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Elastic Scatte6ng of High Energy Nucleons by Deuterons
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The elastic scattering cross section of deuterons for neutrons and protons of 90 and 350 Mev
has been calculated, using the non-relativistic Born approximation. Two different approaches
give roughly the same result: a total neutron-deuteron elastic cross section of about half the
neutron-proton cross section at the same energy but sharply confined to small angles. The
half-width at 90 Mev is about 15' in the laboratory system. The proton-deuteron elastic scat-
tering is similar to the neutron-deuteron for large angular deflections, but at 90 Mev a difference
due to the Coulomb repulsion should be noticeable within 10 . It is concluded that the assump-
tion of a simple additivity of nucleon-nucleon cross sections for light elements is unjustified.

I. INTRODUCTION

HE scattering by deuterons of protons and
neutrons of energies less than j.4 Mev has

been studied extensively, both experimentally
and theoretically, the most complete theoretical
treatment having been given by Buckingham
and Massey. ' Recently a total cross section at
90 Mev has been obtained with the Berkeley
cyclotron, ' and it should be possible in the near
future to determine the angular distribution as
well as the division between elastic and inelastic
processes. Thus it is desirable to see what can be
said theoretically about these high energy col-
lisions.

The high energy problem di8'ers from the low
in three important features: (a) Collisions in

which the deuteron disintegrates are quite
probable. (b) Because the De Broglie wave-

length of the incident particle is short compared
to the range of the nuclear force, high angular
momenta contribute strongly, Thus the com-
putation of individual phase shifts by straight-
forward integration of the Schrodinger equation
is impracticable. (c) The relative energy in the
collision is sufhciently great that it is now
reasonable to use the Born approximation. The
latter will not give completely satisfactory
results, as has been shown by experience with
neutron-proton scattering, ' but the order of mag-
nitude should be correct.

The simplest theoretical guess that can be
* National Research Council Predoctoral Fellow.' R. A. Buckingham and H. S. W. Massey, Proc. Roy.

Soc. A179, 123 (1942).' Cook, McMillen, Peterson, and Sewell, Phys. Rev. /2,
1264 (1947).' M. Camac and H. Bethe, Phys. Rev. 73, 191 {1948).

made is that for an incident particle of energy
large compared to the deuteron binding, one may
neglect the latter and treat the scattering as the
sum of that due to a proton and an independent
neutron. This idea implies negligible elastic scat-
tering. It will be shown in this paper that the
elastic scattering is never negligible, even at the
highest energies, and that therefore the assump-
tion of additivity is unjustihed.

The inelastic scattering is much less easily
treated since it involves the continuum wave
functions of the deuteron. This problem is being
attacked, however, and it is hoped that some
theoretical results will be forthcoming soon.

Since the completion of the major portion of
this work a paper by Wu and Ashkin4 on the
same subject has appeared. In spite of the fact
that in both papers the Born approximation is
used, there are important diAerences in the
choice of the nuclear forces and of the deuteron
wave function. In particular the results pre-
sented in this paper are largely independent of
the detailed mechanism of the forces and can be
deduced at least in part from direct data of scat-
tering of nucleons on nucleons. Finally, the
choice by |A'u and Ashkin of gaussian instead of
exponential wave functions seems to have
affected their results to a considerable extent.

II. A SIMPLIFIED APPROACH TO THE PROBLEM

A. Theory

It is desirable, in considering the nucleon-
deuteron problem, to separate as much as pos-
sible those features which have to do with the

'Ta-You Wu and J. Ashkin, Phys. Rev. 'D, 986 {1948).
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nature of the nuclear forces from those which
reRect the presence of two of the three particles
in a bound state. This is clearly not possible in
an exact sense, but an understanding of the
importance of the binding can only be obtained
by 6rst making such a separation. 'The results of
a straightforward but more complicated calcula-
tion later will then be more easily interpretable.

Let us therefore think of the elastic scattering
probability as the product of two separate
factors: (a) The chance that the incident nucleon
may suA'er a collision with either of the two
deuteron particles, suddenly transferring a
momentum clap to that particle. (b) The prob-
ability of 6nding the two deuteron particles still
in their ground state after this dislocation. The
first factor can be estimated from the known
neutron-proton scattering, with a guess as to the
corresponding neutron-neutron or proton-proton
cross section. The second factor might be called
the "sticking" factor, S(hp), and will be our
principal concern in this section. If the elastic
cross section is to be negligible in comparison to
the total, it will be due to the smallness of S(hP).

To put this idea in a more definite form, the
following hypothetical situation is considered: A
deuteron is bombarded by a third particle of the
same mass as a neutron or proton but inequiva-
lent to either and with no spin. The third particle
has an ordinary interaction with the proton,
V~(r), and with the neutron, V„(r).All complica-
tions due to symmetry, spin, exchange forces,
etc. , are deliberately ignored. Let us also assume
that the Born approximation is applicable and
calculate the elastic scattering cross section.

Designate the coordinate of the neutron by rn,
that of the proton by rp, and that of the incident
particle by ri. More convenient variables are ob-
tained by the transformation:

8= x(rn+ry+ ri), r = rn —ry, x = ri —y(rn+ rp).

The Hamiltonian of the problem is

P+PS P'&+ + + V.o(l r~ —rol)
2m 2m 2m

+ V„('rn —ril)+ V„(l ro —ril)
po p2 po

+ -+
2(3m) 2(m/2) 2(2/3) (m)

+ V-.(r)+V»(lx —r/2I)+ V.(lx+r/2I),

where m is the mass of the proton or neutron and
(P~ r~) (Po rs) (Pi xi) (» R) (P~ r) (P* x)
are canonically conjugate pairs of variables.
V„o(r) is the interaction between neutron and
proton.

The Hamiltonian is split into two parts,

H=Ho+X,
where X= U (lx —r/2I)+ V„(lx+r/2I) and Ho
is the remainder, and use is made of the time
dependent perturbation theory to calculate the
transition probability between eigenstatcs of the
operator Ho, due to the perturbation 3'.. Since the
eigenstates form a continuum, we may apply the
well-known formula:

I~ = 2s /Io
I Xg, I

'ps,

where X is the probability per unit time of a
transition from the state o into the continuum of
states near f, Xy, is the matrix element of X
between states 0 and f, and ps is the number of
6nal states per unit energy interval. Energy must
of course be conserved.

The initial sta, te, in the center-of-gravity
system, can be written as the product of a plane
wave, and the ground state of the deuteron, fo(r).

&o(x, r) =0—
& exp(ipo x)iso(r).

This represents the deuteron and the third par-
ticle approaching each other with relative
velocity v, total momentum zero, in a box of
volume Q. The relative momentum and velocity
are related by ky = 3mv.

The 6nal state is a similar expression with yo
replaced by pf. Energy conservation requires
that

I pi I
=

I po I. The required matrix element is

Xq. —— dxdr%q*(x, r)X+.(x, r)

=0-' I ~tdxdr exp(i(pi —po) x)

xLV.(lx r/2I)+—V.(lx+r/2)j4 o( )Ar( )r

Consider first the term involving V„and make
the change of variables y =x—r/2, r= r. It may
then be written, with the abbreviation,

Ã —Po=41

0—'~"
~

dydr exp(iAP (y+r/2)). fo'(r) V„(y),
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0 '! dyexp(imp y)V (y)~
1-

"
!

~
dr exp(i(ip/2) r)ass(r)

Similarly, the part containing V„may be written

Q ' )I dy exp(imp y) Vs(y)

In anticipation of a later result the following
quantities are defined:

S&(hp) = )I dr exp(i(4p/2) r)fs'(r),

'U„(ap) = ! dy exp(imp. y) V„(y),J

0
+IQ

cos e
FIG. 1. The "sticking factor" S, as a function. of the cosine

(2) of the scattering angle in the center-of-gravity system.

~„(~p)=)Idy p(~p y)V„(y),

and the two terms are collected together again.

x&.= a-' Iu.(ap)+v, (ap) I St(sp).

The cross section, a,~dec, for scattering in the
direction y! per unit solid angle, is related to the
corresponding transition probability by

~Pe)d(d.

The number of final states per unit energy is

ns = (1/8~s)

flpr'(dpi'/d&r)d~,

and since dEI/dp~=hv,

ps ——(1/8s'hs) Qppdts.

The formula for the cross section thus becomes

~„d~ =),II/s = (2~/a)! X,.! (IIps/n)

(2m/3) '
I v.(op) +u, (op) I

'S(~p)d,
4~'k'

since Pq'/n'=(2m/3)sh '.

zero for very weak binding and unity for very
strong binding. It is always unity for zero
momentum transfer. The rest of the expression,
on the other hand, has nothing to do with the
deuteron, depending only on the character of the
forces between the projectile and the individual
proton and neutron. It may be looked upon as
the collision probability suggested at the be-
ginning of this section, while S(b,p) is the
"sticking" probability.

From the definition (1) of S(hp) one observes
that it decreases monotonically with increasing
magnitudes of momentum transfer. In terms of
angular distribution at a given energy, this
means that forward scattering is favored. In
Fig. 1, S is plotted as a function of the cosine of
the scattering angle in the center-of-gravity
system for incident laboratory energies of 90 and
350 Mev. The wave function used in the com-
putation (see Section III B) corresponds to a
central Yukawa potential, but clearly any
reasonable choice of wave function will give
about the same result.

This result contains the essential feature we B. Estimate of Cross Section

are looking for. The factor S(hp) is a function The average value of the sticking factor over
only of the deuteron configuration. It approaches all solid angles is quite small, O.ii at 90 Mev.
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and 0.05 at 350 Mev. However, the efFective
average is always greater, since the simple
nucleon-nucleon scattering also favors small
momentum transfers. This fact, in combination
with the constructive interference between
neutron and proton scatterings, evident in Eq.
(3), and the reduced mass eRect, which con-
tributes a factor 16/9, may give an elastic scat-
tering cross section of the same order of magni-
tude as the simple neutron-proton scattering at
the same energy. The ratio of elastic deuteron
scattering to simple nucleon-nucleon scattering
should not diminish appreciably, even at the
highest energies, because momentum transfers
much larger than l'i/a, where a is the range of the
nuclear force, will always be improbable. We
now attempt to make a quantitative estimate of
this ratio at 90 Mev.

We propose to use the formula (3), and insert
for 'U„(Lp) and 'U~(Ap) matrix elements which
in a corresponding simplified theory of the ele-
mentary nucleon-nucleon scattering would give
the actually observed cross sections. In this way
we avoKl any reference to the nuclear force
involved, which only confuses the issue here. In
Section I I I a complete calculation will reveal the
mistakes which this type of estimate can make.

For the sake of argument, let us assume the
incident particle is a neutron. A calculation of
the cross section for its scattering on a free
proton, with the same simplifications as above,

lo—

yields a formula:

where co', Ay' refer to the center-of-gravity
system of the two-particle problem and 'U~(Ap')
has again the definition (2). At 90 Mev, the
scattering has been observed to be roughly sym-
metric about 90' and to have a total value of
0.083 B.'' We are clearly interested in only the
forward part of the scattering here, which can be
empirically fitted by choosing

2' Up

where 'U 0 = 226 Mev and 1/g =0.578 X 10 " cm.
The corresponding neutron-neutron or proton-

proton matrix element cannot be obtained so
directly since there is as yet no experimental
information at high energies. If we assume that
the force is the same, one might guess at an
expression of the form of (4) with an additional
factor of about one-half in front. The argument
for this is as follows: The experimentally ob-
served symmetry implies that only even angular
momenta are scattered or only the singlet spin
states of identical particles. This cuts down the
cross section by a factor of one-quarter due to the
statistics and farther because the singlet poten-
tial is weaker than the triplet. A survey of recent
calculations" would indicate the latter factor
to be about one-half. Finally, we must remember
the factor of two which generally appears for
identical particles with spatial symmetry. The
net result is a factor ~&(-', )&2= ~ in the cross
section or one-half in the matrix element. The
eGect of the Coulomb force which is present
when the projectile is a proton will be con-
sidered in Section III C.

Substitution of these estimates into formula
(3) leads to

8z Up
(5)

24 3Cr 4g
SCATTERING ANGlE IN lAQORATQRT SYSTEM

Fr@. 2. Differential elastic scattering cross section for
neutrons on deuterons, referred to the laboratory system
of coordinates. The solid curve represents the results of
Section II and the broken curve that of Section III.

a result which is to be taken seriously only for

~ J. Hadley, Kelly, Leith, Segre, Wiegand, and York,
Phys. Rev. V3, 1114 (1948).

6 J. Ashkin and Ta-You Wu, Phys. Rev. 'U, 973 (1948).
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rather small angles. These small angles, of
course, wi11 include most of the total cross section.

This formula yields a total cross section of
0.045 8 at 90 Mev, about half the n P—cross
section, and the angular distribution shown by
the solid curve in Fig. 2. It may be in error by as
much as a factor of two, but the state of knowl-
edge about nuclear forces being what it is, is
probably as good an estimate as can be made at
this time. The neglect of possible exchange
forces is not so bad as it seems, since they tend to
break up the deuteron. An interesting effect not
taken account of in this crude picture is an
exchange of the two identical particles, leaving
the deuteron intact. This will appear in the
formally more correct calculation of Section I I I.

III. THE COMPLETE CALCULATION

A. Choice of Nuclear Forces

In this section a calculation of the elastic scat-
tering is carried out which includes considera-
tions of symmetry and spin but which of neces-
sity must be based on some assumption as to the
nature of the forces. It is clear from Section II
that a force which gives an erroneous angular dis-
tribution for simple nucleon-nucleon scattering
is likely to produce an even more misleading
result for nucleon-deuteron scattering. Purely
ordinary forces with a reasonable range, for
example, give a strong forward maximum at
high energies. When this is multiplied by the
"sticking" factor, the result is an elastic cross
section at 90 Mev of two to three times the
observed total cross section. This violent de-
pendence on the nature of the force has already
been shown by Wu and Ashkin. ' There seems no
point therefore in considering a type of force
which does not fairly mell represent the actual
high energy neutron-proton angular distribution.

The simplest acceptable force has been studied
extensively by Serber's group at Berkeley. ' It is
of the type ~(l.+P) V(r), where I' is the space
exchange operator and V(r) is a central potential.
Actually, the Berkeley study has included tensor
forces, but the deuteron problem becomes un-
manageable from a practica/ point of view if a
tensor force is considered. We therefore shall take
for the potential, between like as well as unlike

~ R. Serber, private communication.

nucleons,

exp( —yr)
Vs r(r) =-'(i+I') V 'r (6)

where Vo~ ———67.8 Mev and V08 ———46.5 Mev,
corresponding to triplet and singlet states, re-
spectively, and p, '=1.18)&10 ' cm. The range
and singlet depth are adjusted to fit the low

energy proton-proton scattering, ' and the triplet
depth is fixed by the binding energy of the
deuteron. ' It has been shown at Berkeley that
such a potential represents satisfactorily both the
magnitude and the angular distribution of the
90-Mev neutron-proton scattering.

Since the Born approximation is to be used,
it is advisable to consider how good the
latter is when applied to the neutron-proton
problem, It turns out to give a total cross section
within 10 percent of the exact value at 90 Mev
when used with the above potential. The angular
distribution has the correct symmetry but too
deep a minimum at 90' in the center-of-gravity
system. The exact calculation gives a factor of 3
between the intensities at 180' and at 90', while
the Born approximation gives a factor 5.7. It is
therefore expected that the deuteron elastic
cross section, calculated in this way, may be too
large by as much as 30 percent. At 350 Mev, the
Born approximation can probably be used
without reservation, but relativistic corrections
will be serious.

B. Neutron-Deuteron Cross Section

The neutron case is considered first in order to
avoid the Coulomb force complication. The cal-
culation uses the same time-dependent per-
turbation theory as in Section II, generalized for
the presence of two identical particles. Let the
space and spin coordinates of the two neutrons
be (r&, o&), (r~, 0~) and that of the proton (rm, o2).
The symbol g, denotes both space and spin
variables of the ith particle. The Hamiltonian is

Pl P2 P3II= + + + V(gi, $2)
2m 2m 2m

+ V($&, p,)+ U(b, g&),

' L. E. Hoisington, S. S. Share, and G. Breit, Phys. Rev.
56, 884 (1939).

~ R. G. Sachs and M. Goeppert-Mayer, Phys. Rev. 53,
991 (1938).
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The spin functions x,...g(a~, gg, og) are taken as
follows:

I r I i I I I
20' 40' 80' 00' IOF NF NF IN' INK

SCATTERING ANGLE IN LAIORARRY SYSTEll

Frr. 3. Large-angle elastic scattering of 90-Mev nucleons
by deuterons in the laboratory system.

where p; is the momentum of particle i and
V($;, $;) is the potential acting between particles
i and j.%'e choose for our complete set of eigen-
functions, antisymmetric in particles 1 and 3,

pa($1) $2, $3) = 1/v2(1 P18 )4a($1~ $2~ $3),

where the 4„($~, $g, $g) belong to the operator
PP/2m+Pgg/2m+Pgg/2m+ V(Eq, Eg) and where
Ej.3~ interchanges all coordinates of the particles
I and 3. The cross-section formula, as in Section
II, may be written

(-', m) '0'
~,)d~ =

) Kg. )'d~,
4x'k4

where now 3'.y, must be understood to mean

r 1/v2(1 Pgg )kg*(Eg,—Eg, $g)$

Xr 1/V2(1 —Pggr)

X(V(g„b)+V(6, b))~.(6, 6, b)]. (T)

Xl =@a+2+3&

xg = 3 I(a-,agbg+agbgag+b, agag), quartet states

X4
——blb2b3,

xg ——6 I(2a~agbg —a~bgag —bgagag), ' doublet states.
xg ——6 I(2bibgag —aibgbg —b,agbg),

a; represents s component of spin+& for the ith
particle and b, represents s component —~~.

The force chosen does not mix spin and angular
momentum, so the final spin state must be the
same as the initial. It is also obvious that the
matrix element does not depend on the s com-
ponent of the total spin. Therefore, there are
only two difFerent matrix elements to consider,
one for the quartet states and one for the doublet.
lf expression (7) is written out in full and the
spin products performed, we find for the quartet
states:

Xg,& =—
I I(+Ig 2Ig }, —

20

and for the doublet:

1
SCAN.

n =—
I «(1+9') (Ii+Ig) +Ig },

20
where

exp( —I«y)
Ig '

Jl dy exp( imp —y) Vgr

This result can be obtained in a manner exactly
analogous to that used to get the usual transition
probability formula. "The sum over E~, $g, $g is
meant to include integration over the continuous
variables.

After making the usual change of variables,
r = r& —rg, R = k(ri+rg+rg) x = rg —r'(r&+rg)
obtain the initial state in the center-of-gravity
system by choosing

4g ——0-I exp(ipo x)fg(r)X~ g(a. „og, og), ...

and the final state by choosing a similar function
with y replaced by pt. All symbols in these ex-
pressions have the same meaning as in Section II.

'0 See, for example, K. Heitler„Quantum Theory of
RcdsfJtion (Oxford University Press, London, 1944), second
edition, p. 88.

exp( —I«y)
dy exp( —i(p~+p /2) y) V.'

P7

X drI4g(r)pg() y+r)) exp( imp/2 r)—,
J

dy exp( —i(pg+ p /2) y)A(y)
)

exp( —I«r)
1X J

dr exp(i(pg/2+pg) r)fg~(r) Vgr
)

and gI= Vgs/Vgr.
In the evaluation of the integrals Ij, I~, I3, the

bound state of the deuteron fg(r), corresponding
to the Yukawa potential, Vgr(exp( —I«r) /I«r),
must be used. This function can be approximated
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with great accuracy by the difference of two
exponentials, divided by r.

exp( —ar) —exp( —pr)
Po(r) A—

where

ap(a+ p) (mB) ~A'=, a=, p=5.476a.
2or(a —P)' A

8 is the binding energy of the deuteron, 2.18
Mev. This function has a maximum deviation
from the exact function as obtained by numerical
integration of 3 percent. Outside the range of
the force, the two practically coincide, As a
variational tria, 1 function it gives a fraction 0.999
of the binding energy.

It should be noted that I& is precisely the type
of expression obtained for the matrix element in

the simplified calculation. Of the three terms it

I OO8

INN

I I

IO 15
IKCN. OElflERON ECNiV -MIot

FIG. 5. Spectrum of recoil deuterons for incident nucleons
of 90 Mev. The recoil angles in the laboratory system are
indicated at the top of the figure.

is the most important since both of its factors
have a strong maximum in the forward direction.
I3 has a weaker maximum to the back, and I2 has
a weak maximum to the back and a stronger one
in front. These two terms represent the com-
plications due to exchange forces and to the
identity of the two neutrons.

Kith the above approximate wave function, Ii
can be completely evaluated analytically.

gb

zb where

4x Vp~ 1
s~(sp),

~'+(~p)'

SXA2
S&(hp) = I tan-'6 p/4a

Ap

+tan 'AP/4P —2 tan-'AP/2(a+P) I.

0
0 If 5'

SCATTERING ANGLE IN LAIORATORY SYSTEM

{a)

This is the square root of the sticking factor
plotted in Fig. i.

It is also possible to write I3 as a fairly simple
function

IO-

8-

where

I3=—
1t ~2h2A2 2 +2 2

(a2+ Q2) (p2+ Q2) 2

II /acr

I
.4-

R

If 5' Rlf
SCATTERING ANGLE IN LASNATON SYSTEM

{b)

Q= Ipi+po/2I,

but I2, in which the variables of integration do
not separate, can only be partially reduced. One
is left hnally with a single very complicated
integral which can either be done numerically or,
for a few special angles, by contour integration.

Having evaluated the quartet and doublet
matrix elements, the total cross sect~on is ob-
tained by the weighted average:

FIG. 4. Comparison of neutronAeuteron saith proton-
deuteron elastic scattering for small angles in the labora-
tory system. (a} 90-Mev incident particles, (b} 350-Mev
incident particles.

(-',~)ohio

I
oo I3'-r 'I'+ ~o

I ~~ ~ I'jd~.
4' 2h4
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The result is plotted as the dotted curve in

Fig. 2 for 90 Mev. The total cross section of
0.059 8 is slightly larger than given by the crude
calculation, and the angular distribution is con-
siderably steeper in the forward direction. Both
differences are possibly attributable to the Born
approximation. The one genuinely new feature
is the weak backward maximum, shown in Fig. 3,
a consequence of the exchange effects.

At 350 Mev the total cross section turns out
to be 0.010 barn, but most of the change is due
simply to the decrease in the nucleon-nucleon
cross section, which is roughly inversely propor-
tional to the energy. The angular distribution is
shoved even further forward, of course, as shown
ln Fig. 4b.

C. Proton-Deuteron Cross Section

When the incident particle is a proton one must
add to the perturbing energy the Coulomb
potential between the two identical particles.
The Born approximation should still be appli-
cable, since at 90 Mev the proton velocity is half
that of light. A11 results of part 8 then remain
valid if one adds to both doublet and quartet
matrix elements the terms

I,e —I2c I,
where I»~ and I2~ are obtained from I» and I2 by
replacing, in the coeScients, —Uor/p by e' and
setting p=O elsewhere. Since pe'/U, r = —O.Q18,
the additional terms are of negligible effect
except for very small scattering angles and there
only I»~ need be considered. One may easily
estimate the order of magnitude of the largest
angle strongly affected. I»~ becomes comparable
to I~ when e'/4po' sin'8/2 is no longer small com-

pared to

p p'+4p ' sin'8/2

This is equivalent to 8 (ye'/Var)&(p/Po). At 90
Mev, this is an angle of 5' and at 350 Mev an
angle of 2.5', both in the center-of-gravity
system. The corresponding laboratory angles are
two-thirds of these.

In Figs. 4a and b the small-angle scattering of
neutrons and protons is compared, showing in

detail the above qualitative feature. Actually a
difference between the neutron and proton scat-

tering at 90 Mev should already be noticeable at
10' in the laboratory system. As is usual when
the Coulomb force is involved, it is necessary to
set a lower limit on the scattering angle if a
finite total cross section is to be obtained.

IV. SUMMARY AND DISCUSSION

We have found that at high energies the cross
section for the elastic scattering of neutrons on
deuterons should be roughly half the neutron-
proton cross section, the ratio not being a strong
function of the energy. The reason for this is
that in the individual nucleon-nucleon collisions
momentum transfers corresponding to energies
greater than 10 or 15 times the binding energy
of the deuteron are unlikely, due to the finite
range of the forces. Interference and the reduced
mass effect then combine to give the fairly large
total.

Nearly a11 the scattering should be confined to
small angles, the angular half'-width being about
15' at 90 Mev and varying inversely as the
square root of the energy. There probably is a
very weak backward maximum, as a result of
exchange effects, which is unlikely to be observed.

The proton scattering at 90 Mev should be
found to deviate appreciably from that of
neutrons if the small-angle intensity can be
measured at all. The Coulomb force ought to
show itself quite strongly at 10'.

From an experimental standpoint, it may be
easier to measure the energy spectrum of the
recoil deuterons rather than the actual scattered
nucleon intensity. In Fig. 5, accordingly, we have
plotted the recoil energy spectrum to be ex-

pected from the calculation of Section III, for
both neutron and proton projectiles at 90 Mev.
The simpler considerations of Section I would

predict a somewhat less steep distribution, with
a half-width of about 4 Mev for the deuterons.
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