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The correlation between the direction of propagation of one quantum and the polarization
of another quantum, when the two are emitted successively (in any order) by a radiating
system, is investigated theoretically. This direction-polarization correlation is found to be
capable of determining the relative parities of all three levels of the radiating system. The
correlation is simply related to the already investigated correlation between the directions of
propagation of two successive quanta. Results are given explicitly for the possible combinations
of dipole and quadrupole radiation. The discussion applies also to certain types of resonance
radiation.

I. INTRODUCTION resonance radiation, and hence specific results
are given only for transitions in which the initial
and final levels have the same angular momenta.

The present discussion provides the theoretical
background for an experiment in which one
measures the correlation between the direction
of propagation of one quantum and the direction
of polarization of another quantum emitted at
an angle 8 to the 6rst. Just as there is a close
relation between resonance radiation and the
successive emission of two quanta from a single
system, the existence of the correlation under
discussion is to be expected by analogy with the
polarization of the resonance radiation excited
by unpolarized light.

For applications to gamma-radiation, the elim-
ination of one of the polarization-measuring
counters is an obvious advantage since polariza-
tion-sensitive counters for gamma-radiation in-

volve counting the gamma-quantum after a
scattering process. In addition to this saving of
one polarization measurement, the present ar-
rangement in many cases allows one to deter-
mine enough about the electric or magnetic
nature of the two successive transitions to specify
the relative parity of all three nuclear levels in-

volved. This is possible in all cases if by some
means one may discriminate in favor of detecting
coincidences in which the first quantum goes to an
arbitrarily chosen, particular one of the counters.

HE experimental observation' of the pre-
dicted'' correlation in the directions of

propagation of two successive gamma-rays
emitted by a radiating nucleus, and the usefulness
of this correlation in providing information on

gamma-ray multipolarity and on the spins of the
relevant nuclear levels, have stimulated interest
in further correlations involving the polarizations
of two such successive quanta. It has been
pointed out by Falkoff' that while only the
orders of multipolarity of the gamma-quanta
enter into the directional correlation, the electric
or magnetic nature of the radiating multipole of
given order influences the polarization correla-
tion. Falkoff has calculated the polarization cor-
relation for two quanta emitted at an angle of
180' with each other. He finds, in particular, that
when the two transitions involve one electric and
one magnetic multipole, the correlation differs
from that to be expected when both of a given

pair of multipoles are electric or both magnetic;
the experiment thus determines the relative

parity of the initial and final levels of the three
levels involved. Along somewhat different lines

the present author has treated' the case where
successive electric dipole quanta are emitted at
an arbitrary angle to each other. However, this
treatment, which may easily be generalized to
arbitrary combinations of magnetic and electric
dipoles, was a by-product of a discussion of

*This work supported in part by Navy contract N6ori-
105, Task I.' E.L. Brady and M. Deutsch, Phys. Rev. 72, 870 (1947).

~ D. R. Hamilton, Phys. Rev. 58, 122 (1940).' G. Goertzel, Phys. Rev. 70, 897 (1946).
4 D. L. Falko&, Phys. Rev. 73, 518 (1948).
~ D. R. Hamilton, Astrophys. J., 106, 457 (1947).

II. THEORY AND CALCULATIONS

It will be noted immediately that since the
two successive quanta are not detected in iden-

6 H. S. Snyder, S. Pasternack, and J. Hornbostel, Phys.
Rev. 73, 440 (1948).
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tical counters, the experiment under discussion
possesses a dissymmetry in comparison to the
180 polarization-polarization correlation experi-
ment of reference 4. One might thus expect the
results to depend on whether the first or the
second quantum is detected in the polarization-
insensitive counter. Such a dependence in fact.
arises in exactly half the cases considered; this
situation can be covered, however, by a simple
generalization from the case where the first
quantum is assumed to go to the polarization-
insensitive counter. Therefore, this assumption
will be the basis of discussion until further notice.

The details of the calculations follow very
closely reference 2, with which a familiarity is
assumed. There the directional correlation of the
two quanta is specified in terms of the prob-
ability, W(8), that the second quantum will come
off with a direction of propagation making an
angle 0 with that of the first quantum. Formally,
the direction of propagation of the first quantum
is taken as the axis of quantization; W(8) is then
the angular distribution of the second quantum
with respect to this axis, and the discussion is
formulated in terms of the transitions between
the various magnetic sub-states A~, B„, C„of
the initial, intermediate, and final levels (A, 8,
C) of the radiating system. With the above
choice of axis of quantization and with the first
quantum unpolarized, the phases of the inter-
mediate states B„are random; the specific multi-
poles which radiate the second quantum in the
transitions B„C'„are randomly phased and there-
fore radiate independently, with an intensity
proportional to the (unequal) populations of t:he
states B„and to the B„C~transition probabilities.

The details of the radiation of the second quan-
tum from this assemblage of multipoles will now
be summarized.

Given the electric or magnetic multipole asso-
ciated with the 1ine J3C, the polarization of the
quantum emitted in a given direction in the
transition I3 C„ is determined by hm p=—n—T.he
polarization is (for dipole and quadrupole and
presumably for higher multipoles) elliptical with
the principal axes of the ellipse parallel to the
unit vectors eo and Po which in turn lie along the
directions of increasing 8 and y in the usual
spherical coordinate system. With the transitions
B„C~ and j3 „C ~ there are associated equal
transition probabilities, and polarization ellipses
identical in shape and orientation but opposite in
sense of traversal. Since the multipoles associated
with B„C„and 8 C „are randomly phased (for
the conditions assumed here, i.e., no knowledge
of the polarization of first quantum) these two
randomly phased ellipses are equiva1ent to two
randomly phased waves linearly polarized along
8o and po. Thus all the information about the
polarization of the second quantum may be ex-
pressed by stating the intensities J& and J„ in
the linear polarizations So and po.

In a notation analogous to that of reference 2,
the relative values of the Jq and J„associated
with a given Dm may be denoted by f~o,„~o and

fbi ~o, for electric dipole radiation and by g~o ~o

and g~z ~ „ for electric quadrupole radiation;
similarly, fs, )=f(o (o+f(g (~ and g(g (

—=g(g (o

+g~z ~„. The dependence of these functions on
the angle 8 between the axis of quantization and
the direction of propagation of the quantum in
question is given~ by

fio =
o cos 8

fo8 = 1 —cos'8

goo = ', (cos'8 cos-'8)—
gio = —,'(4 cos'8 —4 cos'8+ 2)

goo =3(cos'8 cos'8)—

fi~= o

fo.=o

g,~ = -', (1—cos'8)

gjy = 2 cos 8

go~=0

fi ———,
' (1+cos'8)

fo 1 —cos'8——
go =

o (1 —cos'8)

gi = o' (4 cos48 —3 cos'8+ 1)

go ——3(cos'8 —cos'8) .

It will be noted that

2fio+foo = 2fio+foo =2goo+ 2gio+goo

2gmy+ 2g ly+ gory 2 )

corresponding to the fact that if transitions with

the various hm occur with equal intensity, the
resulting radiation is isotropic and unpolarized.

7 E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge University Press, New York, 1935);
for example, Chap. IV.
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ln terms of the foregoing p and y, the J's are
given for dipole radiation by

(Jo)elec (J0)mag Pofoo+ 2Plf10,

(dipole) (4)

(Jg).1-=(jo) .g=pofo, +2plf1„

and for quadrupole radiation by

(jo)elec (J0)mag Yogoo+2Vlg10+272gooi

(quadrupole) (5)

(Jg)elec = (jo)mag =+ogocc+ 2 Ylgly+ 272g2cc

The function W(8) of Eqs. (2) and (3) is, of
course, simply the angular correlation function
of reference 2, there expressed as a power series
in cos'8:

W(8) = 1+a2 cos'8+ a4 cos48. (6)

(Here n2 and a4 are the quantities R/Q and S/Q
of the earlier work. ) From Eqs. (1), (2), (3), and
(6) the values of the p and y may be found di-
rectly in terms af the e2 and 0.4 which have al-
ready been calculated in reference 2. The W(8)
of Eq. (6) has no particular normalization. How-
ever, in the later discussion of the case where the
two transitions have difII'erent multipole order it
is useful to have W(8), when expressed in the

The analogous equations for magnetic dipole
and magnetic quadrupole radiation are obtained
from Eq. (1) by interchanging 8 and 02 where they
occur in the subscripts. This corresponds to the
fact that the radiation fields of the electric and
magnetic multipoles associated with a given hnz

differ only by the interchange of E and H; their
angular distributions of radiation are identical,
their polarizations orthogonal. Thus, for any
given line BC with given multipole order one will

have (Jo).i~= (J„) „and (Jg),l,.=(jo) „.
If the relative number of transitions in the

various 6222 is denoted by P~g„~ for dipole radia-
tion and by y~~„~ for quadrupole radiation, then
the total radiated intensity (all polarizations) is
given for dipole radiation by

W(8) =Pofo+2Pifi,

and for quadrupole radiation by

W(8) = Togo+ 2ylg 1+2yog2.

form of Eqs. (2) or (3), normalized in some

way, e.g. ,

J'W(8)d(solid angle)
= J'(jo+J„)d(solid angle) = 82r.

With this condition, the p and y are found from
Eqs. (1), (2), (3), and (6) to be given by

(3+n2)P0 ——3(1—a2),
(7a)

(3+ao) pl 3(1——+n.),

(15+5ao+ 3n4) yo ——5(3+5no+ 3a4),

(15+5ao+ 3a4) y 1 = 15(1+n2+ a4), (7b)

(15+5no+3n4)y2 ——15(1—a, —a4).

From Eqs. (1), (4), (5), and (7) we then find

directly for dipole radiation

(3+no) (Jo).l..=3(1+no cos28),

(dipole) (8a)

(3+a,)(J„).i„=3(1+n2),

and for quadrupole radiation

(15+Sag+ 3a4) (Jo).l..
= 15[(1+a2+ a4) —-', n4 sin228],

(quadrupole) (8b)

(15+Sag+ 3a4) (J„).l..
= 15[1+(a2+ n4) cos28].

It will be recalled now that the "dipole" and
"quadrupole" labels in Eq. (8) refer to the second
quantum only, corresponding to the assumption
that the first quantum goes to the polarization-
insensitive detector; the properties of this first
quantum enter Eq. (8) only through their in-

Quence on 0.2 and o.4. One might conceivably, al-

though with some difFiculty, arrange an experi-
ment to correspond to this assumption; but, in

general, one will want to know what happens
when each counter is able to detect either the
first or the second quantum, but not with the
same efficiency. As a necessary preliminary to
this more general question it turns out that we

must first consider a question complementary to
that answered by Eq. (8): What happens when

the only observed coincidences are those in which
the second quantum goes to the polarization-
insensitive detector &

A proposition very relevant to this question
concerns the directional correlation function
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W(8) discussed in reference 2. In that reference
it is shown that if two pairs of transitions are
each other's inverses —i.e., differ by an inter-
change of initial and final angular momenta and
of first and second radiation processes —then W(8)
has the same dependence on 8 for both pairs of
transitions. To state this more formally for pur-
poses of extension, let Wgsc(tttettttet) be the
probability of emission of a quantum with unit
propagation and polarization vectors xi and ej.
in the line AB, followed by a quantum x&6& in the
line BC; then a statement from p. 128 of reference
2 may be expressed in the form

Wgsc(tc e tt e )
eletl I

Wcsg(tt"e tc e') = W(8),

where 8 is, of course, the angle between x' and x".
Here the state A is alternately the initial and
final state, but in both cases has the same angular
momentum and iy connected to the state 8 by a
radiative transition of the same nature. If the
reasoning used in obtaining the above theorem
is interrupted short of the above result, one finds
that it is also true that

Wgsc(tt'e't&"e") = Wcsz(tc"e' tt'e') ~

Now, the values of J„when the 6rst or the
second quantum goes along the s-axis to the
polarization-insensitive detector are proportional,
respectively, to

Q Wxsc(ke'tt" Pt) and Q W~sc(tt" ptke') '

and it is apparent from Eq. (9) that

Q Wgsc(tt" Ptke') =g Wcsg(ke'tt"Pg). (10)

This says, in words, that to find J„when the
second quantum, instead of the first, goes to the
polarization-insensitive detector one 6nds what

J~ would be if the first quantum of the inverse
process C-+8—+A were to go to this detector. A
similar statement, of course, holds for Jfl.

Let us now return to the more general situation
in which neither detector can distinguish com-
pletely between the 6rst and second quanta. We
may denote by aBc the relative over-all ei%ciency
for detection of the first (AB) quantum in the
unpolarized detector and the second (BC) in the
polarization-sensitive detector (asc will thus be

I,=ass J,~s+use J,s C.
(11b)

A notable simplification may be made when
both the transitions AB and BC have the same
multipole order. Recalling that the W(8) of Eq.
(4) is always the same for the sequence ABC and
its inverse, CBA, it is apparent that the P and y
of Eqs. (2) and (3) must be the same for ABC
and its inverse. If now the transitions AJ3 and
j3C not only have the same multipole order but
also are both electric or both magnetic, the Jy
and Jr of Eqs. (4) and (5) must be the same for
ABCand itsinverse, i.e., JHAB J8Bc J AB ~ Bc;
and the total Iy and I„are therefore the same as
the JI and J» of Eqs. (4) and (5), no matter
which quantum goes to which counter and ee-
tirely independently of courder e~iencies:

(II)sD, ED = (Iy)MD, tID 1+ay cos28,
(12a)

(It)sv so=(II)mrs. tin=1+,ai,

(II)sq, sq = (I„).&q,tIq
= 1+at+ at —-', at sin'-'28, (12b)

(I&)sq sq = (II)Irq, ,trq = 1+(at+&Y i) cos28.

Here and in Eqs. (13), (14), and (15) the first
and second pairs of subscripts indicate, respec-
tively, the multipole nature of the 6rst and sec-
ond quanta —i.e. , BD for electric dipole, etc.

The next convenient category to consider com-
prises those pairs of transitions for which the
multipole orders are different (i.e., one dipole,
one quadrupole) and for which one multipole is
electric, one magnetic. It is shogun in reference 2

simply the product of the individual counter
efi|ciencies for these quanta); and let u~s denote
relative over-all eSciency for the converse proc-
ess (second quantum to unpolarized detector).
Similarly, let JyBc be the expected value of Jy
when asc—- 1 and cps =0 (the case to which Eq.
(8) corresponds), and Jt~s the same for asc=0
and a~s = 1. In the notation of Eq. (10),
Jtsc~ P W~sc(ke'&"&o),

er

Jt~s Q W~sc(tt"Soke')
(11a)=2 Wcs~(ke'x "eo)

gI

If the total relative intensities observed in the
St and Pt polarizations are It and Ir, then

It cAs JIAs+csc Jtscr
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that with one dipole and one quadrupole transi-
tion there is no cos'8 term in W(8)—i.e. , u4=0.
It will be noted that in this case the functions of
Eq. (8b) become very similar to those of Eq.
(Sl). This latter fact has the happy consequence
that when the values of Iy and I„are worked out
in accordance with Eq. (11b), the relative efli-

ciencies enter I& and I„only through a multi-

plicative function of n2 which is independent of
8 and is the same for Iy and I„and hence irrele-

vant; and we have, independently of the counter

egciencies,

(I8)MD, zq = (I8)zq, MD = (I8)zD, Mq

= (i8)8Iq, ED ——1+a8 cos28,
(13)

(I8)MD EQ . (I8)zq, lID (I8)ED, MQ

= (I8)M q, zD = 1+488.

An analogous simplification does not result
when Eq. (11b) is applied to pairs of transitions
in which one transition is dipole, one quadrupole,
but both are magnetic or both electric. In this
case we have

(I8)MD, MQ (I8)Mq, MD (I8)ED, EQ (I8)EQ, ED

= aD(1+ c18)+nq(1+ II.cos28„),
(14)

(I8)MDMQ = (I&,)M Q„MD = (I8)EDzq = (I, 8) z q, ED

=aD(1+n8 cos28)+aq(1+a8).

Here a~ is the earlier a~~ or a~~, according as the
quantum AB or BC is the dipole quantum; and

similarly for aq, with Q for "quadrupole. "
The only remaining case to be covered is that

of both quanta having the same multipole order,
with one multipole electric and one magnetic.
Here we find

(I8)ED, lID = (I8)MD ED.
=az(1+a. cos28)+a &I(1++.),

(I8)ED IID (I8) 4ID, .ED.
=az(1+a8)+aM(1+n8 cos28),

(I8)zq vq = (i8)MQ zq

Of4

=az) 1+488+n4 ——sin'28
~

2

+a 4I$1+ (c48+ n4) cos2.8], (15)

(I8)EQ, Mq = (I8)MQ, EQ

=azL1+ (n8+ a4) cos28]

+aM[1+ u8+ a4 —81c44 sln828 J.

Here ag is the earlier aug or a~~, according as the
quantum AB or BC is emitted by the electric
multipole; the same holds for a~~. It will be ob-
served that when aE ——a~, then for all the pairs
of transitions considered in this paragraph
I8 = I, W(8).

ED: yes,
EQ: no,

BID: no,
MQ: yes,

in which "yes" indicates that the parity of the
nuclear state must change in the radiative transi-
tion, and analogously for "no." Then for the
group (ED,ED; ED,MQ; MQ, ED) (yes, yes)
states A and C have the same parity, B a parity

III. DISCUSSION

Equations (12)—(15) cover all the possible six-
teen combinations of dipole and quadrupole
transitions. These equations simply extend the
results on directional correlation' to include the
eAects of observing the polarization of one quan-
tum; hence for all the cases considered it will be
noted that I8+I„~W(8), independently of the
efFiciencies ay~ and a~q. The most information is
extracted from a given experiment by observing
Iy and I„as functions of 8; but for exploratory
work it may be noted that in every case the ratio
I8/I„has its maximum deviation from unity at
8=90', and is always unity at 180'.

For the eight cases covered by Eqs. (12) and
(13) the relative counter efliciencies are com-
pletely irrelevant as far as any efkct on the func-
tional form of the results is concerned. Of these
eight cases the sequences EQ,EQ and MQ, MQ
may be identified individually by their character-
istic dependences of Ig and I„on 8; however, the
experiment makes no distinction (for a given
value of a8) within the groups (ED,ED; ED,MQ;
.UQ, ED) and (MD, MD; 1lID,EQ; EQ,MD). lt
will, of course, often turn out in such an inde-
terminate case that knowledge of the spin of the
ground state, or some auxiliary data such as life-
times or internal conversion coeScients, will

make a given value of 0.~ consistent with only one
of the three possibilities. But even if this werc
not so, it should be noted that within each of
these groups the changes in the parity of the
nuclear states are identical. AVe may recall that
the parity relations for these various transitions
are as follows:
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different from A and C. For the group (MD, MD;
MD, EQ; EQ,MD) (no, no) states A, B, and C
all have the same parity. For many purposes (as,
for example, determining certain selection rules
in beta-decay) knowledge of these parity rela-
tions is more important than being able to make
a choice within the group.

In this same connection, it will be noted that
for the eight cases covered by Eqs. (14) and (15)
the parities of states A and C are diferent, with
state B varying. It will also be noted that the
counter eSciencies do enter these latter equa-
tions, in contrast to the case just discussed. It
will be recalled that the a's occurring in Eqs. (14)
and (15) are products of the individual counter
eSciencies; if both quanta have the same energy,
or if both counters have the same dependence of
eKciency on energy, then the a's are equal. In
Eqs. (14) and (15), equal a's make Ig = I~ W(8),
afI'ording no differentiation between the eight
sequences covered by these equations; thus with

equal c's, unless auxiliary evidence is available,
one is not able for these eight cases to measure
the parity of the intermediate state B relative to
states A and C.

Suppose, however, that discrimination exists
and that one knows which of the two possible

types of coincidence is being discriminated against
".g. , knows that the relative coincidence-

counting eSciency is higher when the first quan-
tum goes to the polarization-sensitive counter,
which would correspond to u~g&c~g. The in-

equality of the u's means that Iy W I„.Here, as be-

fore, the sequences EQ,MQ and MQ, EQ will have
a characteristic dependence on 8 which identifies
them individually. The other six sequences fa11

into the two groups (MQ, MD; ED,EQ; ED,MD)
and (MD, MQ; EQ,ED; MD, ED) within each of
which no further distinction may be made; at
8 =90' one of these groups will have (Ie/I„) )1,
one group (Iq/I, ) & 1, and which is which depends
on which a is greater. Unless one of the a's is
zero (a rather unlikely situation) the deviation of
Ig/I„ from unity will be less (for a given a~) than
is the case for Eqs. (12) and (13). But the most
relevant comment about the above two groups
of sequences is that all the sequences of the first
group correspond to states Band C having difer-
ent parity from A, while the sequences of the

second group have states A and B diEering from
C in parity.

Assuming the existence of some means for even
partial discrimination, the procedure for identi-
fication of successive transitions of dipole and
quadrupole character may be summarized as
follows:

(i) A directional correlation experiment dis-
tinguishes' between the 12 sequences
(dipole-dipole and dipole quad-rupole) for
which n4=0 and the four quadrupole-
quadrupole sequences for which 0.4/0; it
also provides definite values of am and 0.4
which are necessary for use in further
identification of sequences in what follows.

(ii) When neither are the a's equal nor is
one of them zero, any one of the four
quadrupole-quadrupole sequences may be
identified.

(iii) The two groups (ED,ED; ED,MQ;
MQ,ED) and (MD, MD; MD,EQ;EQ,MD)
have, independently of counter eScien-
cies, (I&/I„) at 8=90' equal to (1 nm)/—
(1+am) and (1+am)/(1 —am), respectively.
To each of these groups corresponds a
unique relative parity assignment of
states A, B, C.

(is) For the two groups (MQ, MD; ED,EQ;
ED,MD) and (MD, MQ; EQ,ED;MD,ED)
Is/I~ deviates from unity less than for
the previous two groups, this deviation
depending on the coincidence-counting
efFiciency and providing a means of iden-
tifying within which of these two groups
a sequence falls. To each of these groups
corresponds a unique relative parity as-
signment of the states A, B, C.

The assignment of relative parities of states
A, B, and C is thus unique; but no more light
is shed on assignments of multipole orders alone
than is available from a directional correlation
experiment.

The basis of the present discussion actually
does not depend on both quanta being emitted
quanta; the discussion applies equa11y well to the
polarization and intensity distribution of reso-
nance radiation excited by unidirectional un-
polarized or circularly polarized light, or to the
angular variation of intensity (but not polariza-
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tion) of the resonance radiation excited by
linearly polarized light. These cases will corre-
spond to one of the a's being unity, one zero.

Goertzel's discussion' of the effect of a mag-
netic 6eld upon correlation experiments may be
extended' to the present case. It is found that
when no polarization measurements are made, a
strong enough magnetic 6eld parallel to the direc-
tion of propagation of either quantum should
preserve the angular correlation against the per-
turbing eR'ect of other fields such as those arising
from the atomic electrons; a magnetic 6eld in

any other direction will to a varying degree

Private communication from Dr. Goertzel.

wash out the correlation, the e8'ect being com-
plete when a strong enough 6eld is perpendicular
to the plane determined by the directions of the
two quanta. %'hen, on the other hand, a polariza-
tion measurement is made on one quantum, the
correlation between this polarization and the
direction of propagation of the other quantum is
preserved only when the strong magnetic field is
parallel to the direction of propagation of the
unpolarized quantum. Since this statement holds
true no matter whether the unpolarized quantum
is the first or second to be emitted, magnetic
field efkcts should not provide a means of dis-
criminating between the first and second quanta.
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It is suggested that the symmetry between position and momentum space in classical and
quantum mechanics may be extended by closer consideration of the concept of phase space.
The discussion is limited to the kinematics of a single particle in phase space, to which is associ-
ated a metric which describes both the gravitational and the electromagnetic fields acting on
the particle. The formulation is applicable only to a charged particle, and implies that for such
a particle in an electromagnetic field the Poisson bracket of two position coordinates does not
vanish in general, so that in quantum theory these coordinates do not commute. A fundamental
constant is introduced as the ratio of the natural and Gaussian units of electromagnetic field

strengths and, expressing this constant in terms of k and a length l, the theory satisfies a corre-
spondence principle with present theory in the limit l~0. By postulating that i~10 "cm,
one is led to the basis of a theory which is indistinguishable from present theory for field
strengths small compared with (137)&el ', but which leads to essential modifications for the
interaction of charged particles separated by distances of the order of nuclear dimensions.

I. CLASSICAL FORMULATIOÃ

sOME of the difFiculties of present quantum
theory appear to arise in the process of

quantization, while others trace their origin to
the classical theory. Therefore, attempts have
been made to modify classical theory, but, un-
fortunately, such modifications suA'er from the
defect that they are not gauge invariant, ' or not
unique, or diS.cult to quantize, or possess some

other disadvantage. Dirac's theory of the electron
represents a close approximation to the truth,
provided that the wave-lengths involved are
large compared with E r, =e'/mc'. The possi-
bility it admits of extremely large, even infinite
energies and frequencies is cIearly incorrect. In

fact, it has been suggested by Bethe and Oppen-
heimer4 that a new constant exists of the dimen-
sions of a frequency, so that for frequencies below

'For example, G. Mie, Ann. d. Physik N, 511 (1912);
39, 1 (1912);40, 1 (1913).

~ M. Born and L. Infeld, Proc. Roy. Soc. A144, 425
(1934).

' J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys.
D, 157 (1945).

4H. Bethe and J. R. Oppenheimer, Phys. Rev. VO, 45)
(1946).


