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If one supposes that a particle with a single magnetic
pole can exist and that it interacts with charged particles,
the laws of quantum mechanics lead to the requirement
that the electric charges shall be quantized —all charges
must be integral multiples of a unit charge e connected
with the pole strength g by the formula eg=)kc. Since
electric charges are known to be quantized and no reason
for this has yet been proposed apart from the existence
of magnetic poles, we have here a reason for taking mag-
netic poles seriously. The fact that they have not yet been
observed may be ascribed to the large value of the quantum
of pole.

In 1931 I gave a primitive theory which described the
motion of a pole in the field of a charged particle whose
motion is given, or the motion of a charged particle in the

field of a pole whose motion is given. The present paper
sets up a general theory of charged particles and poles in
interaction through the medium of the electromagnetic
field. The idea which makes this generalization possible
consists in supposing each pole to be at the end of an un-
observable string, which is the line along which the electro-
magnetic potentials are singular, and introducing dy-
namical coordinates and momenta to describe the motion
of the strings. The whole theory then comes out by the
application of standard methods. There are unsolved
difhculties, concerned with the interaction of a point
charge or a point pole with the field it produces itself,
such as occur in all dynamical theories of fields and par-
ticles in interaction

I. INTRODUCTION

HE field equa, tions of electrodynamics are
symmetrical between electric and magnetic

foI"~. 'The symmetry between electricity and
magnetism is, however, disturbed by the fact
that a single electric charge may occur on a
particle, while a single magnetic pole has not
beer observed to occur on a particle. In the
present paper a theory will be developed in
which a single magnetic pole can occur on a
particle, and the dissymmetry between elec-
tricity and magnetism will consist only in the
smallest pole which can occur, being much
greater than the smallest charge. This will re-
sult in an enormous energy being needed to
produce a particle with a single pole, which
can very well explain why such particles have
not been observed up to the present. '

There are several kinds of particles in experi-
mental physics for which satisfactory theories
do not yet exist, and one may wonder what is
the value of postulating a quite new kind of
particle for which there is no experimental evi-
dence, and thus introducing a further complica-

' F. Ehrenhaft I Phys. Rev. 67, 63, 201 (1945)j has ob-
tained some experimental results which he interprets in
terms of particles with single magnetic poles. This is not a
confirmation of the present theory, since Ehrenhaft does
not use high energies and the theory does not lead one to
ex single poles to occur under the conditions of Ehren-

s experiments.

tion into the study of elementary particles. The
interest of the theory of magnetic poles is that
it forms a natural generalization of the usual
electrodynamics and it leads to the quantization
of electricity One can se. t up consistent equations
in quantum mechanics for the interaction of a
pole of strength g with an electric charge e,
only provided

eg = —,'nba,

where n is an integer. Thus the mere existence
of one pole of strength g would require all elec-
tric charges to be quantized in units of ~hc jg
and, similarly, the existence of one charge would
require all poles to be quantized. The quantiza-
tion of electricity is one of the most fundamental
and striking features of atomic physics, and there
seems to be no explanation for it apart from the
theory of poles. This provides some grounds for
believing in the existence of these poles.

I first put forward the idea of magnetic poles
in 1931.' The theory I then proposed was very
incomplete, as it provided only the equations of
motion for a magnetic pole in the field of charged
particles whose motion is given, or the equations
of' motion for a charged particle in the field of
magnetic poles whose motion is given. The pres-
ent development provides a11 the equations of

~ P. A. M. Dirac, Proc. Roy. Soc. A133, 60 {1931}.
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motion for magnetic poles and charged particles
interacting with each other through the medium
of the electromagnetic 6eld in accordance with
quantum mechanics, and is a complete dy-
namical theory, except for the usual difhculties
of the appearance of divergent integrals in the
solution of the wave equation, arising from the
reaction on a particle of the 6eld it produces
itself, which difhculties are of the same nature
in the present theory as in the usual electro-
dynamics.

8F„,/Bx, = —4zj„, (3)

where j„ is the vector formed by the charge
density and current, and

(Ft)„„/Bx.=0. (4)

Equation (4) asserts that the divergence of the
magnetic Aux vanishes, and must be modified in
a theory which allows single poles. The density
of poles and the current of poles will form a
vector k„which is the magnetic analog of j„,
and Eq. (4) must be replaced by

(Ft)„„/Bx„=-4zk„. (4')

The world-line of a particle may be described
by giving the four coordinates s„of a point on
it as functions of the proper-time s measured
along it,

z~ =z~(s).

II. THE CLASSICAL EQUATIONS OF MOTION

We shall work all the time with relativistic no-
tation, using the four coordinates x„(p=0, 1, 2, 3)
to 6x a point in space-time and taking the
velocity of light to be unity. The electromagnetic
field at any point forms a 6-vector Ji„„=—Ji„„.
We shall need to use the notation of the dual
(Ft)„„ofa 6-vector F„., defined by

(Ft) 01 F28& (Ft) 23 Foly

together with the equations obtained from these
by cyclic permutation of' 1, 2, 3. Note that

(Ftt)..= —F"
and, with a second 6-vector G„„

(Ft) G""=F (Gt)""

The ordinary Maxwell equations are

A particle with a point charge e gives rise to a
contribution to j„which is in6nite on the world-
line and zero everywhere else. We may express
it with the help of the b-function, and then
have for the charge-current vector at an arbi-
trary point x

j„(x)=g, e (dz„/ds) b4(x —z)ds,

where the function 84 is defined by

b4(x) = b(xo)b(x, )b(xn)b(xg),

and P, denotes the sum over all charged par-
ticles. Similarly, if the poles g are concentrated
at points,

k„(x) =g, g~ (dz„/ds) b4(x z)d—s,

where P, denotes the sum over all particles
with poles. Equations (3), (4'), (5), and (6) fix
the field when the motion of the particles and
the incident radiation are known.

The motion of a charged particle is given by
Lorentz's equation

m(d'z„/ds') = e(dz"/ds) F„.(z).

We may assume the analogous equation for the
motion of a pole

m(d'z„/ds') =g(dz"/ds) (Ft)„,(z).

The field quantities F„„(z) occuring here are to
be taken at the point s where the particle is
situated and are there infinitely great and singu-
lar, so that these equations do not really have
any meaning. It becomes necessary to make
small changes in them to avoid the infinities.
A method frequently used is to depart from the
point charge model, which involves replacing
the b4 function in (5) by a smoothed-out function
approximating to it; and one could apply a
similar procedure in (6) for the poles. But this
method leads to an additional mass for the
particles which does not transform according to
the requirements of relativity. A possibly better
method consists of introducing a limiting process,
making a small change in the field equations in
such a way that there is no additional mass for
the particles in the limit. The resulting theory is
not Lorentz invariant before the limit, but is
Lorentz invariant in the limit. This method will
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be adopted here. It will require a slightly modi-
fied field function F„„~ to occur instead of I'„„
in Eqs. (3) and (7), so that we have the four
equations of motion

BF„.*/Bx. = —4s P. e (ds„/ds) 84(x —s)ds, (8)

r
8(Ft)„„/Bx„=—4s Qg g (ds„/ds) 84(x s)ds—, (9)

m (d's„/ds') =e(dz"/ds) F„„(z)

for charged particles, and

m(d's /ds') =g(ds"/ds) (Ft)„.*(s) (11)

for particles with poles. These equations, to-
gether with the equations that connect I' and
Ji*, which are linear and will be given later,
form the complete scheme of equations of mo-
tion. They are valid with arbitrary values for
the e's and g's of the various particles.

III. THE ELECTROMAGNETIC POTENTIALS

To get a theory which can be transferred to
quantum mechanics we need to put the equa-
tions of motion into the form of an action prin-
ciple and for this purpose we require the electro-
magnetic potentials. The usual way of intro-
ducing them consists of putting

F„„=BA./Bxl' BA „/Bx", — (12)

but this is no longer possible when there are
magnetic poles, since Eq. (12) leads to Eq. (4)
and thus contradicts (9). Therefore, it is neces-
sary to modify (12).

If we consider one instant of time, Eq. (12)
or (4) requires that the total magnetic flux
crossing any closed surface at this time shall be
zero. This is not true if there is a magnetic pole
inside the closed surface. Equation (12) must
then fail somewhere on the surface, and we may
suppose that it fails at only one point. Equation
(12) will fail at one point on every closed surface
surrounding the pole, so that it will fail on a
line of points, which we shall call a srrieg, ex-
tending outward from the pole. The string may
be any curved line, extending from the pole to
infinity or to another pole of equal and opposite
strength. Every pole must be at the end of such
a string.

The variables needed to 6x the positions of the
strings will be treated as dynamical coordinates
and momenta conjugate to them will be intro-
duced later. These variables are needed for the
dynamical theory, but they do not correspond to
anything observable and their values in a spe-
cific problem are always arbitrary and do not
in8uence physical phenomena. They may be
called unphysical variables.

Unphysical variables have occurred previ-
ously in dynamical theory. For example, in
ordinary electrodynamics the extra variables
needed to describe the potentials when the 6eld
is fixed are unphysical variables. A more ele-
mentary example is provided by the azimuthal
angle of a rotating body which is symmetrical
about its axis of rotation. Unphysical variables
can always be eliminated by a suitable trans-
formation, but this may introduce such a lack of
symmetry into the theory as to make it not worth
while. (The unphysical variables describing the
strings could be eliminated by imposing the
condition that the strings must always extend
in the direction of the x~-axis from each pole to
in6nity. With the strings fixed in this way no
variables would be needed to describe them, but
the symmetry of the equations under three-
dimensional rotations would be completely
spoilt. The physical consequences of the theory
would not be affected. )

Each string will trace out a two-dimensional
sheet in space-time. These sheets will be the
regions where Eq. (12) fails. Each sheet may be
described by expressing a general point y„on it
as a function of two parameters vp and v j,

y, =y, ( o, re).

Let us suppose for definiteness that each string
extends to in6nity. Then the parameters 7 p and
7p may be arranged so that v~=0 on the world-
line of the pole and extends to infinity as one
follows a string to infinity, and rp goes from —~
to as one goes from infinite past to infinite
future.

Equation (12) must be replaced by an equa-
tion of the form

F„.=BA./BxI' BA „/Bx'+4x Qg (Gt)„., —(13)

where each (Gf)„„ is a field quantity which
vanishes everywhere except on one of the sheets-
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and the summation is taken over all the sheets,
one of which is associated w'ith each pole. Sub-
stituting (13) into (9) we find, remembering (2),

BG„„/Bx„=g (dz„/ds) 84(x —z)ds. (14)

This is the equation which determines 6„„.
It is easily veri6ed that the solution of Eq.

(14) is

integrated over the whole sheet. In fact (15)
gives directly

BG„„ I. I (By„By. By„By,~Bop(x —y)
=g» ~)Bx„& & ( Brp Brl Br/ Bfp] Bx„

$8y» By~ 83'» By~I

J ( Brp Brl Brg Brpl

Bop(x —y)
X drpdrg,

t
t

)By„BBp(x—y)
I Brp Brg

By„BBp(x—y) )
Br, Br,

From Stokes' theorem, for any two functions U
and V on the sheet,

/By» By» 83» 83 ~ t

G..(x) =g
4Bro Br1 Brl Brp)

X 84(x —y)drodn, (15)

which agrees with (14), since y„(rp, 0)=z„(s)
with Tp some function of s.

With given world-lines for the particles, the
solution of the field equations (8) and (9) for
which there is no ingoing 6eld is called the re-
tarded field. It is connected by (13) with the
retarded potentials. The retarded potentials con-
sist of a contribution from each particle, de-
pending only on the world-line of that particle
and on the sheet attached to it in the case when
the particle has a pole. These contributions may
be conveniently expressed with the help of the
Lorentz invariant function J(x) defined by

J(x) =2b(x»x») for xp) 0,
=0 for xo&0,

J(x) = r 'b(xp —-r),
r = (xp~xpp+xp') &.

The function h(x) of Jordan and Pauli is con-
nected with J(x) by

a(x) =J(x) —J(—x).

It is easily verihed that

CI J(x) =4s h4(x). (19)

(One can check this result in the neighborhood
of the origin by expressing the integral of 0J(x)
over a small four-dimensional volume around the
origin as a three-dimensional surface integral
over the boundary of that volume. )

The contribution of a charged particle to the
retarded potentials is, according to the Lienard-
Wiechert formula,

A „'(x)„=e
J

J(x —z) (dz„/ds) ds. (20)~ (BUBV BUBV)

I Brp Brg Br) Brph
(A* is put on the left here instead of A since the

fBV BV 'I field FP occurs in (8)). The corresponding for-
=

J ~
'+ ' ~' ( ) mula for the contribution of a pole is

I Br, Br, ) '

the left-hand integral being taken over any area
of the sheet and the right-hand integral along
the rim of that area. Putting U= Bp(x-y), V=y„,
and applying the theorem to the whole sheet,
so that the only part of the rim not at in6nity
is the world-line of the pole, we get

BG„„/Bx.=g t Bp(x —y)LBy»(rp, 0)/Brogro,

I
»By" By& BJ(x—y)

A.(x)„go,g~J dr pdr g (21)
8T'p 87'y Bx

8A yy»
~yaP

r»By" By» 8'J(x —y)
drodrg

gg" ~ " ~~0 Bxj Bp"8$»

integrated over all the sheet, where e„),„is the
antisymmetrical tensor of the fourth rank with
op~op=1. To verify (21), we note that it leads to
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Using

eg ~
—$is$ $ e+ g n$~ Ji,e+ $ span $ e (~p)

I~ is the action integral for the field alone,

Im- (16s—) ' F„„F"d4x, (d'x= dxgdxidx gfxg),„4
where —(aP) means that we must subtract all
the preceding terms with a and tl interchanged,

and I3 is the contribution of the interaction of
we get

the charges with the field,
BA sir g

qV s&P

87.yBy~ BT0

p t (B'J(x—y) By B'J(x—y) By~

g +
Br gBye BTi I3 g, e ——A'(s) (dz„/ds)ds.

(F$) ~e = e""~eBA „/Bx"—4xG~e,

t.BJ(x—s) ds
g d& (~P)—,

Bxp ds

BB„, /Bxe—+BB„,e/Bx,

with
t8„=g J(x—s) (ds /ds)ds.

(22)

This is seen to be the correct value for the re-
tarded field produced by a pole, from the analogy
of (23) to the Lienard-Wiechert potential (20).

In the usual electrodynamics the potentials
are restricted by the condition

BA„/Bx, =0 or BA.*/Bx„=0.

This condition can be retained in the present
theory, as it is satisfied by the retarded poten-
tials (20), (21).The two forms of (24) are equiva-
lent because of the linear connection between
the starred and unstarred field (see Eq. (29)).

IV. THE ACTION PRINCIPLE

By By&
a J(x—y) drgr, (~P)—

B7 0 BTy

t BJ(x—y) ds
ds —(ap)+4xG e

Byp „,ds

with the help of Stokes' theorem (16), and (19)
and (15). According to (13), this gives the re-
tarded field

The F„„in J~ are to be regarded as functions of
the potentials.

The same action integral will do in the present
theory, provided the sum in Ii is extended to
include the particles with poles as well as those
with charges,

Ii = Qe+gm ds. (26)

No further term is needed to give the interaction
between the poles and the field, this interaction
being taken into account in I2, in which F„„is
now to be regarded as a function of the potentials
and the string variables y„(rp, Ti) given by (13)
and (15).

In order to avoid infinities in the equations of
motion arising from the infinite fields produced
by point charges and poles, we shall make a
small modification in the field equations, by
replacing Im by

where y(x) is a function which approximates
to the function b4(x), and is made to tend to
bi(x) in the limit. We shall assume that

V( —x) =V(x) (27)

and shall assume other properties for y(x) as
they are needed, but the precise form of y(x)
will be left arbitrary. We may write I&' as

Ig' = (16') ' F„„(x)F&"(x')y(x x') d'xd'x', —

(28)Ig' ——(16s) ' F ~(x)F "(x)d'x
The action integral of ordinary electrody-

namics may be expressed as a sum of the three
terms, Ii+I2+Ii where Ii is the action integral using the notation that for any field quantity
for the particles alone, U(x),

Ii ——P.m ds, U*(x) = U(x') y(x —x') d'x'. (29)
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bIi ———Q,+gm (d'z„/ds') bzl'ds (30)

The variation of Il may be carried out the same
as in ordinary electrodynamics and gives

bI, =P, e "{[(BA„/Bx~)—(BA„/Bx")j, .bz~

+ (bA, ) .I (dz"/ds)ds. (31)

The variation of Iz' gives, using (27)

bIg' ——(8x) '
~ F„.(x')bFI'"(x)y(x x')d4xd4x—'

=(8x) 'J F„„*(x)bFI'"(x)d4x.

Substituting for F&" its value given by
we get

bIs' = —(4x)-' F„.*(BbA&/Bx„)d4x

It will now be verified that the variation of

I=Ii+Ig'+ Il
leads to the correct equations of motion. The
variation of I~ is well known and gives

~ t B((Ft)"'by") By"

ZORJ J BTp

B((Ft)"'by"»y" B(Ft)""t
By' By"

gybe

BT& BTp Bp» E BTp BTy

Bp» Bg" Byb' By"
by" — by& { drodri

BTy B7p B7p BTy )
ds"

=P, gJ (Ft)„,*(z)bz~ ds
ds

t' t'B(Ft) .* B(Ft)

By& By&

B(Ft)-i By' By"
+ { by"d rod r i (34)

By" & Bra Bri

by a further application of Stokes' theorem (16).
The total variation bI is given by the sum of
(30), (31), (34) and the first term in (33).

By equating to zero the coefficient of bA "(x)
in bI, we get precisely Eq. (8). By equating to
zero the coefticient of bs& for a charged particle
we get

This agrees with the equation of motion (10)
provided the charged particle does not lie on
any of the strings, so that G„„(z)=0. By equating
to zero the coefticient of bs& for a pole, we get
precisely (11).Equation (9) is a consequence of
Eqs. (13) and (15), which express F„„in terms
of the potentials and string variables. Thus all
the equations of motion (8), (9), (10), and (11)
follow from the action principle bI =0, provided
we impose the condition that a string must never

pass through a charged particle.
By equating to zero the coefficient of the

variation bye' in a string variable, -we get

= (4z.) ' (BF„,~/Bx.)bA "d4x

+vZ J~ (Ft)„.*b&'"d'x. (33)

Using (15), the second term here becomes

f' t'By" By"
Q, g "(Ft)„,*d'xb b4(x —y) d«dr,

~ ~ BTp BT~

' "t &By"By"'
=Q gJI(Ft) „'d4x ~ ~' b{ }b4(x y)—

L Brp Bri]

m(d'z„/ds')
+~~' "" ( t) " =e[(BA„/Bx„)—(BA„/Bx")j, .(dz"/ds)

By& By" Bb4(x —y)
5P» dT pdTy

B7p BT& By»

B(Ft)"'(y) By" By"
+ by~~'dr gri

BTp BTyBy»

t'
t

f'Bby" By" Bby" By")=Z.g, I (Ft)"'(y){'
~ ' 1

""
&B., B., B., B.,)

B(Ft)"*/By'+B(Ft)"*/By"+B(Ft),.*/By" =o

or

BF„„'/By„=o,

holding at all points on the sheet. From (8)
this is automatically satisfied, provided the
string never passes through a charged particle.
Thus the action principle leads to no equations
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of motion for the string variables, in conformity
with the unphysical nature of these variables.

The action integral I is a correct one and may
be used as basis for a theory of electrodynamics,
but it leads to some inconvenience in the Hamil-
tonian formulation of the equations of motion,
since it makes the momentum conjugate to Ao
vanish identically. This inconvenience may be
avoided by a method due to Fermi, which con-
sists in adding on a further term to the action
integral

I4 ——(8w) -' (8A „*/Bx„)(BA„/Bx„)d4x (3. 5)

This gives

7iI4 ——(4x)-' (8A „~/Bx„)(85A„/Bx„)d'x (36)

= —(4s) ' (O' A,' /8 xB x)hA "d4x, (37)

and leads to a further term O'A„—*/Bx„8x" on
the left-hand side of Eq. (8). This further term
in (8) does not affect the equations of motion,
because it vanishes when one uses the supple-
mentary condition (24), but in the Hamiltonian
formulation it is necessary to distinguish be-
tween those equations that hold only in virtue
of supplementary conditions and those that are
independent of supplementary conditions. There-
fore, we must leave this term in (8) to have an
equation of the latter kind. Equation (8) may
now be written, with the help of (13) and (15),

QA„*(x) =4m P, e ~ (ds„/ds) b4(x —s)ds

+4m P, 8(Gt)„„'/Bx„. (38)

V. THE METHOD OF PASSING TO THE
HAMILTONIAN FORMULATION

When one has the equations of motion of a
dynamical system in the form of an action
principle, one must put them into the Hamil-
tonian form as the next step in the process of
quantization. The general procedure for doing
this is to take the action integral previous to a
certain time t and to form its variation allowing
t to vary. This variation bI appears as a linear
function of bt and of the variations bg in the
dynamical coordinates at time t, the other terms
in bI cancelling when one uses the equations of

motion. One introduces the total variation in
the final q's

hq = bq+qbt,

and expresses 8I in terms of the hq's and Q.
One puts this equal to

hI =+ p,Aq, —WQ, (39)

(or the corresponding expression with an in-
tegral instead of a, sum) and so defines the mo-
menta p, and the energy W. The p„and W ap-
pear as functions of the coordinates q„and
velocities j„, and since the number of variables
in the set p„W is one greater than the number
of velocities j„, there must be a relation between
the p„W and the coordinates, of the form

W II(Pq) =0.— (40)

The p's and —W are the partial derivatives of I
with respect to the q's and t, so (40) gives a
differential equation satisfied by I, called the
Hamilton- Jacobi equation. From this equation
one can pass to the wave equation of quantum
mechanics by the application of certain rules.
There may be more than one equation con-
necting the p's, q's, and W, in which case there
are more than one Hamilton-Jacobi equation,
leading to more than one wave equation.

To make the above procedure relativistic, one
must take the action integral over space-time
previous to a certain three-dimensional space-
like surface S extending to infinity. One must
form its variation, making a general variation
in S as well as in the dynamical coordinates
previous to S, and express the result in terms
of the total variation in various dynamical
quantities on S. This will again give an equation
of the type (39) and one can again define the
coeScients in it as momenta and set up the
Hamilton-Jacobi equation.

There are various ways of modifying this
procedure, which may be convenient for par-
ticular problems. Instead of stopping the action
integral sharply at one definite time or at one
definite three-dimensional space-like surface S,
one may stop different terms in it at different
times. One can picture the stopping of the action
integral by supposing the dynamical system to
go out of existence in some unnatural way and
taking the total action before it goes out of
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existence. To stop diferent terms in the action
integral at different times one must picture dif-
ferent parts of the dynamical system going out
of existence at diRerent times. After some parts
have gone out of existence, the remaining parts
continue to move in accordance with the equa-
tions of motion which follow from the surviving
terms in the action integral, until they in turn
go out of existence. The various ways of stopping
the action integral lead to diferent Hamilton-
Jacobi equations (40), which are equally valid
and differ one from another by contact trans-
formations.

A convenient way of stopping the action
integral when one has particles interacting with
a 6eld is 6rst to suppose the particles go out of
existence at points in space-time lying outside
each other's light cones, and then to stop the
field at a considerably later time. One varies
this stopped action integral, making variations
in the points s„ in space-time where the particles
go out of existence and also in the surface Sp
where the field goes out of existence. By equating
to zero that part of the variation of the stopped
action integral which is not connected with bound-
ary variations, one gets the same equations of
motion for the particles before they go out of ex-
istence as one had with the unstopped action in-
tegral, and one gets 6eld equations which continue
to govern the field after the particles have gone out
of existence. Owing to the variations As„ in the
points s„occurring in regions of space-time com-
pletely immersed in the 6eld, one gets equations
which are more convenient to handle than those
of the usual method in which one supposes the
particles and the held to go out of existence
together.

Kith the new electrodynamics let us suppose
all the particles, and also the strings attached
to the poles, go out of existence at a three-
dimensional space-like surface Sp and the elec-
tromagnetic 6eld goes out of existence at a
much later surface Sp. This means that the
integrals Ii, II given by (26), (25) are to be
stopped when the world-lines reach Sp and the
integral over the sheet in (15) is to be stopped
when the sheet reaches S~, while I2', I» given
by (28), (35) are to be stopped at the boundary
Sp. The stopping of these integrals will not
afkct the equations of motion for particles and

field previous to Si, namely (10), (11), (38), and
further (38) will continue to hold through 5»
and afterwards, until Sp.

Let us assume that the connection (29) be-
tween a field quantity U and U* is such that
the value of either of them at a point x is de-
termined by the values of the other at points
in space-time near x. Thus, if either of them
vanishes in a certain region of space-time, the
other will also vanish in that region, except
possibly at points near the boundary.

Since G„„vanishes everywhere except on the
sheets, G„„*must now vanish in the region be-
tween S~ and Sp, with the exception of points
near where the strings go out of existence. In
this region we also have the 6rst sum on the
right-hand side of (38) vanishing, since the
integrals are stopped at S~, and hence we can
infer from (38),

nA „'(x)=0.

By a similar argument we can infer

aA„(x) =0

(41)

(42)

in the region between Sg and Sg, with the ex-
ception of points near where the charged par-
ticles go out of existence.

In the regions where (42) and (41) hold we
can make Fourier resolutions of A „(x) and
A„~(x) thus:

A„(x) = pea ~~A
&,
„e'&"*&ko 'd'k, —(43)

A„~(x) =Qao I Ai.,
„~e'&~*&ko 'd'k, (44)

where
(kx) = kaxp —k,x, —k2x2 —ksx»,
d'k =dkgdkedke,

kp ——a(kP+ kii+kin)&,

y(x) = (2».)
—') y&e'&&*&d4l

and Qao means the sum over both values of ka
for given k~, k2, k3. The factor ko ' is introduced
because ko 'd'k is Lorentz invariant. The con-
dition that A„(x), A„*(x) are real gi~es

A i„=—Ag„, A g„*=—Ai„'. (45)

Let the Fourier resolution of the function y(x) be
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with
7-l=f l.

The condition y( —x) =y(x) gives

7-& 7&s (46)

so y~ is real. We now find by straightforward
integration that

~kg, Pk~ky (47)

= —g, eJ(x —z). (48)

We shall need to have the Fourier resolution
(43) holding at each point z where a charged
particle goes out of existence and the Fourier
resolution (44) holding at each point y where a
string goes out of existence. It seems probable
that this can be arranged to be so by a suitable
choice of the function y, provided a point y is
never very close to a point z. Let us assume that
a field quantity U(x) is determined by U*(x')
at points x' lying close to x and outside the light
cone from x. Then A „(z) is determined by
A „*(x') at points x' for which the Fourier
resolution (44) is valid, so the Fourier resolution
of A„(z) will be valid. Similarly, the Fourier
resolution of A„~(y) will be valid if U*(x) is
determined by U(x') at points x' lying close to
x and outside the light cone of x.

The supplementary condition (24) gets modi-
6ed in the region between Sp and Sp. With the
integrals in (20) and (21) stopped at S~, we have,
writing z' for z(s'),

BA„* t *BJ(x—z') dz„'
=P. e ds,

Bx ds

1"8J(x z') dz„'—
= —P, e ds',

az„' ds'

but not Sg, and let us evaluate the terms in SI
connected with the boundaries. The terms arising
from SIC and bI» are, as in ordinary electro-
dynamics.

P,+,m(dz„/ds)As~++. eA„(z)az~, (49)

where the hz& are the total changes of the
coordinates of the point where a particle goes
out of existence. In forming bI2' we can no
longer use (32), but must use instead

pet
8I&' ———(8z)-'~ {F„.*(88A&/Bx.)

~
Sy'

+F„,(a&A */ax„) }d x+ ', P, -{F„.*S(Gt)"

+F 8(Gt)&"*}d'x (50)

The second term here is equal to

" F *S(Gt)~"d'x

provided Sp is suSciently far from S~, so that
y(x —x') =0 for x earlier than Ss and x' later
than Sp. We may now use the calculation which
led to (34), with the integrals over the sheets
extending only over the parts of the sheets
previous to S~, and we then get extra terms,
coming from the application of Stokes' theorem,
of the form of line integrals along the lines
where the sheets meet S&. By arranging the
parametrization of the sheets so that the line
where a sheet meets Sp is given by so= constant,
and the line where the varied sheet meets the
varied Sg is given by so=same constant, these
line integrals take the form

This quantity differs from zero when x is on the
future light cone of any point z where a charged
particle goes out of existence. Equations (41)
and (48) show that the potentials A„* give a
Wentzel type of field» between S~ and Sg.

VI. THE HAMILTONIAN FORMULATION

Z. g (Ft);*&y"(dy"/dry) d». (51)

The lines of integration are the positions of the
strings when they go out of existence. In forming
bI4 we can no longer use (36), but must use
instead

Let us form the variation of the action in-
tegral bounded as above, allowing SQ to vary jg4 —(8s) ~ I {(gA„+/g P)x(ggA»/J )x

I The properties of this 6eld are given, for example, in
P. Dirac, Annales de l'Inst. Henri Poinmrh 9, 23 (1939). +(8A,/8x&) (8'&*/8x„)}d'x. (52)
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+s'i pro t (yg+yao, -s„)Ag„BAao, -a„&

This quantity is of the same form as the first help of (46), to
term of the right-hand side of (50), and the two
together give, on integration by parts, a bound- 2s'i Pi:0~ yiA~„SA-~"ko 'd'k
ary term of the form of an integral over the
three-dimensional surface Sp, which may be
written

(Ss) '
I (BA„*/Bx")8AI" )&expL2ikoxp]ka 'd'k.

The second term here may be written as a per-
+(gA„/g~") bA~*}dg", (53) feet differential,

dS" being an element of this surface. The other
terms in 8I all cancel when one uses the equa-
tions of motion, provided Sp is not very close
to S&, so we are left with bI equal to the sum
of (49), (51) and (53).

With this expression for bI, we cannot directly
introduce the momenta in accordance with for-
mula (39), since the A&, A&* whose variations
occur in (53) are not independent, and since we
have not varied 5+. A convenient way of pro-
ceeding is to pass to the Fourier components of
the potentials, for which we may use the Fourier
resolutions given by (43) and (44), as we are
concerned in expression (53) with the potentials
on the surface Sp. Let us take a varied motion
which satis6es the equation of motion, so that
the Fourier resolutions (43), (44) are valid on

Sg also for the varied motion. Then expression

(53) becomes, with the help of (47),

XAy„bAI, I"e'('+' ~)ko 'd'kko' 'd'k'dS"

If we take the surface Sp to be so=constant for
simplicity (any space-like surface must give the
same final result), this becomes, on integrating
with respect to x~, x2 and x3,

s'i Qioio'), (ya+yi, )AipbAa"

Xexp Li(ko+ ko') xo)ba(k+ k') d'kk0' 'd'k',

where bg(k) means b(ki)8(k2)b(ka). The factor
b3(k+k') here shows that the integrand vanishes
except when k,'= —k„(r=1, 2, 3), which implies
ko'= ~ko. Thus the expression reduces, with the

s'ib Pxo ~yiAa&A&0. i„l"e—xp[2ikgc05ko 'd'k,

and may therefore be discarded. The first term
may be written, if we now restrict ko to be &0
and use (45) and (46),

2s'i) y, (Ag„bAi& —Ai„8A il')kg 'd'k—

= 2s 2ib)t pe i,„Ag,&kg 'd'k—

—4' i ~ yi,Ai,„bAi,"kp 'd'k (54).

p„=mdz„/ds+ eA „(z),

those of a particle with a pole are

pp = rÃdzp/ds,

(55)

(56)

the momenta conjugate to the string variables

The first term in (54) is a perfect differential
and may be discarded. We thus get the final
result that bI is equal to, apart from a perfect
differential, the sum of (49), (51), and the second
term of (54).

We take as dynamical coordinates the co-
ordinates s„of the particles when they go out
of existence, the coordinates y„(ri) of points on
the strings when they go out of existence (pro-
viding a one-dimensional continuum of co-
ordinates for each pole and each value of ii),
and the Fourier components AI,„, with ko&0, of
the potentials after the particles and strings have
gone out of existence. The coefFicients of the
variations of these coordinates in the expression
for 8I given by the sum of (49), (51), and the
second term of (54) will be the conjugate mo-
menta. Thus the momenta of a charged particle
are
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[P. z.j=g". (59)

For the coordinates and momenta of a string
we have

Lp.( ), y ( ') j=g"~( — ') (6o)

and for the field variables we have, according
to (58),

LA0„, A0.„]=0(4m') 'g„.y0 'k080(k —k'). (61)

The other P.B.'s all vanish.
In the limit when y(x) —+54(x), we have 70-+1

and Eq. (61) gives the usual P.B. relation for the
Fourier amplitudes of the elctromagnetic poten-
tials. If we take y0 '=cos(kX), where X is a
small four-vector satisfying )')0, and make
X~O, we get a limiting procedure which has
already been used in electrodynamics, classical
and quantum, and which gets over some of the
difhculties connected with the infinite fields
caused by point particles. This value for y~

might be suitable in the present theory, but I
have not investigated whether it would be
compatible with all the requirements of the
function y(x).

From Eqs. (55) and (56) we can eliminate the
velocities dz„/ds and get

{p„—eA„(z) }{p0 —eA~(z) }—0&0'=0 (62)

for each charged particle and

P„P"—m2=0 (63)

for each particle with a pole. These equations
should be joined with (57) or

P„(.,) gP{.)„„*b)dy/d. ,—=0.

y0(ri) —let uS Call them p0(ri) —are

P.(ri) =g(~})» *dr'/dr i (57)

and the momentum conjugate to A~I" is

—4x'iypAg„k0 '.

The string momenta p„(ri) form a one-dimen-
sional continuum of variables, corresponding to
the one-dimensional continuum of coordinates
y0(r&), and the field momenta (58) form a three-
dimensional continuum, corresponding to the
three dimensional continuum of field coordinates.

We may introduce Poisson brackets in the
usual way. For the coordinates and momenta of
each particle we have

With the A„(z) in (62) and the (F{')„„*(y)in (64)
expressed in terms of the Fourier components
A»„, A0„(the validity of this was discussed near
the end of the preceding section), Eqs. (62),
(63), and (64) are equations involving only
dynamical coordinates and momenta. They are
di6'erential equations satisfied by the action
integral I, when the momenta are looked upon
as derivatives of I, and they are the Hamilton-
Jacobi equations of the present theory. Since
they are known to have a solution, namely I
itself, we can infer from the theory of differential
equations that the P.B.'s of their left-hand sides
all vanish, as may also be verified directly from
(59), (60), and (61).

The supplementary conditions (48) should be
brought in at this stage and treated as further
Hamilton-Jacobi equations. The various equa-
tions (48) obtained by taking different field
points x are not independent of the equations of
motion or of one another, and we get a complete
independent set of equations from them by
making a Fourier resolution in the region be-
tween S& and Sp. In this region we may, from
(18), replace J(x—z) by d, (x—z), whose Fourier
components are given by

~(x —z) = —0(4 ')—' P0, "e'&' '&k 'd0k, (65)0) 0 t

so the Fourier resolution of (48) in this region
gives, with ko)0,

k "y0A0„—(4&r')
—' P ee-'&'*& =0

k"y0A0„—(4&r') —' P, ee*&'*& =0. '

(66)

(67)

These equations involve only dynamical co-
ordinates and momenta, so they are of the right
type to form Hamilton-Jacobi equations. One
can easily verify that they and the previous
Hamilton-Jacobi equations (62), (63), and (64)
form a consistent set of differential equations
for I, by verifying that the P.B.'s of their left-
hand sides all vanish.

VD. QUANTIZATION

From the foregoing Hamiltonian formulation
of classical electrodynamics one can pass over to
quantum electrodynamics by applying the usual
rules. One replaces the dynamical coordinates
and momenta of the classical theory by opera-
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tors satisfying commutation relations corre-
sponding to the P.B. relations (59), (60), and
(61), and one replaces the Hamilton-Jacobi
equations by the wave equations which one gets
by equating to zero the left-hand sides of the
Hamilton-Jacobi equations (now involving oper-
ators for the dynamical variables) applied to the
wave function f The. wave equations obtained
in this way will be consistent with one another,
since the operators on f in their left-hand sides
commute, as may be inferred from the vanishing
of the P.B.'s of the left-hand sides of the Hamil-
ton-J'acobi equations.

This straightforward quantization leads to
wave equations of the Klein-Gordon type for all

particles, corresponding to their having no spins.
For dealing with electrons one should replace
these wave equations by the wave equations
corresponding to spin 2h. We have no informa-
tion concerning the spins of the poles, and may
assume provisionally that they also have the
spin —,k, as this gives the simplest relativistic
theory. The change from zero spin to spin ~k
does not affect the mutual consistency of the
wave equations.

We now have the following scheme of wave
equations, expressed in terms of a set of the
usual spin matrices cx~, 0.2, 0,3, a for each par-
ticle:

{Pp —eA p(z) —Q „[P„—eA (z)]—cx„m }$=0; (68)

for each charged particle,

{Pp—n„P,—~ m}y=o; (69)

for each particle with a pole,

{&.(ri) g(~t)"*(y)d—y"ldri}4 =o; (&0)

for each string, and

{4s k"ypAp, —Q, ee ""*'}&=0,
(7 ){4''fi"ypA p„—Q, ee'~"& }f= 0,

for the field variables. The wave function P may
be taken to be a function of the particle variables

z„, suitable spin variables for each particle, the
string variables y„{ri) with 0&'Tl( pp and tll'e

field variables A&,. It is defined only when all
the points z„, y„(r&) lie outside each other' s

light cones.
Equation (69) suggests at first sight that the

electromagnetic 6eld does not act on the poles.

However, it acts on the strings, as shown by
(70), and since the poles are constrained to be
at the ends of the strings, the field does affect
the motion of the poles. That it affects them in
the right way can be inferred from analogy with
the classical theory, in which the poles move
according to Eq. (11).

VIII. THE UNIT CHARGE AND POLE

The action integral I of the classical theory
may be considered as a function of the points
in space-time z„where the particles go out of
existence, of the lines y„(ri) in space-time where
the strings go out of existence, and of suitable
field variables, and is defined only provided the
strings do not pass through any points z„where
charged particles go out of existence. It is, how-
ever, not a single-valued function of these
variables, as may be seen in the following way.

Let us make a continuous change in the vari-
ables in I according to the following procedure.
We keep all the particle points z„ fixed, and also
all the strings except one. This one we vary
continuously, keeping it always in the three-
dimensional surface 5~, and loop it around one
of the points z„where a charged particle is
situated just before going out of existence and
bring it back to its original position. At the same
time the potentials A„(x) are varied continu-
ously, to keep Eqs. (13), (15) always satisfied
with fixed values for the field F„„(x), and are
brought back to their original values together
with the string. We have here a continuous de-
formation of the variables in I which brings
them all back to their starting values, and this
deformation cannot be continuously shrunk up
to no deformation at all, because we cannot
make a string pass through a charged particle.
The string will sweep out a closed two-dimen-
sional surface, r say, lying in S~ and enclosing
the point z„where the charge is situated, and
this surface 0 cannot be continuously shrunk up
to zero, since it must not pass through the charge.
We may therefore expect I to vary under this
deformation process, and can easily calculate its
variation DI as follows.

A small variation of a string and of the po-
tentials, with the particle points z„ fixed, leads
to a variation of I given by the sum of the
right-hand sides of (50) and (52). Under the
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closed deformation process described above, the
first term on the right-hand side of (50) will

give zero, since the Ji„„, Ji„„*are kept fixed and
the A", A"* are brought back to their original
values. The right-hand side of (52) will also give
zero, since it gives the total variation in I4 and
I4 is brought back to its original value. We are
left with the second term on the right-hand side
of (50), which is equal to expression (51) and
gives for the closed deformation process

valued. The commutation relation (60) shows
that P„(ri) is ik times the operator of func-
tional differentiation with respect to y„(ri), so
that the wave equation (70) is

ih&P/&y„(ri) =g(Ft) „.*(y) (dy'/dr i)P. (74)

This equation shows how f varies when the
position of a string is varied. If a string is dis-
placed and sweeps out a two-dimensional sur-
face o, Eq. (74) shows that P gets multiplied by

DI=g ~(F))„„*do&", exp ig —(Fj') „„~do&'/h, (75)

where dr&" is an element of the two-dimensional
surface swept out by the string. The integral
here is, according to (8), just the total electric
Aux passing out through the closed surface 0,
and is thus 4x times the charge e enclosed by the
surface. Thus

Ke may loop any string around any charge
any number of times, so the total uncertainty
in I is the sum

4s P„m„ge, (72)

summed for all the charges e and the poles g,
with an arbitrary integral coef6cient m„ for
each term.

The phenomenon of an action integral which
is not single-valued occurs frequently in me-
chanics. It occurs most simply with the dy-
namical system consisting of a rigid body rotating
about a fixed axis, for which the action integral
is just the angular momentum multiplied by
the azimuthal angle, so that the uncertainty in
the action integral is 2x times the angular mo-
mentum. The rule of quantization of Bohr's
theory is given by putting the uncertainty in
the action integral equal to an integral multiple
of h. Applying this rule to the uncertainty (72),
we get

4mge =nh, (73)

where n is an integer, for each pole g and charge
e. This result is the same as (1), with c, the veloc-
ity of light, put equal to unity.

The result (73) may also be obtained from the
quantum electrodynamics of Section VII with-
out Bohr's rule of' quantization, by using the
condition that the wave function must be single-

provided the (F$)„,~ occurring at diferent points
of the integrand here a.ll commute. (One can
easily arrange to satisfy this condition accurately,
in the case when 0 lies in a Rat three-dimensional
space-like surface S&, by a suitable choice of
the function y, and in the case of a general Sp
the lack of commutation tends to zero as y(x)~
84(x) and does not invalidate the calculation. )
Let us now apply the procedure we had before
of looping the string around one of the charges
and bringing it back to its original position.
Since P is single-valued it must return to its
original value, and so the factor (75) must be
unity. This requires

g (F$)„:do'"/h = 2srn

with e an integer, which gives again the con-
dition (73).

We come to the important conclusion that
the quantization of the equations of motion of
charged particles and particles upwith poles is possible
only prooided tke charges and poles are integral
multiples of a unit charge ea and a unit pole gp

satisfying
eogo = ~&kc

The theory does not fix the value of eo or go,
but only gives their product.

IX. DISCUSSION

The foregoing work provides a general theory
of particles with electric charges and magnetic
poles in interaction with the electromagnetic
field. It is not a perfect theory, because the
interaction of a particle with its own 6eld is
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not dealt with satisfactorily. This is shown up
by the continual use in the theory of a function
y(x) which has not been precisely specified—
only certain desirable properties for it having
been given. Even if a satisfactory function p
can be given, the difficulties will not all be
solved because there will still be in6nities ap-
pearing in the wave function when one tries to
solve the wave equation. However, these diffi-

culties occur in the ordinary electrodynamics of
electrons without any poles, and if a solution of
them can be found for ordinary electrodynamics,
it will probably apply also for the more general
electrodynamics with poles. Thus the occurrence
of these difhculties does not provide an argument
against the existence of magnetic poles.

The question arises as to whether an ele-
mentary particle can have both a charge and a
pole. The classical equations of motion given in

Section II can be immediately extended to this
case, but the Hamiltonian theory meets with
some difficulties connected with the precise form
of y. It does not seem possible to answer the
question reliably until a satisfactory treatment
of the interaction of a particle with its own

6eld is obtained.
The theory developed in the present paper is

essential, ly symmetrical between electric charges
and magnetic poles. There is a considerab1e
apparent difference between the treatment of
charges and poles, which shows itself up in the
6rst place through the introduction of potentials
according to (13). However, one could work
equally well with the roles of the charges and
poles interchanged. One would then have strings
attached to the charges, and would work with
potentials B„defined by

(Ji f)„,= BB./Bx" BB„/Bx"+4x Q,—(Gf)„,
with the G„„vanishing except on the sheets
traced out by the new strings, instead of (13).
The final result would be an equivalent quantum
electrodynamics, referred to a diR'erent repre-
sentation.

Although there is symmetry between charges
and poles from the point of view of general
theory, there is a difFerence in practice on ac-
count of the difFerent numerical values for the
quantum of charge and the quantum of pole.
If we take the experimental value for the 6ne-
structure constant,

e&' = (1/137)hc,

we can infer the value of go,

go' ——(137/4) 7ic.

Thus go is much larger than eo. It corresponds
to a fine-structure constant 137/4. The forces of
radiation damping must be very important for
the motion of poles with an appreciable ac-
celeration.

The great difFerence between the numerical
values of eo and go explains why electric charges
are easily produced and not magnetic poles.
Two one-quantum poles of opposite sign attract
one another with a force (137/2)' times as great
as that between two one-quantum charges at
the same distance. It must therefore be very diffi-
cult to separate poles of opposite sign. To get an
estimate of the energy needed for this purpose,
we might suppose that elementary particles with
poles form an important constituent of protons
and have a mass p, of the order, say, half the
proton mass. The binding energy of two of these
particles cannot be calculated accurately without
a more reliable theory of radiation damping
than exists at present, but one might expect
from Sommerfeld's formula for the energy levels
of hydrogen with relativistic effects that this
binding energy would be of the order of pc', or
say 5X10' electron volts. One should look for
particles with poles in atomic processes where
energies of this order are available. They would
appear as heavily ionizing particles and would
be distinguishable from ordinary charged par-
ticles by the property that the ionization they
produce would not increase towards the end of
their range, but would remain roughly constant.


