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The rigorous solution is given for the field of a uniformly moving point charge which, coming
from vacuum, enters at t =0 through a plane surface into an ideal, macroscopic, homogeneous
dielectric medium {~=const.). The solution represents a characteristic transition radiation, as
the velocity of motion approaches cj(c)& and furnishes information about the formation of the
characteristic cone if v &c/(e}&.

1. INTRODUCTION

~ ~HE radiation discovered by Cherenkov' and
studied in more detail by other inves-

tigators' represents, according to Frank and
Tamm, ' a natural consequence of relativistic
electrodynamics, analogous to phenomena known
in acoustics in the case of projectiles moving with
velocities higher than the velocity of sound. A
very brilliant and detailed study, covering all
aspects of the phenomenon, has been afterwards
published by Tamm, resulting from discussions
on the subject with L. Mandelstamm. ' The
present paper diR'ers from Tamm's treatment
both by its method and by its aim. While Tamm
admits a priori the existence of the Cherenkov
radiation, solving a problem with boundary con-
ditions (outgoing waves), the purpose of this
paper is to show that the problem can be reduced
to one with given initial conditions (electron
moving uniformly in vacuum) and leads sub-
sequently, indeed, to radiation emission, i.e., to
the solution admitted by Tamm, implying
retarded potentials only.

The model adopted here, represents a point
charge moving with uniform velocity, coming
from infinity and entering at t =0 a semi-infinite
ideal classical dielectric. A model of this type has
the advantage of permitting rigorous solutions of
Maxwell's equations for given initial conditions:

'P. A. Cherenkov, C. R. Acad. Sci. U.S.S.R. 8, 451
(1934).

~ G. B. Collins and B. G. Reiling, Phys. Rev. 54, 499
(1938);H. 0.Wycko8' and J.E. Henderson, Phys. Rev. 64,
1 (1943).' I. Frank and Ig. Tamm, C. R. Acad. Sci. U.S.S.R., 14,
109 (1937).

'Ig. Tamm, J. Phys. U.S.S.R., 1, 439 (1939). The
author desires to thank the Editorial Board of the Physical
Review for having indicated to him this paper, which was
not accessible to him during the present work and vrhich,
unfortunately, was not refered to in the accessible
literature.

a point charge moving in vacuum at t= —cc at
infinite distance from the dielectric and leading
at t=+ ~ to the quasistationary field of the
point charge in the dielectric.

From the physical point of view, this model
is subject to several restrictions, the most im-
portant of which are the macroscopic treatment
of field and dielectric and the neglection of dis-
persion, e = e(v). Both restrictions limit the
validity of the obtained expressions, the first one
to wave-lengths greater than the thickness of the
surface film (here represented simply by a dis-
continuous jump of a) the second one to spectral
regions in which e is sensibly constant. Informa-
tion on the inRuence of dispersion is, however,
available from Tamm's quoted paper and from
an important paper of Fermi' who, considering
the passage of charged particles through con-
densed dielectrics, obtained formulae which
take into account dispersion and apply also to
the phenomenon observed by Cherenkov.

2. THE STATIONARY SOLUTIONS

Since our problem is, essentially, a non-
stationary one, its solution will necessarily
contain a radiation field. Because of the fact that
we can consider here uniformly moving charges,
we can, however, separate from it a stationary
part of the solution, which shall be considered
first.

Assuming that our point charge moves along
the z-axis, our solution depends only on the
coordinates p= (x'+y')& and s. We suppose that
the charge moves in vacuum, &=1, for z&0,
I&0, with constant velocity e. For z&0, t&0,
our charge moves in a dielectric medium, e&1.
We have to distinguish between the solution

' E. Fermi, Phys. Rev. 5'I, 485 (1940).
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ogtside, 4(') z&0, and inside, 4(') z&0, the
medium, both solutions satisfying the boundary
conditions for z =0,

jv (0) —g (') D (o) D (')

The solution 4 is determined by the static poten-
tial y and the vector potential A =A„by means
of which we express

E,= By/—Bp; D, =«E,
E,= —By/Bz —(1/c)(BA/Bt); D.= «E. (2)
H„= —BA/B p; 8„=H,

and satisfies the Lorentz condition

BA/Bz+(e/c)(By/Bt) =0. (3)

The fact that the held of a point charge at
rest, in front of the plane surface of a dielectric
medium, can be represented by the superposition
of the fields of several (real and virtual) point
charges (electrical images), suggests that a
similar superposition may be possible if we have
to deal with uniformly moving point charges.
We find, indeed, that C~ and C~ are solutions of
our problem, with

c» (o).

&(o) —e
1 e —[1+(e —1)v'/c']» 1

[(1—v'/c') p'+ (s—vt)']» e+ [1+ (e —1)v'/c']» [(l.—v'/c') p'+ (s+vt)']»

y, (s) .

1 e- [1+(«-1)v'/c']»
A(') =e- —+

c [(1—v'/c )p'+ (s —vt) ']» e+ [1+(e —1)v'/c ]» [(1—v /c )p + (z+vt) ]» l

2e[1+ (e —1)v'/c']» 1

e+[1+ (e —1)v'/c']» [(1—v'/c') p'+ {s[l+ (« —1)v'/c']» —vt }']»

g (s)—
2«ev/c

C~(0) .

y (s) .

«+[1+(«—1)v'/c']» [(1—v'/c') p'+ {z[1+(e—1)v'/c']» —vt}2]»

2e[1—(e —1)v'/c']»
&(0)

«Lf (e 1)v /c ]»+1 L(1 v /c )p + {z[f (e 1)" /c ]» vt} ]»

A(" =
2ev/c 1

e[1—(e —f)v«/c«]»+ 1 [(1—ev«/c') p«+ {s[1—(e —f)v«/c']» —vt }']»

e 1 e[1-(e-1)v'/c']»-1
~(s)— +

«[(1—ev'/c') p + (s —vt) ]» e[1—(e —1)v /c']»+ 1 [(1—ev /c ) p + (z+vt)«]»

8 1 e[1—(e —1)v'/c']» —1 1
A(') =e-

c [(1—ev'/c') p'+ (z —vt) ']» e[1—(e —1)v'/c']»+ 1 [(1—ev'/c') p'+ (z+vt)']»

(6)

4 & represents the stationary solution, while our
point charge moves outside the dielectric
medium, t ~&0. It refers to one real charge e of
velocity v and to two virtual charges

e —[1—(e —1)v'/c']»
e = —el

«+ [1+(e —1)v'/c']»

2ee
el I

e+ [1+(e —1)v'/c']»

42 represents the stationary solution, while our
point charge moves inside the dielectric medium,
t&0. It refers to one real charge e of velocity v

and to two virtual charges

e[f —(e —1)v'/c']» —1
e' =e

«[1—(e —1)v'/c']»+ 1

2e
el l

«[1—(e —1)v'/c']»+ 1

V
I
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It is remarkable, that in (9) the velocity s"
becomes greater than the velocity of light c, as
sooll as 5)c/(6)i.

Equations (8) and (9) show that while our
point charge penetrates into the medium, a rear-
rangement of the corresponding virtual charges
takes place. This rearrangement of virtual
charges gives rise to the transition radiation
which becomes emitted during the considered
process.

4 ~ represents at t = —~, s = —~ a point
charge e moving in vacuum with velocity v. It
corresponds, therefore, to the correct initial con-
ditions which we have to postulate. The inffuence
of the virtual charges with increasing t accounts
for the inffuence of the dielectric medium. We
can, therefore, consider CI to be the correct
solution for t &0.

C2 is not the correct solution for t&0, since,
for t=0, it does not fit continuously with 4&. In
order to assure continuity with time, we have to
add to 4 2 a radiation field, 4 3, which is determined

by the condition that for t =0 be

charge. After a suSciently long time, the radi-
ation field will be situated at a large distance
from the charge and the field in the neighborhood
of the charge will be sensibly the stationary field
C 2. In this case, the inffuence of the surface of the
dielectric medium leads mainly to the emission
of a transition radiation, while the charge enters
the medium.

(b) If s) c/(e) &, the charge travels faster than
the radiation field. This leads to the formation
of the characteristic cone, already known from
the elementary theory. The field is, then, given
at any moment t and at any distance from the
surface by 42+4» and no separation into sta-
tionary and radiation part takes place.

Given the axial symmetry of our problem, we
choose for the Fourier expansion an orthogonal
system of cylindrical waves. Only waves not
depending on the angle y need to be taken into
account. The following three sets of cylindrical
waves satisfy the required conditions:

(a):

(10)

Satisfying the condition (10), we obtain the
complete solution of our problem in the form

3. THE RADIATION FIELD

Z, ~ i =k,Ji(k~p) cosk,z e +"'

8„"&=k,Ji(k, p) cosk.z e ""'
E "'= —(k '/k, )J0(k,p) sink, z. e +"'

E,"'= —(k '/k )Jo(k, p) sink, z. e '""'

H~"'=i(kok, /k, )Ji(k, p) sink, z e '~"',

H„'*'=i~(kokq/k, )Ji(k, p) sink z e

(12)

The solution of our problem requires the
determination of the radiation field 43, from the
condition (10).We shall proceed by representing
43 by a Fourier series, determining its Fourier
coefficients at t =0 by (10).The required solution
is then obtained by summing up the Fourier
series at any subsequent moment t. It is a
necessary condition for (10), representing a
radiation field, that the right-hand side field in

(10) must not contain any real charges. It can
be readily shown that this condition is s@tisfied.

Since the radiation field 43 propagates in the
dielectric medium with velocity c/(e)&, we have
to distinguish two cases:

(a) If s(c/(e)&, the radiation field emitted in

the moment t=o, when the charge enters the
dielectric medium, will travel faster than the

(b):

Z~ ~ i = k~Ji(k~p) sink, z e

E &'i = (kpkg/ek, )Ji(kpp) sink z ~ e

E, ~ i = (k~ /k, )Jo(k p) cosk,z e ""'
E "&=(k '/ek, )Jo(k,p) cosk, z e '""'

(13)
H„&'&= i(kok, /k, )J—i(k, p) cosk,z e ""'
H„~*&= i'(kok, /k, )Ji(k~p) cosk,z e ~i"'

A;,¹=-
x ek, +lc, kpkp
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(c):
Z &'i~k J'(k p) e" e—'""'

[e'r&'+I&:.' j»
Z, &'i = k,Ji(k,p)

D, and B„corresponding to the two stationary
solutions (4), (5) and (6), (7), to multiply them
by the corresponding conjugate complex com-
ponents of (12), (13) and (14) at t=o and to
integrate over

Xcos(k,z+8) e a4"

&0) (k 2/«) J (k p) . etc. e ikoct—

[e'r&'+ k, ']» k, '
J0(k,p)

k,

Xsin(k, s+b) e "o"

H~&'& =i(kok, /«) Ji(k, p) e" e &«"'

[e'r&'+k 'j» kok,
i Ji(k,p)

K kg

Xsin(k, s+5) e
—"o"

P

K

tgb = I&„/sr&, -«' '+&.' kok,

(14)

dr'=
J pdpJi ds.

The computation of these somewhat long ex-
pressions, which shall not be reproduced in
detail, does not present major difhculties until it
leads to integrals which, by means of elementary
transformations can be reduced to

r" r
' Jo(q) cosf' 2

r»de f =
( 's'+I')» '+1

I" t" Jp(i») sini
ydgdgJ

Jo and Jj denote Bessel functions of zero and
first order. (k„k,) and (k„k,) are, respectively,
the components of the wave vector in vacuum
and in the dielectric medium,

k '+k '=k ' —
ff,'=ko', k '+k'=&ko'

k.' (1/e) I k.' —(e—1) k,' I for k,/k. ~& 1/(e —1)»,
«'=(1/e) I (e —1) k,' —kgiI for kp/k, &~1/(e —1)».

The solutions (c), (14), refer to totally reflected
waves in the medium.

The normalization factors N are chosen in
order to satisfy the normalization

"o "-- (a'n'+I')» a'+1
Jo(&»)er a —2

qdqdf =
J 0 J (a2i»i+ I I)»

J&r(r») cos I'
sdi»di'

J ~ [ am&2+ I.mg»

Jo(&») cosI'
qdqd I~. ~ .L *~'+I'j»

(17)

(E«'D«+H«'13«) dr'= b««",

dr' = pd pds. (15)

iirb(1 ——a)+is b(11a),
0',

Jo(rr) sing
If we want each wave to represent one photon, gdgd fJ«0 [ a's'+t—'J»

(18)

1/Ss (E«'D«+H«'8«) d7.'=(ke/2s)kp, (16)

we have to renormalize (12), (13) and (14) by a
factor [4kekpg».

In order to determine the Fourier coefficients
for each of the three sets of cylindrical waves, ak,

b~, c~, we have to form for t'=0, according to
(10), the difference of the vector components D„

Jo(i») sin f'

qdqdi
J ~ [ a%s2+ I R)»

+~b(1 —a) sb(1+a)—,
1 —a'

J«(s)er 2 zeal

qdqd f =
[—a'rr'+ I']» 1+a"-



CHERENKOV EFFECT

Tascs I.

2kp' 2kp'

k '
( 1+(» —1)v'/c')+fc, '(1 —v'/c') kp'+fcp(1 —»1l'/c')

+$7rt I$(1 $»(V /C ) 1 ]~fCz/kp) B(1+ t »(V /C ) 1 j~kz/kp) j
1 . Uk0 2»kp' 2kp'

c kz k f 1+(» —1)P/cs f +kz2(1 —9/c2) k '+k s(1 —»9/c')

+' Es(l —
L (&/') —17&/)) 8(/+( (&/') —/)'(/I )))

»kp' kp'
Xr c & k ' j1+(»—1)8/c'J+k '(1 —9/c') k '+k '{1—eP/c')

5 k' kp'+4ee—, P P

k 'J1+(»—1)9/c')+k '(1 —tl2/c') k '+k '(1 —ev'/c')

Fourier coefficients in the case e &c/(e)&, 1 —(e —1)(ez/cz) &0.
In the case e &c/(a) we have to put, for real kp and k., b(1 &i[1—e(e'/c~)]&(k. /A p)) =0.

All square roots denote positive, real or imaginary, values.

Dirac's symbolic function 8 has, in (18), a
well determined sense. It stands for

2s b(1 —u) = i l—im e'&' 's/1 —a; Jm(a) ~& 0.

The evaluation of the integrals (17) and (18)
cannot be performed by elementary means and
represents the main difhculty for the solution of
our problem. The values given above, have been
obtained by using properties of Poisson integrals
in the complex plane. Since the mathematical
method involved does not present a major
interest for the physical problem we have to deal
with, it shall be treated in a separate paper. '

In the case s (c/(e) & only integrals of the type
(17) occur. Integrals of the type (18) appear if
v)(:/(e)&. We have, therefore, to deal with the
Fourier coeScients in both cases separately.

Using the values of the integrals (17) and (18)
we obtain the Fourier coefticients given in
Table I.

4. THE TRANSITION RADIATION

In order to obtain the radiation held, we have
to multiply each set of normalized cylindrical
waves (12), (13),and (14) with the corresponding
Fourier coe%cient from Table I and to sum up
the resulting series (Fourier integrals). The
result of the summation cannot, however, be
expressed in closed form. It can be shown, how-
ever, that we obtain, in general, a field of finite
extension, propagating with velocity c in vacuum
and (;/(e)& in the dielectric medium. The fact,

' Mathematic~ Nota. . VII, 191, (1948).

that the radiation field vanishes at finite distance
from the surface after infinite time Rows from
the time dependence of (12), (13) and (14).
Indeed, if t is sufficiently large, the mentioned
time factor oscillates with ko more rapidly than
the other terms, provided that p and s are finite,
and makes, therefore, the Fourier integrals tend
to zero. The initial field distribution, given by
(10) shows, that the radiation field comes from
the neighborhood of the coordinate origin, i.e. ,
of the point where our charge enters the dielec-
tric medium. The weak transition radiation
could, therefore, become observable under favor-
able conditions, if we focus a lens on this point.

In the case of small velocities, the transition
radiation is, according to Table I, insignificant.
It increases, however, as soon as u approaches the
critical value c/(e) . The main contribution, in
this case, comes from the Fourier coefficients a.
and b, in Table I, from the terms which contain
the denominator {k '+I(: '(1 —ev'/c') }.The num-
ber of photons emitted, due to these terms, is
given by

2(e) & 2s s s sjn30~dO dX
ds— (19)

kc c' {1—e(v'/c') cos'Q~}2 X

The transition radiation has, according to (19),
a strong maximum in the forward direction at

The transition radiation (19) corresponds to
the radiation due to the acceleration of an elec-
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radiation, though the remaining terms assure
that even in this case the transition radiation
does not disappear completely and becomes again
important, if the velocity approaches c.

We conclude that the transition radiation
shows a marked maximum in the forward direc-
tion for velocities slightly below the critical
value of c/(e)1 and weakens considerably, as soon
as v exceeds the critical value.

Fro. i. The characteristic cone of the stationary solution.

tron moving in an infinite medium during a
finite time, which has been determined by Tamm
in his quoted paper. ' Because of its difkrent
origin, at the surface of the medium, it difFers

from it both in intensity and in angular de-

pendence, but it is of the same order of mag-
nitude. Integrating over the angle, Tamm gives
(in our notations) for the emitted energy the
expression

1 2~e'
dlV=-

hc e(v/c)

1+(e) (v/c) —2(e)~(v/c) hd~
! 1 —(a) &(v/c) t

P —tgy( )—
(~(v'/c') —1) '

kp—=tgO *'=(e(v'/c') —1)&,
k,

sin8~') =coso&') =
(e) &v

Outside the medium:

p (1—(e —1)(v'/c') i
tgQ

(0) !
z ( e(v'/c') —1 i

(20)

5. THE CHERENKOV EFFECT

The case v&c/(e)& is characterized by the
fact, that our solutions C~ and C3 show singu-
larities of the field on the surface of a cone,
which is given by:

Insure the medium:

while (19) leads to

i 2xe'
dW=hvdn - —,'(1+e(v'/c')

x' hc

t' e(v'/c') —1

!= tgO&0& =!
h, (1—(e —1)(v'/c') j

sin8 &"=cos0"' = (c/v) (1 —(e —1)(v'/c') ) &.

(21)

1+(~)'(v/c)
Xln —(e) &(v/c) hdv.

1 —(e) (v/c)

Because of the logarithmic dependence on

(e)&v/c, d W increases very slowly while we

approach the critical velocity v-+c/(e) & and
amounts to the order of about one visible photon

per hundred incident electrons.
As we shall see in the next paragraph, the

Fourier terms taken into consideration con-
tribute in the case v&c/(e) & to the formation of
the characteristic cone, i.e., to a field propagation
in one well-determined direction 0&. They do,
then, no longer contribute to the transition

~ See reference (4), p. 453, Eq. (7.io}.

0 denotes the angle of the singular cone, 0 the
direction of its normal in which the singular cone
propagates with, respectively, the velocity c/(e) &

(inside) and c (outside).
(21) represents the refracted cone of (20), due

to the change of refraction index at the surface
from (e)& to 1. In the case

(22)

the cone (20) becomes totally reflected at the
surface of the medium and no characteristic cone
appears outside.

The characteristic singular cone of the sta-
tionary solution (6), (7) is given by Fig. 1. It will
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be advantageous in the following discussion to
distinguish between the advanced and the
retarded part of the cone. Frank and Tamm have
shown that the advanced part of the cone cor-
responds to the advanced potentials in Maxwell's
theory while the retarded part is given by
retarded potentials. Our stationary solution is,
therefore, of the well known type

C 2 z
' (C ret+ 4 sdv) ~

In the domain outside the cone, the held becomes
imaginary.

In order to study the radiation field C»(t) we
shall restrict our attention to the case

1 —(d —1)(v'/c') p 0

i.e., to the case in which the Cherenkov radiation
does not become totally reflected inside the
medium. It will be sufficient to take into account
the main terms of Table I, which are the same as
the ones discussed in Section 4 plus the b-func-
tions. The remaining terms represent a supple-
mentary transition radiation, which is of insig-
nificant intensity, unless v approaches c.

The main terms of Table I lead to the following
expression for the vector potential of the radia-
tion field:

2 e(v/c)
Ag(') = —— 70(k,p)dk,

~ [d(v2/ci) —I]&.,
2

X,
~ [{f-s)(e(e'jc') -1)]~

d(k, /k, ) vk,
sink 'z

I d(k, /k, )+1 cka

2

+ cosk,z e ""'do.
d(k, /k, )+1

+small terms, (23)

with n = [d(v'/c') —1)&(k,/k, ).

FzG. 2. The characteristic cone of the non-stationary solu-
tion for t)0 (formation of the Cherenkov cone).

In (23) the small contribution from the
totally reflected waves, a = [(d—1)(d(v'/c') —1)]&,
has not been taken into account explicitly. The
main contribution to the integral (23) comes
from the neighborhood of the characteristic cone,
a = 1. In general, (23) represents a radiation field,
which shows a marked maximum of intensity in
the direction of the characteristic cone. It can be
evaluated rigorously at "large" distance from
the surface,

O.kpz
lim ~~, i.e. z))(X/2z)(v/c).

Ld(v'/c') —1]'

'+~ sino. S
dn= —xe '~

tlim
2 —a

t'I+~ coso.S
do. =Are 's *lim

~~ ~1—b 2 —0!

one finds easily

Since, from the physical point of view, we are not
interested in very long wave-lengths, we may,
therefore, say that the characteristic cone of the
radiation field becomes formed behind the
surface, after the electron has penetrated into the
medium, within a distance of the order of one
average optical wave length.

Making use of the integrals

ic(v/c)
A 3(')— rJo(q) expi r,

p[d(v'/c') —1]& & 0 p[d(v'/c') —1]'-

d[1 —(e —1)(v'/c'))& —1 z+vt
+ exp —ir&

d[1 —(q —1)(v&/c~) ]&+1 p[d(v2/c~) —1]&

*The singularity on the real axis is understood to be avoided by deviating the path of integration into the positive
imaginary half-plane of a.
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and observing that

+(P'-1)'

& —1

we obtain
(P'-1)'

with
A 3(s) —g (s)+A (s)

[(1—2(v'/c')) p'+ (z —vt)')&

iev/c
A3(') = + for

[(2(v'/c') —1)p' —(z —vt)']&

ev/c

L( —( '/ ')) '+ ( — )')'

t )+f

z vt (+(
p(2(v'/c') —1)

. & —1

A3(') =&

6[1—(2 —1)(v'/c'))~ —1 ev/c

c[1—(a —1)(v2/c2)]&+1 [(1—c(v2/c2)) p'+(z+v~)2]& z+vt
for ~~ |.

&[1—(&—1)(v'/c') ) izv/c p[2(v'jc') —1)'

8[1 (2 1)(v'/c'))&+ 1 [(2(v /c ) —1)p —(z+v()

2e(v/c)

[(1—ev2/c2) p'+ (z —vt) ']~
A2&'&+A2&'& —~

inside the retarded cone,

-0 outside the retarded cone,

(25)

(25) corresponds exactly to the solution of
Tamm and Frank and is valid to the approxima-
tion to which the terms belonging to the transi-
tion radiation are negligible. Figure 2 shows the
domain of the solution (25), which is identical
with Cherenkov's cone.

Comparing these expressions with the cor-
responding terms of the stationary solution A2("
from (7) and identifying their respective do-
mains in Fig. 1 we 6nd, 6nally, for the total
solution for t&0 at sufficiently large distance
from the surface inside the medium

1. The existence of a transition radiation, of
the order of one visible photon per hundred
incident electrons, at electron velocities slightly
below c/(2)&, i.e., at the transition point to the
Cherenkov eEect (Section 4).

2. The justification and the limits of the
solution given by Tamm and Frank for the
Cherenkov radiation, in particular the justi6ca-
tion for the use of retarded potentials (outgoing
waves) only (Section 5).

3. The verification that the description of the
phenomenon depends essentially on the behavior
of non-uniform analytic functions (square roots).
We may learn from this fact, that already the
simple electrostatic solution, e/r, has to be
written more explicitly as

~ (2c2+ y2+ z2) 2

6. CONCLUSIONS

The results of the developments given above and that its singularity represents a branch

are the following: point.


