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Theory of OsciQating Absorber in a Chain Reactor*
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The response of a critical chain-reacting pile to a thermal neutron absorber which is oscillated
back and forth inside the pile is calculated. It is shown that at frequencies which are low com-
pared to the periods of delayed neutrons, the neutron intensity in the pile rises and falls as a
whole, the shape of the stationary distribution always being maintained. As the frequency of
the oscillation increases, the nature of the neutron response changes from the over-all fluctua-
tion characteristic at low frequency to a propagated and attenuated neutron wave which
emanates from the neighborhood of the oscillator. These neutron waves set up at high fre-
quencies are entirely analogous to the familiar thermal waves which are established in Ang-
strom's method of measuring thermal conductivities. It is pointed out that since the pile
equations are linear, the amplitude of the oscillating response is proportional to the total
neutron absorption of the oscillated absorber, and therefore a known and an unknown absorber
can be compared by observing the magnitude of the neutron oscillations caused by each.

1. INTRODUCTION

'F a chain-reacting pile is modulated, i.e., if its
- - reactivity is subjected to periodic fluctuations
about critical, the neutron flux in the reactor
will undergo oscillations of the same period.
Qualitatively this is evident since the flux waxes
while the reactor is super-critical and wanes
while the reactor is sub-critical.

If the reactivity modulation is elected by
periodically moving a neutron absorber between
regions of high and low flux, then, since the pile
equations are linear, the amplitude of the result-

ing neutron fluctuation must be proportional to
the magnitude of the absorber. Thus a known

* Declassi6ed June 7, f948.
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absorber can be compared with an unknown by
measuring the amplitudes of the neutron re-

sponses when each of the absorbers is oscillated
in the same way, inside the pile.

In addition to reducing the reactivity of the
pile, a localized absorber introduced into a chain
reactor also lowers the neutron flux in its imme-

diate vicinity. If the absorber is moved back and
forth, this local neutron depression will move
with the absorber, and the response in a nearby
neutron-sensitive chamber will fluctuate with the
same frequency as that of the oscillating ab-
sorber. This local response, like the over-a11 re-
sponse which arose from the reactivity modula-

tion, is also proportional to the size of the ab-
sorber, and hence can also be used to compare
two neutron absorbers. Both methods have been
used for neutron absorption cross-section meas-

urements, the reactivity response by A. Langs-
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dorf' and the local response by Pomerance,
Hoover et cl.'

The character of the response to an oscillating
absorber depends on the frequency of the oscilla-
tion. At low frequencies the reactivity change
predominates and the pile response is adiabatic:
the neutron intensity rises and falls, always keep-
ing essentially the shape it had before the ab-
sorber was oscillated. At high frequencies the
positive and negative reactivity changes tend to
cancel and what remains is the local depression.
This depression in neutron intensity is propa-
gated away from the absorber as a damped wave
which is reAected at the pile boundary. The
wave-length, velocity, and attenuation length of
the waves depend on the properties of the chain-
reacting medium. These "neutron waves" are
analogous to the thermal waves set up in a con-
ducting medium in which is placed a localized
heat source whose strength varies periodically.

In the present paper we calculate the response
of a pile to a periodically varying absorber. In
particular we trace how the neutron response
changes from an over-all fluctuation at low fre-
quencies to a propagated wave which appears at
high frequencies. The considerations reported
here are a generalization of results first obtained

by Cahn, Monk, and Weinbergs (for a reactor in
which slowing down was ignored) and then ex-
tended to age theory slowing down by signer. '
The method used bears considerable resemblance
to that employed by Placzek and Volkoff' in
discussing' the response of a sub-critical pile to a
stationary neutron source.

2. THE PILE EQUATION

%e consider a non-reQected, homogeneous,
uniform chain-reacting pile which is just critical.
We suppose that the extrapolation distance is
independent of the energy so that the density of
neutrons of all energies extrapolates to zero at
the same distance beyond the pile boundary; this

' Alexander Langsdorf, Jr., Bull. Am. Phys. Soc. 23,
No. 3, 20 (1948~.

'H. Pomerance and J. I. Hoover, Phys. Rev. '73, 1265
(1948); also J. I. Hoover, W. H. Jordan, C. D. Moak,
L. A. Pardue, H. Pomerance, J.Strong, and E. O. Wollan,
Phys. Rev. '?3, 1259 {1948).

'A. Cahn, Jr., A. T. Monk, and A. M. Weinberg, Metal-
lurgical Project Report, CP-2907.' E. P. Vhgner, Metallurgical Project Report, CP-3066.' G. Placzek and G. Volkoff, Can. J. Research A25, 276
(1947).

assumption simplifies the analysis enormously
without introducing any important error so long
as the pile is large compared to the extrapolation
distance. The pile equation, which describes the
slowing down, diA'usion, and multiplication of
neutrons, is

k
Dhns —o„n,+—(1—P) o„ t n, (r')P(

j
r —r'[)dr'

oo

[ cps(r')
+P P;([r—r'[)dr'= 0, (1a)

, J„

where
(k!P)P,o„ns (cps/r, ) =—0, (lb)

n0(r) = thermal neutron fiux at r, i.e., number of neu-

trons/cc )&average velocity, v.

D = thermal neutron diffusion coefficient —: v.

o„=thermal neutron absorption cross section of
pile per cc.

k = multiplication constant; i.e., average number
of neutrons produced per neutron absorbed.

P =resonance escape probability; k/p is the aver-
age number of neutrons produced per slow

neutron absorbed.

P; =fraction of neutrons produced per fission
which are delayed with a mean life 7-;. Each
delayed neutron comes from a delayed neu-
tron emitting fission fragment.

P([r—r'[) =the prompt neutron slowing down function,
i.e., number of neutrons becoming slow at r'
due to a prompt fission neutron produced at
r in an infinite chain-reacting medium having
the same slowing down and resonance absorp-
tion characteristics as the actual pile. Since
the resonance escape probability is P,

f P(lr r'l)d tr. -
cq'0(r) =density of fission fragment nuclei at r which

will emit a delayed neutron with mean life r;.
P;([r—r'[) =jth delayed neutron slowing-down function,

i.e., number of neutrons becoming slow at r'
due to a jth-type delayed fission neutron pro-
duced at r in an infinite chain-reacting me-
dium. P, ([r—r'[) may dilfer from P([r r'[)—
because the energy of the delayed and prompt
neutrons may not be the same.

In Eq. (1a), Ddns is the net diffusion flow of
neutrons into a cubic centimeter, o-~no is the
number of thermal neutrons absorbed per cc per
second, while the two integrals represent the
number of neutrons which become thermal per
cc per second at r after birth as prompt or delayed
fission neutrons, respectively.
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The integrals in (1a), as indicated by sub-

scripts ~, are to be extended over all space. At
first sight this would appear incorrect since the
reactor is finite. However, as is well known in pile
theory, no(r), and therefore cg'o, satisfy

&no(r)+ Ko'no(r) =0, (2)

f~:0' being a constant; hence, as will be shown

below, the integrals

a(r) =(&It)(1—P)~. no(r')P(Ir —r'~)«' (3)J„

(4)

which represent the number of prompt and de-
layed neutrons becoming slow at r, satisfy the
same boundary conditions as no(r). Thus the slow
neutron production density g(r) Land g, (r)j is a
linear superposition of infinite system slowing-
down functions which satisfies the same bound-
ary conditions as the thermal neutron density.
Since we assume the density of neutrons of all
energies extrapolates to zero at the same distance
beyond the pile boundary, g(r) and g, (r) are the
proper production densities for a finite pile, i.e. ,

it is correct to extend the integrals in (1) over
all space.

The physical meaning of the preceding re-
marks, which are fundamental in pile theory, is
the following:

The neutron distribution in a finite pile (in
which the extrapolation distance is energy inde-
pendent) can be calculated by extending the pile
to in6nity and finding the asymptotic neutron
distribution in this infinite system. This solution
oscillates, positive neutron densities alternating
with negative ones ad onfinituno The posit.ive
and negative densities are so distributed that on
the extrapolated pile boundary their superposed
efkct vanishes. In particular, the production
density g(r) in a finite pile is the same as that in
an infinite system in which the neutron density
n(r) is the analytic continuation of the density
appropriate to the finite system.

The regions in which the neutron density is
negative may be called "negative" piles. The
positive and negative piles constitute a system

of images of the sort commonly used to solve
ordinary boundary-value problems. In problems
ordinarily encountered, which lead to non-

homogeneous di6'erential equations, e.g. , the po-
tential of a pre-assigned source distribution, the
system of images can be constructed easily only
if the bounding surface has sufhcient symmetry.
In the pile case, however, even if the boundary
is arbitrarily shaped, the proper intensity and
distribution of the image piles are automatically
given by the analytic continuation of the
asymptotic neutron distribution defined by (2)
outside the pile.

It remains to show that g, q;, and n0 all satisfy
the same boundary conditions (actually it will

be shown that these functions are everywhere
proportional). We represent no(r) as a Fourier
integral:

no(r) =~ A(e)e' 'de,

where e=e,i+a„j+e,k is a vector integration
variable. Since no(r) satisfies (2), the function
A (e) must vanish unless e'= Ko', i.e., it is propor-
tional to a b-function on the surface of a sphere
of radius ~0. Now

q(r) =—(1—P)o,
~

no(r')P(~r —r'~)dr'
00

I
r

=—(1—p)o„ i A(e)e' "P(~r—r'~)dr'de"J„J„
k

=—(1—P)o„)t A(e)e' 'de
p 00

X~~ e' "' '&P(~r —r'~)d(r' —r),

or, since A(e) is a delta-function, i.e., since
A (e) =0 for eo ~ Koo A (e) = ao for iKo = K

o

~(r) =-(1—p) .P( o')no(r),

where P(Koo) is the three-dimensional Fourier
transform of P(

~

r —r'
~
):

slnKor
P(Koo) =4or P(r)

0 K0r
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~" n(r', t)P(~r —r'~)«',
cgo(r)

n(r) = P ( o') =—.tt no(r)P ( o'), (7)

An exactly similar argument shows that q; is also integral in (9) of the form
proportional to no(r):

(10a)

where P;(igloo) is the Fourier transform of the jth
delayed neutron slowing-down function.

The characteristic equation which a~ satisfies
is found by substituting the expressions for q(r)
and g;(r) from (5) and (7) into (1).The result is

PA, (~—o') I.'Ko' —1=0, —

where
PA.(«') =(1—P)P(«')+2 P P (~o')

Since ~0' depends on the size of the pil- — for
example, ~o' ——s'/R' for a sphere of radius R-
Eq. (8) serves to determine the critical size of a
pile in terms of its microscopic properties.

We now suppose that an absorber, whose ab-
sorption cross section per cc at position r and
time t is n, (r, t), is placed in the pile. We assume
that introduction of the absorber does not alter
the pile scattering cross section. Since the pile is
critical before the absorber was introduced, it
will not be so, on the average, after the absorber
is in place unless the multiplication constant is
increased (by moving a control rod out) to a new

value k'& k. After this adjustment has been made
the pile equation is

Dan Lo,+o.(r, t)]n—

+—(1 P) ~, "—n(r', t)P ( ~

r —r'
~ )dr'

where the integration is extended over all space
and P(

~

r r—' ~) is the slowing-down function ap-
propriate to an in6nite system, is equivalent to

n(r', t)Po(r, r')dr',
Jy

(10b)

n„(t) being expansion coeKcients and i being an
index which orders the eigenfunctions. Upon
substituting this expansion into (10a) we obtain

n(r', t)P(~ r —r'
~

)dr' = Q n„(t)Z„(r)P(a,'),

where the integral extends over the pile (p), and

Po(r, r'), the slowing-down kernel in a finite pile,
can be constructed from P(

~
r —r'

~ ) by a suitable
superposition of images. The equivalence of the
pile integral (10b) and th'e all-space integral
(10a) follows from the fact that the all-space
integral vanishes on the extrapolated pile bound-

ary. This, therefore, insures that the linear super-
position of inhnite system slowing-down kernels
represented by the all-space integral is exactly
that superposition which satishes the boundary
conditions on the finite pile. To show that (10a)
vanishes on the extrapolated boundary of the
pile we express n(r, t) as a superposition of func-
tions Z„(r) which vanish on the extrapolated pile
boundary and satisfy the wave equation

AZ, (r)+z,oZ„(r) =0;
that is,

( c;(r', t) 18n
+Q —P;(~r —r'~)dr'= ——,

e Bt

(to'/P) l3 o on (ci/r;) = Bc—s/Bt,

which vanishes on the boundary, even for arbi-
9a

trary n. (t) The doubl. e integrals can therefore
be transformed thus:

(9b)

where the subscripts of Eq. (1) have been 0~ ao

dropped. To determine how much k' must dier
from k in order that the pile remain critical, on
the average, we multiply (1a) and (1b) by n,
(9a) and (9b) by no, subtract, integrate over the
pile, and integrate with respect to time from
time 0 to ~. The integrals involving e'en and
nemo vanish by Green's theorem and the homo-
geneity of the boundary conditions. Now the

no(r)P( )
r —r'

~ )n(r', t)dr'dr

I n, (r)Po(r, r')n(r', t)dr'dr

no(r) P(
~

r —r'
~ )n(r', t)dr'dr

=P(~o') n(r', t) no(r')«'
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The result of the manipulation with Green's theorem is therefore

(h' —h)
P p(~'p) = lim

10~

o,(r, l) n(r, t)no(r)drdt
gJ p %JAN

, I n(r, t)n, (r)drdt
4p Jg

n(r, T) —n(r, 0)
~I'np(r) Q P;(K p) Ic;(r, T) —c;(r, 0) I+ dr

4y g v

n(r, t)n p(r)drdt

Since k' is so adjusted t4at the pile remains
critical on the average after the absorber has been
introduced, n(r, t) aud c;(r, t) are bounded as
t—+~; the second term on the right therefore
goes to zero at long times T. Thus the required
change in k is

(o.nn p)A+r
p

k' —k=
PA„(ap')

o, (nnp), „dr
4y

where r
(oonnp)A, = lim — o,nn pdt

g-+oo T 4p
(12) The following example illustrates this point. Consider a

point absorber which oscillates along the z axis perpendicu-
lar to the faces of an inhnite slab pile with amplitude P

and frequency a/2~ around z=zp. Then

f(r, t) =b(z —z+(e'"')b(x) a(y),

If we introduce the notation

p~ r
5,= lim —

~ oo(r, t)drdt,
T~o0 T p

(1g) and
lrz

n(r) =sin —=ep(r),H

fnultiplied by the volume of the absorber; g is the
average "statistical weight" of the pile region
occupied by the absorber. Thus Eq. (16) is the
generalization for a time-varying absorber of the
usual statistical weight formula: the average
changein multiplication constanl caused by a lime

varying absorber is the average cross section multi-

plied by the average statistical weight of the absorber

Since the time average is over nnp, or, approxi-
rnately, over the square of the neutron density,
the average k change is not the same as the k

change caused by the absorber if it were sta-
tionary in its average position.

o,(r, t)
f(r, t) =

5

' f(r, t)n(r, t)nor)drdt
40 4

g= 11m

"n(r, t)n(r)drdt

H being the width of the pile, H&&g. It is understood
throughout that only the real part of the exponential is to
be used. If the sink were stationary at its equilibrium point,
zp, the statistical weight, yp, would be

~ xzpsin~—
H 2 . ,~zp

sin~dz
0

Since the absorber oscillates, its actual average statistical
weight is

4p

the required k change is
T H ~ . Kz

b(zp —z+$e~') sin' —Czdt
0 0

(16) ff . dd H Hp 5
bk=k' —k= — —i.

PAv(&p) oo
2~zp+—cos

The quantity 5 is equal to the time average of Hi H

the absorption cross section per cc of the absorber If the absorber oscillates around zp=H/4, the average k
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change is the same as the k change at the average position,
since the two statistical weights are the same. If 3II/4)sp
&H/4 (toward center), the k change is less than the sta-
tionary valUe, while if sp &II/4, the k change is greater.

3. SOLUTION OF THE PILE EQUATION
FOR OSCILLATING ABSORBER

Ke now calculate the pile response to an ab-
sorber of small volume V, and cross section o

which is oscillated back and forth about the point
rp with frequency co/2w and amplitude

l pl in the
direction y. We assume that

l p l
is small compared

to any pile dimension. Then by definitions (13)
and (14),

S =o-, V,

f(r, ~) = &(ro —r+ pe'"'),

where 6(r) is normalized to

tb(r)dr = ~ b(x)b(y)b(s)dxdyds =1.~Ja
If

l
rp —r

l
is large compared to

l y, it is appro-
priate to expand the 6-function formally in
Taylor's series and keep only the first two terms:

f(r, t) =8(rp —r)+e~'g Vb(rp —r), (19)

where V' is the gradient with respect to ro. The
higher terms in this expansion have frequencies
which are multiples of cu, if the detecting equip-
ment is tuned only to co, these overtones will not
be recorded.

The neutron and delayed emitter densities mill

consist of a stationary part, (n, e,), and an oscilla-
tory part, (y(r)e' ', w, (r)e' '):

Dhy oy+—(1 —p—)o„y(r')P(lr —r' l)dr'
p QO

p w, (r')
P, (lr —r'l)dr' ——y

8

=S.ny Vb(ro —r)+S.yb(ro —r)

sk——(1—P) o„~ y(r')P(
l
r —r'

l
)dr', (21a)

p Qo

bk w,—P~o'„y+—P~o'„y ———Lan; = 0.
P P 7~

(21b)

In this approximation, therefore, the solution to
(21) can be obtained by sol~ing

k
Dhg —o,g+—(1 —p)o, , g(r')P(l r —r'I)«'

p

=S.no(rp) 5(r —ro), (23a)

Since y vanishes with S„ the terms S,y, yak,
and bk J'y(r')P(lr —r'l)dr' are of second order
in S, and, on the assumption of weak absorber,
can be neglected. Similarly, n(r) in the term
S,np V8(rp r) —can be replaced by np(r), the
density before the absorber was introduced (this
corresponds to using Born's approximation).

Since the amplitude of motion,
l pl, is small

compared to the pile dimension, n(r) [or np(r)]
in (21) can be expanded around rp. Thus, for
points not too near to the absorber,

S,ng V8(rp —r) =S,[np(rp)
+(r —ro) Vnp(rp)][y Vb(r —ro)]

S (p'V)[np(rp)6(r lo)]. (22)

n(r, t) = n(r)+y(r)e'"

c,(r, t) =c,(r)+w, (r)e~'.

(20a)

(20b)

to;
P,a„g — iop—w,—= 0—, (23b)

In (20), and in the remaining calculations,
only the real part of any complex quantity is
signi6cant.

Upon substituting (17), (19), and (20), into the
pile equation, (9), and equating time-dependent
and time-independent quantities, we obtain for
the oscillating part of the fIux,

and taking the directional derivative y. V' of the
results:

y(r) = (&.V)g(r, ,),

w(r) =(p V)w(r, r,).

(24a)

(24b)

The solution g of (23a) when multiplied by e'"'

represents the oscillatory part of the response to
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a point absorber at ro whose absorption cross ~here
section oscillates with amplitude 5,.

To solve (23) we first replace 8; in (23a) by
its value from (23b):

g„= g(r)Z„(r)dr.

k Pto.„g
'N

p z(d+1/T;
(25)

We then expand g and 5(r —ro) in the complete
orthonormal set

which consists of those solutions of

DZ„(r)+ x„2Z„(r)=0,

which vanish on the extrapolated boundary.
Thus

The index v is an abbreviation for the three in-
dices (), ti, v) in case the pile is three dimen-
sional, and the characteristic functions depend
on three coordinates.

Since

~ Z„(r')P(
~

r —r'
~

)dr' =P(K„')Z, (r), (28)

the integral terms in (23a) reduce to

J g(r')P(
~

r —r'
~

)dr' = P g„P(a„')Z„(r). (29)

After substituting the expansion (27) for g(r) in

(23a) and (23b), and equating coeScients of Z„,
there results

no(ro) Z„(ro)Z„(r)

(1 —p)P(g 2)+p —p. (g i) —12K 2 j(gr—
1+ZQ)T&

(30)

where r = 1/v~„ is the lifetime against capture of a thermal neutron in the reactor, and I.= (D/o „)&

is the diR'usion length of the thermal neutrons. With this value for y, we find, finally,

S
n(r, t) =n(r)+y(r)e'"'=n(r)+ —(y V)no(r, )

Z„(ro)Z„(r)e

—I.'~ ' —1 —ZroT

(31a)

(31b)

The real parts of Eqs. (31a) and (31b) constitute the formal solution of the problem. We now dis-

cuss the physical properties of the solution in various cases.

a. Absorber of Fluctuating Strength Distributed Uniformly throughout Pile

In this case
S,

(ro(r, t) =—(1+ac' '),
V„

(32)

where V„ is the pile volume and a measures the relative amplitude of the oscillation. The oscillatory
part of the neutron density can be obtained from g(r) (which, except for the factor e ', is the solution
for a stationary point absorber whose strength oscillates with amplitude S,) by integrating with
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respect to rp over the whole pile and multiplying by ae~'. Since np(rp) is proportional to Zp(rp), all

terms except the fundamental disappear in the integration, and the result is

n (r,, t) =n(r) +
V„o.„

np(r)e

P~P~(»p')
t(1—P)P(»p') +Q —L'»p' —1 ic—or

1+ZM7)

(33)

np(r) e~'nS,
n(r, t) —n(r) =

V„a.„k—P(»p') I.'»p' —1 i(—a—r

If there are no delayed neutrons, the Quctuating part of the response is

Since the pile was critical before the absorber was introduced, Eq. (8) holds:

k
P(»p') ——I.P»p' —1 =0,

p
hence,

n(r, t) —n(r)

np(r)

AS,e'"'

V„r„icos

The amplitude of the neutron response falls oR' with increasing frequency; it lags behind the absorber
oscillation by 90'. This phase lag arises because it is the rate of change of the pile intensity, not the
intensity itself, which is determined by the instantaneous value of k. If the delayed neutrons are
taken into account, the phase lag is a little less than 90'.

Z„(rp)Z„(r)eS,
n(r, t) =n(r)+ (S V)—np(r.p) P

0'p

P»„(» ') —I.'» —' —1 ice t r+—P P; r;P, (» ') j
7

b. Localized Absorber, Slow Oscillation (pp~, &&1)

If the absorber moves back and forth slowly, rue;«1, a,nd (31a) becomes

(35)

Since the pile is critical,

—PA„(»p') —I.'»p' —1 =0

and the ratio of the fundamental to the vth harmonic in the series (35) is

Z„(rp)Z„(r) ippt r+ Q P—,r;P;(»p') g

k
—P,„(»„') I.'», ' 1 —p&oLr+—Q P; r—gP; (»„')jz,(r,)z, (r) p 7

(36)

This ratio becomes in6nite as auto; i.e., the fundamental predominates as the oscillation becomes
slower. In other words, if the oscillation is very slow the pile intensity Quctuates as a whole, the
neutron Aux at any point having the same phase as at any other point.

The slow oscillation method in which the over-all pile response to a moving absorber is detected
has been used in Langsdorf's oscillator for cross-section measurements.
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c. Loc&ti*ed Absorber, Fast Oscillation (~~,&&1), or Detector Close to Absorber

If the oscillation is fast, or if the detector is close to the absorber (ro=r'), the fundamental no
longer predominates, and the series (31a) converges poorly. Since the higher harmonics all have
different phases (because the coefficients in the series are corn'plex), the phase of the neutron in-
tensity oscillation will change from point to point. Close to the absorber the intensity will be in phase
with the motion of the absorber since the local neutron depression caused by the absorber will be
the major part of the intensity IIuctuation. Far from the absorber the neutron intensity will tend
more and more toward the phase of the fundamental. The disturbance set up by the oscillating
absorber is therefore wave-like: the absorber sends out damped waves of neutron intensity which are
reAected at the boundary. As will be shown below, the wave-length of the traveling disturbance is
short at high frequency and long at low frequency. It is for this reason that the disturbance has
the same phase everywhere at low frequencies, and has a varying phase at high frequency.

These qualitative considerations can be made exact by transforming the poorly converging series
(31a) into a form which displays the wave character of the disturbance. In order to effect this trans-
formation it will be convenient to specialize the shape of the pile; we therefore suppose the pile to
be a rectangular parallelopiped of sides a, b, c. The normalized characteristic functions are

and

~ 8 y& lxx mxy use
Zi „(r)=I I

sin sin sin
&abc] a b c

$2~2 ~2~2 ~2~2

+ +
g2 $2 g2

(3&)

(38)

The intensity, as given by (31a), is therefore

5,
u(r, t) =n(r)+ (p V)no(ro)e

so+bc l, w, n,

(x—xo) (y —y ) (s—sol
t

'r (. (x+xo& (y+y & (s+so&
I
l

expj i«I I+~I I+&I I I
—exp' ix I/ I+~I I+ul

a ] E b j & c ] j 4 E a i E b j ( c ]I]
Pipi("i-)

(1 P)P(ii'i )+—P I.'ii'i„„1 icar— — —
1+SGOTp

the sums being taken from —ao to + oo.

Ke now apply Poisson's summation formula'

I
t' I'

e (I, et, n) = g ~
' e (u, v, m)e ' '&""+i'"+" 'dudsdw

l, sa, a X, p, ~ al J

(39)

to the series in (39). The series then becomes, after making the transformation,

(. [
(x—xo) t'y —yo) (s—»i l ( [

(x+xol t'y+yo& )s+soi
I+~I I+uI I I

—expI ix 'I I+~I I+&I
a ) ( b ( c j ( ( a ] ( b ] ( c ] ]

kg(ii'i„„) I.'ii'i„„1 i—u)r——

abc i i. i. exp(ig (R —A.)) exp(i( (—R+ —A.))
dg,3„„JJg kQ(p) I.'p 1 iidr— ——

Courant-Hilbert, 3EIefkodee der Mafkematiscken Pkysik (Verlag Julius Springer, Berlin, 1931), Vol. I, p. 65.
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m'Q x'8 7r'

g =—i+—j+ k, dg = dpcdvdov,
a b c abc

R+ = (x~xo)i+ (y~yo) j+ (z~zo)k,

A. = 2) Q1+ 2p, 6]+2vck,

P,P, (P)
tQ(e) =- (1-tt)P(e)+2

p 1 1+ZMr l

To evaluate the integral in (41) we shift to spherical coordinates and obtain

exp[i) (R—A)] 4vr „" sin(~R —A
~

dg= —$d(
kQ(P) L'P —1 i~—r —

~

R —A
~

„o kQ(P) L'P 1—icor— —

4pr t" exp(i~R —A~&)
(42)

2i ~R —A
~

~ „kQ(P) L'P 1—icor——

To compute this integral we follow a semicircular contour which embraces the entire positive half-
plane. If B, are the zeros (assumed simple) with positive imaginary part of

then the value of the integral is

kQ(P) —L'P —1 icpr =—0, (43)

t'" exp(i (
R —A

) $) exp(iB,
~

R —A.
~ )

$d$=—pri Q
kQ(P) I~P —1 i—&ar — ~ kQ'(B o) Lo— (44)

Hence

Q'(B*') =— Q(P) I p z'=
d(P)

2abc exp(iB,
~
R —A

~ )

kQ'(BP) —Lo

abc f ~ p expLih. (R—A) j d(=pr»» kQ(P) L'P 1 —icor— — (45)

Substituting this into (41), and then putting the resulting series into (39), we finally obtain the
transformed series:

where

5, 1
n(r, t) —n(r) =—(p 7)no(ro)e'"c p

crv x, v, ~ 8 kQ'(BP) —L'
exp(iB.R i„„) exp(iB.-R+),v,)

(46)

&+),„„=((xaxp 2Xa)'+(yW—yp 2tcb)'+(za—zp 2vc)') &—
Equation (46) can be described as a sequence of positive and negative neutron sources. The positive
sources are situated at the points

(—xp+ 2Xa)i+ ( yp+ 2tcb)j + ( —zo+—2vc) k,

and negative sources at the points

(xo+2Ãa)i+ (yp+2tcb)j+ (zp+2vc)k.
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Thus (46) constitutes a sequence of images which are so placed that the boundary conditions are
satisfied on the pile surface.

Each term in the series (46) is of the form

5, (y V)no(ro) expr i(oit+B,R)I 5, 1
~

exp'(oit+B, R)j
t Vno(ro)

o„kg'(B ') L' — 4~R 0 kQ'(B ') I.' I— 4irR

exp)i(oit+ B,R)]
+no(ro)y V (48)

According to (48), the disturbance represented by each term in (46) is a spherical traveling wave of
complex wave-length 1/B, The .traveling wave, in the approximation in which

~
pl, the amplitude

of oscillation, is small compared to ~r —ro~, consists of two parts: a spherically symmetric wave
emitted by a point sink of strength

S.(ti 7')no(ro),

and a non-spherically symmetric wave emitted by a dipole of strength

&.no(ro)
~ t ~.

The spherically symmetric wave falls off as exp(iB,Ri,„„)/R&,„„while the dipole wave falls off as
exp(iB,R&„„)/R&,„,o hence, far from the absorber only the spherically symmetric wave prevails.

Actually waves corresponding to multipoles of all orders are generated by a periodically moving
absorber. The appearance of only the first two multipoles in (48) is a result of the approximation

~ til ((~r—ro~, which was the justification for keeping only two terms in the Taylor expansion (22)
of the neutron Aux. In principle, of course, there is no difhculty in extending the expansion to higher
order in

~
ti

~ / ~

r —ro ~; this would lead, in the final answer, to multipole "radiation" of correspondingly
higher order.

Corresponding to each diferent root 8„the wave sources emit a wave. Each wave has an amplitude
and phase which depends on the value of its 8,. The number of roots B„and therefore the number
of different waves emitted by each source, depends on the slowing-down function —for a general
kernel P(r), (43) will be a transcendental equation and there will be an infinite number of roots B,.

The waves with s&0 are significant close to the oscillator; as s increases they fall off more and
more rapidly with ~r —ro~ because the real parts of iB, increase with s. In order to see more
clearly the physical signi6cance of these transient waves, we compute the fluctuating part of the
slowing-down density. This is obtained according to (3) and (5) by multiplying each term in (46)
by (k'/f ) (1 tt) ~.P(B*');—i.e,

P(B,') exp(iB,R i,„„) ex—p(iB,R+i,„„)

4~&+
(I P)~.(—~ ~)-no(ro)s"' 2 Z

p ~ kQ'(B, ') L' I 4s R——i,„„
(49)

Because of the extra factor P(B,o) in each term of (49) as compared with (46), the slowing-down
density is not proportional to the slow neutron Aux close to the oscillator. In fact, the spectrum of
epithermal neutrons changes continuously from its shape close to the oscillator, where the epithermal
neutrons have no singularity while the thermal ones do, to its shape far from the oscillator, where
the neutrons of all energies have similar spatial distributions. Thus the transients (s)0) are necessary
to describe the variation in neutron spectrum which exists in a chain reactor near an absorber
which captures only thermal neutrons.
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5. 1
n(r, j) —n(r) =-

p [kQ'(B p') —L'j
(&&+&o~)

X (y V) ri(r.), (50)
4xR

R being used to denote R opp.

The value of Bp is calculable explicitly pro-
vided the pile is large (i.e., k = 1) and the oscilla-
tion is fast compared to the delayed neutron
periods but slow compared to the pile period:

+v «1, (ov;&&1. (51)

Since 7; is of the order of 10 seconds or more,
while ~ is of the order of 10 ' to 10 4 sec. , an
angular frequency ao of 1 to 100 sec. ' will satisfy
these conditions. To compute Bp under these
assumptions we return to the definition of Q(P):

pi
Q(P) =- (1-P)P(P)+E . P, (e)

1 1+$(drj

4. PROPERTIES OF THE NEUTRON WAVES

Far from the absorber, and far from the pile
surface, only the s = ) = p, = v =0 spherically sym-
metric wave persists. From (48) this is

and O($') is an abbreviation for terms of order
p4 and above.

When a) =0,

4m
(r'(0))A, ——— P(r)r'dr+ p p, P; (r)r'dr

p i Jo

k(r'(0) )p,M'= +Lp (55)

is called the "migration area. " Equation (54) can
be solved by successive approximations provided

kO(B p4)

M'Bo'

Bp' being the value of P which solves (54). In
first approximation,

i.e. , (r'(0))p„ is the mean square distance which
a 6ssion neutron travels while slowing down. In
general, for pi WO, (rP(pp))A, is a complex number.

We now substitute (53) into the characteristic
Eq. (43):

3P&P k(1——P)+ 1 +ippr —kO($4) =0, (54)

where

4m sin$r=—(1—P) ~l P(r) r'dr k(1 —P) —1 ipir-
Bp' =

M'
(56)

+E
1+1%7'~ psi p

sin$r
P;(r) r'dr . while the first and most important term in

O(Bo') is

We expand (singr/Pr) in Taylor's series and in-

tegrate term by term; the result, correct to
terms of order P, is:

1
O(Bp ) Bp (r'(0))A„.

120

pi p &.e.,

Q(e) =1—p+z . ——(r'( )) +O(h') (52) kO(B,) 1 (r'(0)),„
[k (1—p) —1 i(or)k—

M'Bp' 120 M4
or, if the condition (51) is fulfilled,

where

)2
Q(e) = (1—P) ——( '(o)) .+O(k') (53)

6

3 k(1 —P) —1 i p&r (r'(0))A, —

10 k Dr'(0)), J'

4~
(r'(pi))A. =—

l P(r)r'dr
P Jp

+Q P,(r)r'dr,
1+ppirj p

Now for any physically plausible kernel (r'(0))A, /
[(r'(0))p„)P is of order unity; hence since k —1«1
and car&&1, the required ratio is small in absolute
value, and the successive approximation is justi-
fied. The remaining discussion will be based on
the value (56) for Bp'.
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Since a wave-length

the quantity in the denominator of (50) is

kQ'(Bg') —IP = —M',

and therefore

n(r, t) —n(r) = (y V)n(ro) (.57)
a„M' 4xR

([X'+((or)']&+X) &

and an attenuation length

(LX'+ (car)']& —X) &

(60)

(61)

In order to calculate the velocity, wave-length,
and attenuation length (distance for wave ampli-
tude to damp by factor s), it is necessary to
compute Bq explicitly. From (56),

—1 ([X'+(r»r)']~+X) '
g3 o

M ( 2 )

(2''t &

v=M( —/,Er) (62)

(63)

If X=0, the medium is neither a net absorber
nor producer of prompt neutrons. In this case

where

i ([X2+(&or)2]& X) &-
+—

I (5S)
ME 2 )

(2l
((dT J

(64)

([X'+(a r)']&+X) ' (59)

X—=k(1 —P) —1.

Upon substituting (58) into (57), we observe
that the resulting damped wave has a velocity

The waves characterized by (62), (63), and
(64) are completely analogous to the classical
thermal waves set up in a conducting medium
in which the ratio of conductivity to speci6c
heat per unit volume is Mm/r, and the angu-
lar frequency of the impressed oscillating heat
source is co.
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