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The fact that the Schrodinger and the Dirac equations for the wave function of an electron
are differential equations of the first order with respect to time, while in classical theories
differential equations of the second order are common, has necessitated a slightly diferent
setup of the canonical theory in both fields. Under influence of the classical methods, second-
order equations are also often used in the quantum theory of particles of integer spin, thus
causing a difference between the treatment of Fermi-Dirac and of Einstein-Bose particles.

It is shown here that conformity between classical and quantum-mechanical methods can
be achieved easily by use of first-order equations throughout, thus avoiding a superfluous
distinction between integral and half-odd-integral spin fields. The classical theory of a point
charge in an electromagnetic field of force is set up here from this point of view.

N classical mechanics, it is usual to derive the
- - equations of motion from a variational prin-
ciple hfdf, (~i„~i,)dt=0 of such a type that the
diAerential equations obtained are of the second
order. When the Hamiltonian, K=+ p&q&

—2,
is expressed in terms of the variables qI, and
their canonical conjugates pi ——BZ/8 jq after-
wards, the j& are eliminated then by expressing
them in terms of the momenta pq. A similar pro-
cedure is also used for Maxwell's theory, when
(1/8s) ffff(E' H')dxdydsd—t or some other con-
venient expression is used as a Lagrangian, with
the equations H =curlA and E= —VC —A/c
added as definitions of 8 and of E.

In wave mechanics, the procedure is slightly
different. The variational principle used is here
bfdtZ(QI, (x), Qi(x)) =0, where the functional 2
is given by 2= J'Pj(sh8/Bt H)f. (The s—ymbol
J' means integration over x, y, and s and summa-
tion over components. ) This variational principle
gives equations of motion ih8$/Bt =HP and

ik8$t/Bt—=(HQ) j', which are of the first order,
a.t least in t (In Dirac's .relativistic theory H is
also linear in the gradient operator V.) Further,
the "momentum" (P) canonically conjugate to
the "variable" (Q=—)f is here (P—=)ihgt, which
is one of the variables, on which the Lagrangian

itself depends. The Hamiltonian is now
X=fPQ 2=fPtH&, so that —the Q drop out
automatically. (Remark also that P is no longer
some simple function of Q.)

It seems surprising that there is so much

*Now at Purdue University, Lafayette, Indiana, U. S.A.

diR'erence between the wave mechanical and the
classical procedure. This has led many authors,
in particular when a field of particles of integral
spin had to be described, to the use of a "second-
order Lagrangian" also in wave mechanics, in
close analogy with the procedure commonly used
for Maxwell's theory. In the case of particles of
spin -'„however, this method remains unsatis-
factory, so that a complete unification of methods
would seem impossible.

This note serves to point out that the unifica-
tion can be sought and found in the opposite
direction. The application of first-order La-
grangians to the description of wave fields of
particles with integral as well as with half-odd-
integral spin has been recommended and demon-
strated by the author several times. ' Here I want
to point out that this method is not confined to
wave mechanics, but can be used just as well in
classical point mechanics. The interesting point
is the close resemblance one finds between the
Hamiltonian in this classical formalism and the
Hamiltonian of Dirac's theory of electrons.

We shall show here this method for a classical
electron (for the sake of simplicity considered
here as a point charge e at the position x, at the
time t) in an arbitrary Maxwell field. We start
from the relativistic variational principle

bIftidr+J'fL, rdxdydsdt} =0,
' F. J. Belinfante, Theory of Heavy Quanta (thesis) (M.

Nijho6', The Hague, 1939). See also: F. J. Belinfante,
Physica 6, 887 (1939);Physica 7, 449, 765 (1940); Physica
12, 1 (1946). Also: H. A. Kramers, F. J. Belinfante, and
J. K. Lubanski, Physica 8, 597 (1941).
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one can write (1) in the form 6JZdt=0 with

z=h (dr/dt)+ J'L& mc'(v=, '—v'/c')—&

+p i, E pv+—Ev,—+(e/c)v A'
—ev,C'+ (1/Sor) J' {(H' —E')
—2(H. curlA+E VC+E A/c) }
= —mc'(vP —v'/c')1+p (i.—v)
+E(v, —1)+(1/4or) J'{-',H'
—A (curlH 4oir—/)c—E A/c ——,'E'

+C (divE —4orp) }.

(5)

put, p(x) =ev,b"&(x—x,) and i(x)
= evt&&o&(x —x,).

In this variational principle we shall now con-
sider the variables p, E, x., v, v„A(x), C(x),
H(x), and E(x) as functions of t to be varied
independently in 7'&fZdt=O Thus, we. get the
following first-order equations:

with

c—'dr'=dxodx„, (x'= xo—=ct, x'=xg ——x, ,

x' =xo ——y., x' =xo ——s.), (2)
A = m—c( u—"u&)&+p&dx"/dr

—(pg —[e/c]A &,')u",
= (1/4or)( —F" F &,

—F" P g&,)
(3)

with F„~= —F),

Here u), and p), are four-vectors, the meaning of
which will be found later. A); is the value of
the potential four-vector of the (external) electro-
magnetic field at the point xj" of the electron.

We introduce three-dimensional notation by
Fio=P"=E Fio=H. go= —go=C', Po= —Po
=E/c, etc. , while x., p, and A, denote the spatial
parts of the vectors x", p", and A", respectively.
Then, by dr = (1 i,'/c') —1dh, and also putting

u(1 —x,'/c')& =v, u'(1 —x,'/c')& =cv„ (4)

motion for the electron. The next two Eqs.
(8a—b) determine p and E in the usual way as
functions of the velocity v and the potentials C

and A. The last four equations, (9) and (10), give
Maxwell's equations and the expressions of the
field strengths in terms of the potentials. The
equation of motion of the electron (7) can be
written in the more usual form

d trav

dt (1 —v'/c')1

e
=eE+-{vXH],

if use is made of v c&A'/c&x, = LvXcurlA'j,
+v WA;, of dA;/dt =VA ' dx./dt+BA '/Bt and
of Eqs. (6), (Sa), and (10). Thus we see that
Maxwell's equations and the usual classical
equations of motion for a point charge can be
obtained from one "first-order" variational
principle.

From the Lagrangian (5) we obtain the Hamil-
tonian in the usual way. The canonical conju-
gates of x. and of A(x) are given by

az 82 E(x)
=p and

8~ 5A(x)

respectively. Hence

X=p i.—J'(E A/4orc) —2.

(12)

The derivatives of variables with respect to time
drop out automatically, and one obtains

K =mc'(v ' —v'/c')1+p v+E(1 —vg)+'ig
+(1/4or) J'{A curlH ——'H'

+-',E' —CdivE}, (14a)
with

'W =ev,C(x.) —
{ e/cjA(x. )

x, —v=0; v, —1=0; (6) =eJ'{Cv&—A. v/c}5&" (x—x,). (14b)

dp, /dt+ (—e/c) v BA'/Bx, .ev, BC'/Bx—.=0; (7)

mv(v, ' —v."/c') l —p+ (e/c) A' =0; (8a)

mc'v&(vP v—'/c') l+8,—eC" =0; —(Sb)-

and (1/4or) times the equations

—curlH+ E/c+4v. i/c = 0; divE —4' =0; (9)

H —curlA= 0 and —(E+&C'+A/c) =0 (10)

The first two equations give the meaning of
the vector v and v&, (thus indirectly the meaning
of the four-vector I" which obviously is now
dx"/dr) The third Eq.. (7) is the equation of

The canonical equations

(15a)
hQ

dQ bK
and = (15b)

dt bP

are now easily verified as far as their right-hand
members have a meaning. That is, for Q=x. or
=A(x), and P=p or = {—E(x)/4orc}, respec-
tively, both (15a) and (15b) are valid. But, if
we take for Q one of the quantities v, v&, E,
C (x), or H(x), the Eqs. (15b) are obviously
meaningless, as the canonical conjugates P of
these variables are zero. The Eqs. (15a) remain
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valid; they give the so-called "identities"

p=mv(s ' —i&'/c') i+[e/cjA'
mPi&&(i&P i&2/c2)

—$+e@e

i&~ = 1, divE =4wp, and H =curlA. (16)

They do not contain any differentiation with

respect to time and, when the equations of mo-
tion (15a—b) are to be integrated say from t=0,
the initial conditions for the variables have to be
such that Eqs. (16) are satisfied at t = 0.

The Hamiltonian (14) can be simplified by
elimination of some of the redundant ("derived")
variables that have no canonical conjugate. For
instance, by substitution of v&

——1 and H—=curlA

one gets

,7C =mc'(1 —r&'/c') &+p v

+ (1/8ir) J' {E'+(curlA)' }
—(e/c) J'(A. .v) b~'&(x —x.)
+J'C Ie)~3&(x —x,) —divE/4s }, (17)

which gives again canonical Eqs. (15a) for

Q = one of the variables x„A(x), v or 4 (x), while

(15b) is valid again for x, and A(x) only. Ex-
pression (17) is remarkable for its resemblance

to the Hamiltonian of Dirac's relativistic wave-

mechanical theory of the electron. There, the
Dirac matrix P simply replaces (1—s'/c') & in the
first term of (17), while ca replaces v in the other
terms. This is in complete accordance with the
expectation values, which these Dirac matrices
have in a situation in which the electron possesses

a definite momentum.
A corresponding simplification can be made

in the Lagrangian:

2 = —mc'(1 —i&'/c') &+p (x —v)

+eJ'{(A v/c) —C&}8&'&(x—x,)
—(1/4s.)J'{-,'(curlA)'+E A/c

+-',E'+E.VC }, (18)

'The variables v, v~, 8, and H(x) can be regarded as
so-called "derived variables. "' Compare F. J. Belinfante,
Physica 7, 765 (1940).

where 2, i&& and H(x) have been eliminated, so
that only x„p, v, A(x), E(x), and C (x) are to be
varied independently. Equations (6)—(10) follow-

ing from (18) can obviously be made rela-
tivistically covariant by adding to them the
missing Eqs. (6b), (8b), and (10a) as definitions
for i&&, E, and H(x). The expression (18) may
have the advantage of being simpler tha, n (5),
but, on the other hand, this Lagrangian (18)
cannot be written in a covariant form as (5) was
in Eqs. (1)—(3), without re-introducing the
quantities eliminated.

Further elimination of redundant variables
would call for substitution of

cp —eA'
V=

(m2c2+ (p —[e/c jAe)') &

This would make the Hamiltonian a rather com-
plicated expression, and does not lead to any
simplification.

Finally, the variable C cannot be eliminated in

a similar way, as among the identities (16) there
is no equation that gives 4(x) in terms of the
other variables. In quantum electrodynamics,
this fact necessitates the introduction of a new

variable S, canonically conjugate to 4. This
quantity S has no physical meaning, of course.
It is, therefore, usually stated that the "situation
functions" y, that describe situations which can
occur in nature, must satisfy the additional con-
dition Sg=0. This, however, makes it impossible
to normalize g in the usual way. ' It is, therefore,
then necessary to revise the definition of the
method of normalization of a situation function
and of calculation of matrix elements of observ-
ables in general. It has been shown that, when
this is done, then the condition Sy =0 even
becomes superRuous. '

' F. J. Belinfante, Physica 12, 17 (1946).


