(1/H)(8/0x0) [ (H/H ) (84/0x4) ]
+EHE—= V)Y =0,
(i=1' cee n),

1)

H=HiH1'a

to admit by separation of the variables a solution
of the form J]: X, where X; is a function of x;
alone, the functions H; must be of the Stickel
form, the potential function be of the form (1),
and the Stickel determinant ¢ be such that

e=11:«(H./0,),
where 6; is a function of x; at most.
In 1934 I showed?® that a necessary and suf-
ficient condition that functions H; be of the

Stickel form is that the following equations be
satisfied :

2)

(0% logH ;2/9x:0x ;)

+ (0 logH 2/3x;) (0 logH 2/3x,) =0, (17])
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9% logH > 0logH*dlogH? dlogH,d logH}*
- +

axjaxk 6x,~ X
d logH,? 3 logH,?

ax,»

ax; 9xy;

0, (4,7, k).

6xk
Proceeding from this result I derived all the real
forms of H; for Euclidean 3-space, ten in number
in addition to the Cartesian case H;=1; and
showed that the condition (2) is automatically
satisfied in Euclidean 3-space. In a note in this
journal® [ listed the ten possible forms of H..

For each of the ten possible forms Eq. (1)
gives the expression for the potential function V
in the particular coordinates x; of each canonical
form. Recently Professor Wigner raised the
question as to whether it is possible to obtain
the expression for V in Cartesian coordinates in
each of the ten cases, as a possible aid to those
making an investigation of particular problems.
This paper gives an answer to this question,
deriving the possible forms of V in Cartesian
coordinates x, ¥y, 2.

What follows after the expressions for the H's
in each case are the expressions of Cartesian
coordinates x, y, z in terms of the corresponding
x:. Then follow x¢ as functions of x, y, 2, except
in the last two cases where a general solution is
impossible. For the possible cases the form of V
is given in Cartesian coordinates.

I. H12=1, H22=x12, H32=1,
X=1X] COSX3, Y=x;SiNX;, 2Z=Xx3,
x1=(x24y2)}, tanx;=y/x, x3=3,

V=e[(x*+y )]+ [¥(v/x)/ (x*+y2) I+ f(2),

where here, and in what follows, ¢, ¢, and f are
arbitrary functions of their arguments.

1I. H¢?=H,*=1a%(cosh2x,—cos2x,), H;*=1,

where here, and in later cases, a is an arbitrary
constant.

+L. P. Eisenhart, ‘Separable systems in Euclidean
3-space,” Phys. Rev. 45, 427-428 (1934).
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y =a sinhx; sinx,,
sin2xy= —A4 + B,

x =a coshx; cosxs,
sinh?x;=A4 + B,

Z=X3,
X3=2,

where

A=(1/2a*)(x*+y*—a?),
V=[a*/(A*+(y*/a®))]
X[p(A+B)+y¢(—A+B) |+ f(=).

B=(A*+(y*/a%):,

111, I :=112=x2+x,2, Hji2=1,
x=3(x12—x2%), Y=x1X;, 2Z=Xx3,
o= (=), = —x (P — ),
V=[1/2(y*—x)*][o(x+ (y*—x?)H?
+HY(—x+ (2 —x) )i+ f(2).

Before proceeding with the other cases we
remark that it is evident from the expressions in
Cases I, II, and III that, if one puts z=x3=0,
one has cases of separable systems in Euclidean
2-space. It can be shown that these are the only
possibilities.

X3=2,

1V. Ill2= , H22=x12, 1132=x12 sin2x2,
X =x SINXy COSX3, Y =X SINX? SiNX3, 2 =X COSX2,
x1=r=(x2+y2+32)} cosx,=z/r, tanx;=v/x,

V=g(r)+1/r(2/n)+[f(y/x)/(x*+y*) ].

V. Hi?=H?2=x32[k2n*(x1, k) +k %cn*(xs, k)],
1132 =1,

where the constants k& and k&’ of the elliptic
functions are in the relation k*+k’?=1.5

x=x3dn(xy, k)sn(xs, k'),
y=xssn(xy, k)dn(xs, k'),
s=x3cn(x1, R)en(xs, k).

Making use of the relations

snideni=1, dn +kisn’=1, dn2—kini=k",

we obtain from the above

k2cn®(xy, k) =A+B, k'*cn*(xq, k') = —A+B,

X‘32 = 72,
where
A=1/2r)(k%x*—k">y>+ (k> —k'?)2?),
B=(A*+ (k=2 /r),
V= (1/2r*B)[¢((A+B)}/k)
+¥(—A+B)}/E) ]+ (7).

5 Cf. Benjamin O. Peirce, A Short Table of Integrals
(Ginn and Company, Boston, 1929), pp. 84-87.
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VI. 1{12=H22=x12+x2", 1132=x12x22,
X =X1X2 COSX3, Y=X1Xgsinx; 2=73(x1>—x,?),
x12=r+4z, x2=r—z, tanx;=y/x,
V=(1/20[o((r+2)) +¥((r—2))]
+[1/(x24y?) 1f(y/x).
VIl. H\y*=H,y>=a*(sinh®xy;+4sin®v,),
H3?=a? sinh2x; sin¥x,,
x=a sinhx; sinx, cosx;, y=a sinhx, sinx, sinx;,
z=a coshx; cosxs,
sinh2x; =4+ B, sin?x,=—A4+B, tanx;=y/x,

where

A=(1/2a*)(r*—a?, B=(4*+(x*+y?/a?},
V=_»1/2a’B)[¢((A+B)})+¢((—A+B)¥]
+f(y/x)/(x*+y?).

VIII. H,*=H,;*=a?*(sinh% ;4 cos’x,),

H3i2=a? cosh2x, sin2x,,

x=a coshx; sinx, cosx;, y=a coshx; sinx, sinx;,

gz=a sinhx; cosxs,
cos2x,= —A+B,

cosh?x;,=A+ B, tanx;=1vy/x,

where

A=(1/2a*)(r’—a*), B=(4*+(s*/a%)}
V=(1/2a’B)[¢((4+B)*)
+o((—A4+B)}) ]+ f(y/x).

IX. 2 =[(xi—x;)(xi—xx)/f(x:) ],

flx)=4(a—x)(B—x)(y—x), (@, k=),
x?=[Ili(e—x)]/(a—B)(a—7),
y:=[II.(8—x)]/(B—a)(B—7),
22 =[ITL.(v—x) 1/ (v —a) (v —8),

where a>x;>B>x:>v>x;.
pressions we have

x/(a—x)+y*/ (B—x)+2*/(y—x) =1

From these ex-

(z=1,2,3);
consequently, the x; are roots of the cubic
tB—at*+bt—c=0, (1)
where
a=a+p+y—r?

b=af+By+va—(B+v)x*?
—(v+a)y’—(a+p)z?, (i)
c=afy —Byx*—yay’—afz®.

If in Eq. (i) we put

t=u+(a/3) (iii)
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the resulting equation in (ii) is

w—put+qg=0, p=3a’—b,
g=—1(2/27)a*+ (ab/3) —c.

FFor ¢=0, which is an equation of the third
degree in x*, y?, 22, the expressions for x; are

xi=(a/3)+(p)", x3=(a/3) = (p)*;

p must be positive. Also there are the conditions
a>x;>B>x.>v>x; to be satisfied. In this case

Hy=2p/f(x1), Hy*=—p/f(xs), Hy*=2p/f(xs),

where f(x) =4(a—x:)(B—x:)(y—x:), and thus
f(x1) and f(x3) are positive, and f(x;) negative,

V=(1/p)[(e:1f(x1)/2) = o2 (x2) + (03 f(x5) /2) ],

where ¢; is an arbitrary function of x..

When p and ¢ are different from zero the cubic
equation (i) above, having three real solutions,
X1> x> x3, is irreducible, that is, it is impossible
to find x; as functions of x, y, and z. However for
particular numerical values of p and ¢, such that
p and (p3/27) — (¢*/4) are positive, real solutions
of Eq. (iv) are®

2(p/3)* cos(8/3), 2(p/3)* cos[ (6+2m)/3],
2(p/3)* cos[(8+4m)/3],

where 6 is given by
cost = —(3¢/2p)(3/p)"

By means of a table of cosines 8 can be found,
and then the numerical values of the three roots
of Eq. (iv). This process yields a numerical ex-
pression for V involving three arbitrary functions
of constants x,.

X. H2=(xi—x;)(xi—xy)/ f(x3),
flxi) =4(a—x:)(B—x:),
where x1>a>x:> 8> x;.
x=(x1+x24x3—a—0)/2,
yi=[Ili(e—x:)1/(B—a),
22=[J1:(8—x)]/(a—B).

" SCf. H. B. Fine, College Algebra (Ginn and Company,
Boston, 1905), pp. 483-491.

(iv)

x2=a/3,
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From these expressions we have
y2/(a—x;)+2%/(B—x:) =2x—x;,

Consequently, the roots x; are solutions of an
equation of the form (iv), where in this casc

a= _(2;\:+a+6)7 b=a5+2-’b(a+/3)_}’“)“‘33,
c=By*+az?—2xaf.

Unless ¢=0, the equation is irreducible. The
procedure in this case is the same as with type
IX where now a, b, ¢ are the new functions of x,
y, and z.

(i=1,2,3).

The foregoing results are the solution of the
problem in one system of Cartesian coordinates.
They are such that

H2=(0x/3x:)*+ (3y/dx,)2+ (93/9x.)?
= Z (ax/ax,‘).‘!'
2. (9x/0x)(9x/dx;) =0 (i),
where Y denotes summation over x, vy, and z.
There is, however, no preferred system of

Cartesian coordinates. If x,y,z and &, 7, Z are
two such systems, they are related as follows:

x=a,'t+ar'g+as'z+ by,
y=0a1T+a*J+a3*2+b,,
z2=a.3T+a* G+ a3’z 4 b;,

where the a's and b's are constants, the former
subject to the conditions

Siajiari=08;, .:alakt=35%*,
where

dir, 6 are 1 for j=k; 0 for j==k.
In view of these conditions we have

2= ¥ (3x/0x:)? = X (38/0x.),

0=3(9x/0x:)(3x/dx;)
=3 (9%/9x.) (9%/0x;) (i j).

Accordingly, the general form of V is obtained
by substituting the above expressions for x, y, z,
interims of &, ¥, and 2, in the previous results.



