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From the above data the ratio of reaction
cross sections for the production of Kr?” and
Kr™ by alpha-particle bombardment of selenium
is determined to be 1.4.

IV. THE 4.6-HOUR Kr% ISOTOPE

The 4.6-hour Kr® period was reported by
Snell! as a result of deuteron bombardment of
krypton. The Kr®® period was not obtained by
Clancy® as a result of alpha-particle bombard-
ment of selenium. In the latter bombardments,
only a 114-minute krypton period, assigned to the
excited level of stable Kr#, and a 33-hour kryp-
ton period, assigned to Kr™ 8, were observed.
The Kr3 period was then considered by Clancy
to be long or fairly short, and a 4-hour krypton
activity obtained from deuteron bombardment
of krypton was presumed to be caused by Kr?7.
The 4.6-hour Kr®® activity has been reported by
Seelmann-Eggebert and Born® as a result of
uranium fission by decay of the 3-minute Br3s

5§ W. Seelmann-Eggebert and H. J. Born, Naturwiss. 31,
50 (1943).
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siotope, and also as a result of Sr(n, @) and
Rb(n, p) reactions.®

A 4.44-0.2-hour half-life of B—-activity appears
in Fig. 2, which shows the decay curves of sepa-
rated 8~ and B+ krypton activity from alpha-
particle bombardment of Hilger selenium. This
curve indicates that the Kr85 isotope is produced
by alpha-particle bombardment of selenium.

Figure 4 shows the Se, Br, Kr part of the
periodic table. The new Kr?” isotope and new
reactions found are noted by heavy lines.
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Theorems concerning the general form of the angular distribution of products of nuclear
reactions and distintegrations are derived. These theorems are based only on the invariance
properties of the physical process under space rotation and under inversion. The following
examples are studied in detail: (i) angular correlation between the electron and the neutrino
in B-decay; (ii) angular correlation between a B-ray and a y-ray emitted in succession by a
nucleus; and (iii) angular correlation between two y-rays emitted in succession by a nucleus.

INTRODUCTION

N the calculation of the angular distribution

in nuclear reactions and of the angular cor-
relation in processes involving B- and vy-decay
it often happens that many terms cancel out at
the end of a laborious computation. The con-
sistency of the occurrence of such cancellation
leads one to suspect that some general reasons
quite independent of the particular form of
interaction are at work. In this paper we shall

show that this is indeed the case. In fact, the
general form of the angular distribution in many
cases can be obtained directly from the theorems
derived in this paper.

For nuclear reactions between spinless par-
ticles the existence of a limitation on the com-
plexity of the angular distribution for fixed
orbital angular momentum of the incoming par-
ticles is well known. That the same result holds
with the spin taken into consideration (for un-
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polarized incoming beam) was first pointed out
by Critchfield and Teller.! A proof of this state-
ment was recently given by Eisner, Sachs, and
Wolfenstein.2 We shall in this paper formulate a
new proof that lends itself easily to generalization
to the case in which the particles involved have
relativistic velocities.

It will be shown in general that in studying the
angular correlation between two particles, as
long as one of them has a wave-length long com-
pared to the size of the nucleus, the process can
be classified into different orders and for a
process of given order the general form of the
angular correlation is essentially known. In case
both of the particles have long wave-lengths, par-
ticularly simple conclusions may be reached, as
in the case of B-neutrino correlation in B-decay.

Experimentally the angular correlations 8-neu-
trino and y—y have been studied by many
authors. Various calculations of these correla-
tions based on different kinds of interactions
have also been made. These will be separately
discussed in the different sections.

NUCLEAR REACTION

Consider the following reaction,

A+P—-B+Q, (1)

and suppose both the target nucleus 4 and the
bombarding beam of particles P are unpolarized.
The complexity of the angular distribution of the
outgoing particles is limited by the following
theorem: If only incoming waves of orbital angular
momentum L contribute appreciably to the reaction,
the angular distribution of the outgoing particles in
the center of mass system is an even polynomial of
cosf with maximum exponent not higher than 2L.
Here 0 is the angle between the incoming and the
outgoing particles in the center-of-mass system of
reference.

To prove this let us consider the collision
between two particles A and P with definite (=a
and p) components of spin along the z axis, and
definite total and z component relative orbital
angular momenta L and m. (We use the center-
of-mass system throughout.) The incoming wave

1 C. L. Critchfield and E. Teller, Phys. Rev. 60, 10
(1941).

2 E. Eisner and R. G. Sachs, Phys. Rev. 72, 680 (1947);
L. Wolfenstein and R. G. Sachs, Phys. Rev. 73, 528 (1948).
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function is, at large distances 74p between 4 and
P:

1
—sin (kAprAP - %LW)\LA“‘PPP YLm(0P1 ¢P) y
AP

)

where 4%, ¥ p? are normalized internal wave func-
tions of particles 4 and P; 6p, ¢p describe the
direction of motion of the particle P; and
Y1m(8, ¢) is the normalized spherical harmonics
of order Lm.

The asymptotic behavior of the wave function
at large values of 7pq is of the form

1
—— exp(iksqersq) X VB o (0q, dq)-

YRQ baq

3)

In reaction (1), if we choose as the z axis the
direction of motion of particle P, it is clear that
when the incoming wave is expanded into partial
waves with definite total and z component
orbital angular momenta L and m, only terms
with m =0 occur. Under the assumption stated
in the theorem we can neglect all terms except
the spherical harmonic Y, The differential
cross section of reaction (1) is, therefore,

do = (constant)dQq %: | 6" (80, ) |2 (4)

For unpolarized incoming particles we get

do=(constant)dQq X |fo®*°(8, ¢)]|2. (5)
apbg

The requirement of invariance under rotation
will now be introduced. Consider a new coor-
dinate system (primed system) obtained from
the old by a rotation of the coordinate axis. Let
(m'/m) ) be the matrix element® of the irre-
ducible representation DT of the three-dimen-
sional rotation group. We have

Vim (8, ¢') =X m(m' |m) D Vin(6, ¢),
¢AI“, = Za(a’ Ia) (SA)‘pAﬂ’

where S4=spin of particle 4, which may be an
integer or a half-odd integer. By y’4% is meant the
function ¢4* of the primed internal coordinates.
The proof of our theorem consists in showing that

(6)

3 E. Wigner, Gruppentheorie und ihre Anwsndung auf die
Quag‘t)enmechanik Atomspektren (Braunachweig, 1931),
p. 180.
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(a) the superposition principle requires that f
be transformed according to DS4X DSPX DL
X DSB* X DS¢* and (b) the expression

I (6, ¢) = qu[qu”m(e' ®) I*for™' (6, 6)  (7)

transforms according to
‘.DL‘X DL=PLpPEL—24 .. .,

The linear combinations of (7) that transform
according to DL, DL-3 etc., vanish identi-
cally.

(a) Consider the following incoming wave'

1
—sin(kaprap—3Lm)Ya'Yp'? Yim (05, 5. (2)

rap

To an observer in the primed coordinate system
this has exactly the same form as (2). Hence the
outgoing wave must be

1
——exp(ikpero) 2 ¥8'¥'YQ" for *'?'™ (8¢, $q’).
7BQ b'q’
3"

Notice that we use the same f instead of an f’,
because there is no physically observable distinc-
tion between the two coordinate systems. Using
(6) one can.express (2”) as a superposition of
waves (2)

1
2 (a'|a)(p' [ p)(m’ lm)[— sin(kaprap—3Lm)

apm rap

X ¢Aa¢Pp YLm(oP'¢P) ].

Here we have omitted the superscripts Sy, Sp,
L from (a’|a) B2, (p’|p)SP), (m'|m) ™ for sim-
plicity. The outgoing wave must therefore be a
corresponding superposition of waves (3) with
the same coefficients:

1
(@ ]a) (@’ | p) (m’ 1m>[—~ explikaqrsa)

apm rBQ
X % \lfablﬁo"qu“”"‘(ao'tpaJ]-
Equating this to (3’) and using (6) to express

¥8'Y', ¥¢'? in terms of Y&, ¥¢?, we get finally, by
identifying the coefficient of ¥5% ¢,

YANG

T @)@’ [2)(m' | m) fugem(6, 6)
=T 15)( |9 fer*”™ @, ¢).

This reduces to the following form

Sog®?™ (0", &)= X (a'[a)(@|p)(m'|m)

apmbq

X @' [0)*(d' | @)*for®™(8, ¢) (8)
through the orthogonality relations
S m(m |m)(m' | m)* = bpmimee. (9)

Equation (8) expresses the transformation prop-
erty of f.

(b) To obtain the transformation property of
expression (4) we investigate the behavior of
expression (7) under rotation. By (8) and (9)
I,,,'/,,,/(oly 4)/) = Z Z (mu Im///)*(m/ [m)

abpg mm’’’

X[ fog®™ " (6, &) T* fr®*™(8, ) (10)
= 2 (m" [m"")*(m |m)I™""™(, ).

rre

Now the differential cross section is proportional
to I, If we put in (10) m’’ =m’=0 and take the
rotation from the unprimed to the primed coor-
dinate system to be a rotation around the z axis
by an angle ¢ we have §' =0 and ¢’ = ¢+¢£. Since
then (0|m) =dom it is evident that

1%, o+£) =10, ¢),

showing that I is independent of ¢. To study
its dependence on 6 we put in (10) m’'=m''=0.
It is well known* that if §=¢=0,

O|m)=Yr,_n(0', ¢).
Hence (10) becomes
I8, )= T Vi_ne(6, 8)
” XY w6, )I™"™(0,0).

On application of the reduction theorem* of
products of spherical harmonics this leads di-
rectly to our theorem.

If instead of a rotation we had chosen an inver-
sion of the coordinates, it is evident that (8)

* H. Bethe, Handbuch der Physik, (Springer, 1933) Vol.
24/1, Chapter 3, Section 65.
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would become
Sog®"™(r—0, 7+ ¢)

=PPpPpPo(—1)Lfi®"™(0, ¢), (11)

where P4, Pp, etc., are the intrinsic parities of
the nuclei. This shows that

[f(r—6, m+¢)|*=]f(6, ¢) |,

and it follows that the angular dependence must
be an even function of cos, a fact that is already
established by (10). Equation (11) further shows
that any odd power of cosf in the angular de-
pendence must come from an interference term
between orbital wave functions of opposite
parity.

The symmetry requirements of the wave func-
tion under interchanges of the nucleons do not,
in general, lead to any new conclusions about the
properties of f.> However, in the special case in
which the two incoming particles or the two
outgoing particles are identical, more detailed
consideration is necessary. An example of such
a case is the reaction

Li"+H!—>He*+He".

Since the outgoing particles are spinless and
satisfy Bose-Einstein statistics and since Li7
has an odd parity, the value of L must be odd in
order to have a balance of parity. This means
that f=0 unless L is odd. At low energies, there-
fore, the effective orbital angular momentum is 1.
Another example is the D2+ D? reaction:

D?4D2—n’+He?,
D2+ D?*—H!4H:3.

This reaction has recently been considered
theoretically by Konopinski and Teller.® Because
of the symmetry nature of the deuterons it is no
longer convenient to specify the spin of the two
incoming particles separately. Instead we should
group the nine possible incoming states into a
quintet, a triplet, and a singlet. The space-wave

5 To understand this it is best to introduce the idea of
channels in the conﬁ%lration space which was first dis-
cussed by G. Breit, Phys. Rev. 58, 1068 (1940); J. A.
Wheeler, Phys. Rev. 52, 1107 (1937). An interchange of
the nucleons in general results in an interchange of the
channels, except for the case when either 4 and P or B
and Q are identical.

( ;%) J. Konopinski and E. Teller, Phys. Rev. 73, 822
1948).
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functions for the quintet and the singlet states
are symmetrical with respect to the exchange of
the two deuterons, and those for the triplet
states are antisymmetrical. Strictly speaking, the
proof of our theorem does not apply to such a
case where the space-wave function depends on
the orientation of the spins of the particles. But
since all the states in the same multiplet have
the same a priori probability, it is evident that
the difference of the space-wave function for the
different multiplets does not affect the validity
of our theorem.

The Coulomb field affects the waves of dif-
ferent orbital angular momenta in such a way
as to favor those with higher angular momenta
at low energies.” This accounts for the reason why
at bombarding energies as low as 20 kev the
angular distribution in the D+ D reaction is not
spherically symmetrical.®® We shall not go into
this point in any further detail here.

We conclude this section by stating a variation
of the theorem proved above: When contributions
from incoming waves with orbital angular momenta
>L are neglected, the angular distribution in
reaction (1) in the center-of-mass system is a poly-
nomsial of cos6 with maximum exponent not higher
than 2L. This holds even if the contributing com-
pound nuclear states have angular momenta > L.

It will be noticed that when both even and
odd values of the orbital angular momenta in the
incoming beam are effective in producing the
reaction, the angular distribution contains odd
powers of cosf. This, however, will not happen
when either (a) the reaction goes through a single
compound nuclear state (e.g. near a strong
resonance level); or (b) symmetry requirements
exclude even (or odd) L values as in the Li’"4H!
—He*+He* reaction discussed above.

RELATIVISTIC CASE

We shall in this section generalize the result
of the last section to the case when the particle
P is an electron and has relativistic velocities.
(The nuclei 4, B, and Q are still supposed to be
non-relativistic.) No such process has been
experimentally realized. We shall, however,

(1;3135 Bethe and E. J. Konopinski, Phys. Rev. 54, 130
SE. 'Bretscher, A. P. French, and F. G. P. Seidl, Phys.
Rev. 73, 815 (1948).
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discuss it to illustrate our method. It will be
proved that if only partial waves of orbital angular
momentum L in the electron wave function con-
tribute to the reaction, the angular distribution is a
polynomial of cos6 with maximum exponent not
higher than 2L+-1.

Instead of the stationary picture used in the
last section, we shall here use a non-stationary
description of the process. The electron wave
function at time {=0 is a product of a spin wave
function with four components and a space-wave
function e®*2, The spin of the electron along the
z axis is a constant of motion and is denoted by
p(==3%). If we expand the space-wave function
into partial waves of definite orbital angular
momenta L, the first term (L=0) would give
rise to allowed transitions, the second term
(L=1) first forbidden transitions, etc. To study
the angular distribution arising from the con-
tribution of the partial wave of orbital angular
momentum L we need to decompose it again into
normalized waves Y rspn of definite L, J (total
angular momentum of the electron), P (parity),
and m (2 component of J).* The advantage of
using these ¢’s is that they have simple trans-
formation properties under rotation. The pos-
sible values of J are L=+%. Under the assumption
that we are considering only the contribution
from a definite L value, the wave function at =0
can be replaced by

Y arLsp¥Lipp. (12)

P=%1 J=Lz+}

We have put m =p because the 3z component of
the orbital angular momentum is zero.

Let us now first study the reaction arising
from the electron wave yrspm. Starting at ¢=0
with ¢rspm and nucleus 4 with a definite value
a for the z component of spin, we shall denote by
Sfoa"TPo™(0q, 0q@) the probability amplitude at any
later time >0 for that outgoing state in which
the z component of spin of the particles B and Q
are b and ¢, and in which the momentum of Q is
in the direction 8q, ¢q. The absolute value of the
outgoing momentum (which is not fixed because
the energy is not necessarily conserved when ¢ is
small) should also enter the function f as an

* The parity can be either 1 or —1 for any given L, J,
and m. However, for slow electrons the amplitude of waves
with P=—(—1)% is very small. Cf. end of this section.

C. N. YANG

independent variable, but has been omitted for
the sake of simplicity in writing.

Now the probability amplitudes are additive
when we superpose states. Since under a rotation
the different waves ¥ 1sp» with the same LJP
values combine linearly, the argument which led
to (8) in the last section would now lead to

JorgWIPE (0, ') = Z,;q (@]a) ('] 0)*

X (m' |m)(q' |@)* fu,™TPem(8, @). (13)

Returning now to the wave (12) at ¢=0, we
see that the differential cross section is propor-
tional to

dQq| X arsppfec™’Po?(8, @) |2
PJ

This will have to be summed over a, b, p, and q.
Since the coefficients in (12’) are independent of
a, b and g, the final expression is

dQ X 2 aripsa*Lipp
JPI'P' 7

XL X {fog o0 (8, ¢) }*fog™ P27 (6, 6) 1.

a bg

(14)

By (13) the individual terms under the sum-

nation sign Y transform under a rotation ac-
abg

cording to DS4X DS4"X DSBX DSE" X DSe X DS
XDIX DI, But after the summation over a,
b, and ¢ is carried out, the sum transforms more
simply according to

DIX DI =PI+’ 4 DI

This means that the expression in the square
bracket in (14) is a sum of spherical harmonics of
order £ with £=J+J'. But both J and J’ are
=L+3. The theorem stated at the beginning of
this section follows immediately.

If we introduce the requirement of invariance
under inversion, Eq. (14) shows that those
terms with P’P=+1 give rise to angular cor-
relation functions that are even under the trans-
formation §—r—6, and those with P'P=—1
give rise to odd angular correlation functions. A
consequence of this is the following. If the
velocity v of the electron is small compared to
the velocity of light ¢, and if the spin wave func-
tion of the electron is expanded in powers of
v/c, the first term, i.e., the term that does not
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vanish as ¥—0, is invariant under an inversion.
This term would therefore give rise to terms
with P = (—1)L, The opposite parity first appears
in the next term of the expansion and is propor-
tional to v/c. Hence those terms in (14) with
PP’'=—1 contain a factor v/c. Thus the odd
powers of cos8 in the angular correlation have coef-
ficients smaller than the even powers by a factor
of v/c.
3-NEUTRINO CORRELATION

In B-decay we have the particularly simple
situation in which both the electron and the
neutrino have wave-lengths long compared to the
dimension of the nucleus. The argument of the
last section can now be applied to both these
particles and we can prove that the angular cor-
relation between the eleciron and the neutrino
emitted in a B-decay is a polynomial of cosd up to a
maximum exponent K-+1, where® K=0 for
allowed transitions, K =1 for first forbidden transi-
tions, etc.

The idea of the proof is that for first forbidden
transitions one has either L=1 for the electron
and L, =0 for the neutrino or L=0 for the elec-
tron and L;=1 for the neutrino. The waves L=1
and L; =1 occur together only in second forbidden
processes. Now the intensity produced by the
L=0, Ly=1 waves has an angular correlation
function that goes up to cosf to the first power,
according to the theorem of the last section.
Similarly, fixing our attention on the neutrino
wave function we can draw the same conclusion
about the L=1, L;=0 waves. The interference
term of the L=1, L;=0 waves with the L=0,
L;=1 waves, however, gives an angular dis-
tribution that contains cos?, which is the highest
power of cosf possible for this case.

The proof is as follows. Consider the g-decay

A—B+te+v.

Let a and b be the z components of the spin of
the nuclei 4 and B, 6., ¢, and 6,, ¢, the directions
of motion of the electron and the neutrino, and
s and s; the spin components of the electron
and the neutrino in their respective directions
of motion. Starting with the nucleus 4 at {=0,

9 Notice that when the interaction involves derivatives
of the wave function, as in the Konopinski-Uhlenbeck type

of interaction, we always expand the wave function before
taking the derivatives.

IN NUCLEAR REACTIONS 769
the probability amplitude at any later time ¢ of
the B-decay for given 8., ¢., 6, ¢, s, 51, @, and b
will be denoted by

fb“la(gcs @er 0y, ¢v) (15)

Now let the electron wave function be expanded
into waves ®rsps, as done before in (12), with
the only difference that here ®.sp, represents a
wave function with total angular momentum
along the direction 8., ¢, (instead of along the
2z axis), equal to s. The coefficients a in (12)
remain unchanged. Now ®:;p, can be further
expanded into waves Yrspm With definite total
angular momentum along the z axis. The final
result is

Y aripds|m) Yripm, (16)

LIPm
where e represents a rotation of the coordinate
axes so that the z axis changes from the direction
of motion of the electron (i.e., the direction
specified by 8., ¢.) into the laboratory z axis. It
is evident that the choice of the x and y axes
perpendicular to the direction 8,, ¢, affects only
the phase of ®.sp, and would not in any way
influence our final result. In (16) (s|m), is the
only factor that depends on 6,, ¢.. A similar
expansion of the neutrino wave will now be made
> BrLiP15:1(S1|n)WrL1J1P1n. %))
LiJ1P1n
The wave amplitude (15) is evidently given by

fbss1a(06, Doy 0;, ¢v) = Z Z

LJPLJ1P) mn
Xaxs*ﬁnsl*(s Im) ,*(81 [n)v*F;Mbmn, (18)

where X\ and A; are abbreviations for LJP and
L,J,P;. We have taken the complex conjugates
of the waves (16) and (17) because they represent
final states. In (18) F represents the probability
amplitude of the final state specified by b,
Yam, and ¥wn, the initial state being specified
by a.

The probability of the g-decay is proportional
to

a
Z Ifbau(oa, Dey 0., ‘PV) |2‘

abssy

19)
Writing

S Fopmn(Fapnm)* = Gaming, (20)
a b
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and
(21)

where A is an abbreviation for A,.A;, N, A,
expression (19) becomes

Z FAsRl _Z _ GAmﬁn_(s ! m) e*

Assy mmnn

axs*ﬂx 1ul*aisﬂi131 = I‘Assl,

X (s|m)o(s1]n),*(s1]7),.  (22)
We shall show later that
2 Gammnw(s|m)e*(s|m).
X (silm) (sl (29)

is a polynomial of cosf with maximum exponent
= both J+J and Ji+J;, 6 being the angle
between the directions of motion of the electron
and the neutrino. But J=L+%, Ji=L,+1.
Hence expression (23), which represents the
(cross) term in the probability of the g-decay
between waves LL; and LL,, is a polynomial of
cosf with maximum exponent = both L4L+41
and L1+E1+ 1.

The classification of B-decays into allowed,
first forbidden, etc., processes consists of an
expansion in powers of 7/XA,~7/\, (~ &), Aey Ay
being the wave-lengths of the electron and the
neutrino, and 7 the dimension of the nucleus. In
an allowed transition only the waves L=0, L,=0
are effective for the process. Contributions from
other waves are negligible because with increas-
ing values of L the amplitude of the wave ¥ 1spm
inside the nucleus decreases as (r/\.)L. In a first
forbidden process Foajbma|L=1L;=0 vanishes be-
cause of selection rules and the contributing
waves are the following two:® L=1, L;=0 and
L=0, L,=1, In general, for a Kth forbidden
transition only waves with L+L'=K are im-
portant. This means that in the summation
over A in (22) only L+L,=K, L+L,=K terms
need be retained. Hence L,+I1,=2K—(L+L).
Thus the maximum exponent of cosf is = both
L+L+1and 2K —(L+L)+1;henceitis=K+1,
which proves our theorem.

It remains to be proved that the above state-
ment about (23) is true. This we do by noticing
first that F represents the probability amplitude

10 It may happen that Fax\bmn|L =L, =0 is not zero but
is ~Fexbmn|L=1, Ly =0. This happens in the usual inter-
actions because of the presence of terms ~nucleon velocity.
In such cases we should include the L =0, L; =0 wave. The

conclusions are, however, unchanged as far as they concern
only the complexity of the angular correlation.
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of the final state b, Yam, ¥wun if the initial state is
represented by a. If R is any rotation of coor-
dinates, > q(a’/a)rF*\bmn would give the prob-
ability amplitude of these same final states
resulting from an initial state obtained by
rotating nucleus 4 in state @’ by R, Thus

a a’
Za(a’/a)RF)\Mbmn = Z FXMI)'MN

b MN

X (&' [0)r(M|m)r(N |n)r, (24)

which means that Fa,; is invariant under D54
X DSE X DT X D", The definition (20) there-
fore shows that G, is invariant under 7" X DI’
X DI X D1, That is,

Grammnz= 2 Gamiiny(M|m)r

MMNN _
X (M | ) g*(N | n) p(N | ) *.
Hence
Z__(Mlm)R*(Mlm)RGAm'ﬁni
" — 5 Gt (N [ ) (F | 7).
NN
Putting R=e, M =M =S, we see that (23) can
be written
_Z GAuNIV(Nln) g(N l ‘ﬁ,) ,*(Sl I n),*(sl/ﬁ,),
NNn7
= ; GAuNIV(n ‘ N) e-l* (ﬁ I N) =1
NNnn
X (s1]n),*(s1]7),

=3 Grenn(s1 l N)yor*(s1 |N)vc"-

NN

(23)

This is evidently independent of the choice of the
laboratory coordinate system. If these be so
chosen that 6,=¢,=0, the rotation represented
by e becomes the identity and (23’) shows that
(23) is a polynomial of cosf with maximum
exponent =Jy+J;. A similar argument shows
that it is also =J+J. This completes the proof.

If we fix our attention on one end of the
spectrum where the electron momentum p is <
the neutrino momentum g, the waves that con-
tribute most in a Kth order forbidden transition
are those with L=0, L;<K. By the theorem
proved in the last section we see that the maxi-
mum exponent of cosd in the angular coorelation
is 1. This evidently applies also when g<<p.

If p<mec the spin function of the electron can
be separated from the space-wave function.
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Hence, after summation over the spin directions
of the electron, the maximum exponent is both
=L+L and 1+J1=2K—(L+L)+1. We have
L+L instead of J+J, as in all non-relativistic
cases. Thus the maximum exponent is K.

In case p<KLq and p<Lmec, only L=0 wave is
effective and the angular correlation is spherically
symmetrical for tramsitions of any order. Thus
when p—0 the angular correlation becomes
spherically symmetrical. On the other hand,
when ¢—0 the angular correlation becomes
14+acosf or 1 according as the mass of the
neutrino is zero or otherwise.

Actual calculations of the angular correlation
between the electron and the neutrino emitted in
B-decays of different orders have been carried
out by Hamilton,!! using all the five usual types
of interactions. The results, of course, conform
with the theorems discussed above. Experi-
mentally,'? information about the angular cor-
relation has been obtained by measuring the
energy spectrum of the recoil nuclei or by coin-
cidence measurements of the electrons and the
recoil nuclei. Because of the indirect nature of
these experiments, the results are not as yet very
quantitative.

38— AND y—y CORRELATIONS

The method used in the last three sections
evidently applies also to y-rays. The rectangular
components 4 ,, 4,, and 4, of the vector poten-
tial of the electromagnetic field is expanded into
spherical harmonics. As is well known, the term
L =0 leads to electric dipole processes, the term
L =1 to magnetic dipole and electric quadrupole
processes, etc. For each direction of propagation
of the light quantum there are two possible waves
with L=0, corresponding to the two different
polarizations. Changing the direction of propaga-
tion we obtain other waves. But altogether there
are only three linearly independent waves with
L=0, and they transform among themselves
under a rotation like a vector. Hence the angular
correlation between the vy-ray and any other par-
ticle in a nuclear process is of the form 1+ a cos?d
if the y-ray process is of the electric dipole type.

1 D, R. Hamilton, Phys. Rev. 71, 456 (1947).

2§, S, Allen, Phys. Rev. 61, 692 (1942); J. C. Jacobsen,
and Kofoed-Hansen, Kgl. Danske Vid. Sels. Math.-Fys.
Medd 23, No. 12 (1945); J. S. Allen, H. R. Paneth, and
A. H. Morrish, Bull. Am. Phys. Soc. 23, No. 3 (1948);
C. N. Sherwin, Phys. Rev. 73, 216 (1948).
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TasBLE L.
Nuclear Electron or
particle neutrino Photon
Name for L =0 S wave Allowed El. dipole
different
approxi- L=1 P wave First forbidden Mag. dipole and el.
mations quadrupole
L=2 D wave Second Mag. quadrupole and
forbidden el. octapole
Power of cosf Even Evenand odd Even
Max. exponent of ’
cosé 2L 2L+1 2L 42

The odd power of cosf does not appear because
the photon wave has a definite parity. This con-
clusion can be immediately generalized into
magnetic dipole and electric quadrupole processes
where the angular correlation is 1+ a cos®0-8 cos*.
This holds even when both the magnetic dipole
and the electric quadrupole transitions are
present. Similar theorems obtain in higher mul-
tipole processes.

In general, we can study a process with any
number of incoming and outgoing particles. We
assume that the incoming particles are un-
polarized. If one of the particles (whether
incoming or outgoing), say P, has a wave-length
long compared to the dimension of the space-
region in which it interacts with the other par-
ticles, the process can be classified according to
to the effective orbital angular momentum L of
P. The angular correlation between P and any
other particle Q in the process would then be a
polynomial of cosf with a maximum exponent
determined by L, 0 being the angle between the
directions of propagation of P and Q. The
presence of other particles in the process does not
affect the result because a summation over the
directions of motion and over the spin of these
“redundant” particles must always be carried
out. We may say that these particles do not
produce any preferential direction in space. The
general results when P is a nucleon, an electron,
or a photon are summarized in Table I.

The application to the angular correlation
between successive y-rays emitted by a nucleus
is straightforward. Actual calculations of this
correlation for dipole-dipole, dipole-quadrupole,
and quadrupole-quadrupole transitions (all elec-
tric poles) have been published.”® They have the

13 D. R. Hamilton, Phys. Rev. 58, 122 (1940); experi-
mental evidence has been reported by L. Brady and
M. Deutsch, Phys. Rev. 72, 870 (1947).
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form

14« cos? (dipole-dipole, dipole-
quadrupole), (25)
1+« cos?0+8 cos*d (quadrupole-quadrupole),

agreeing with our results. In these calculations
the line width of the second «y-ray process is
assumed to be large compared to the hyperfine
splitting of the atom, so that the lifetime of the
intermediate nucleus is small compared to the
time required for the nuclear spin to precess
appreciably. Also the assumption is made that
there is no magnetic dipole transition mixed with
the electric quadrupole. It is evident that neither
of these assumptions is necessary for the validity
of our theorems, and that the angular correlation
is quite generally of the form (25). It should be
remarked, of course, that in case either of these
two assumptions is violated the coefficients « and
B in (25) may not have the values tabulated by
Hamilton.

Another application is found in the problem of
the angular correlation between the electron and
the y-ray emitted by a nucleus in succession.
Since one of the particles is a photon, only even
powers of cosf can occur in the correlation func-
tion. Using Table I, taking the electron to be P,
we conclude that for all allowed B-transitions the
correlation is spherically symmetrical. This appears
at first sight very strange because, e.g., for the
Gamow-Teller type of interaction the matrix
element involves the spin of the nucleus and one
would expect that the emission of an electron in
a definite direction would result in a preferential
distribution of the spin orientation of the inter-
mediate nucleus and hence would affect the
angular distribution of the v-rays. For first for-
bidden B-tramsitions the correlation is 1+« cos?6.
Falkoff and Uhlenbeck have made actual calcu-
lations for the first forbidden electric dipole
process, using various types of B-interactions.!*
As in the y—y case discussed above, we remark
here that our conclusions hold independently of
any assumption about the lifetime of the inter-
mediate nucleus, and independently of the
multipole nature of the y-radiation. Also it is not
necessary to neglect the term in the B-interaction
that is proportional to the nucleon velocity.

4 D. L. Falkoff and G. E. Uhlenbeck, Bull. Am. Phys.
Soc. 22, No. 5 (1947).
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REMARKS ABOUT OTHER PARTICLES

Table I can be extended to include mesons of
spin 0 and 1. The treatment is very similar to
the treatment of the electron if we use Kemmer’s®®
representation of the meson wave functions. In
this representation a scalar meson has a five-
component and a vector meson a ten-component
wave function. We shall assume that the rest
mass is not zero. Let us take a plane wave

¥=¢ exp((i/h)(p-x— El)) (26)

and expand it into waves with definite orbital
angular momentum L. Under a rotation the spin
function ¢ is transformed by a matrix S. The
total angular momentum can go as high as L+1.
Notice that this is true for scalar mesons as well
as vector mesons.”® Thus if only orbital wave L
contribute to the reaction the angular correlation
between a meson and any other particle is a
polynomial of cosf with maximum exponent
=2L+2.

If further the meson has non-relativistic
velocities v, as must actually be the case in order
that the wave-length of the meson may be long
compared to nuclear dimensions, we can expand
¢ into a power series in v/c.

v

b=dat—a1+ - . (27)
Cc

It can be readily proved that the following
points are true:

(a) ¢o has a definite parity and can be made
independent of the direction of the velocity. The
theorem proved in the section about nucleons
can therefore be applied here and we see that to
the order (v/c)? the angular correlation is an even
polynomial of cosf with maximum exponent
=2L.

(b) ¢1 has a definite parity which is the op-
posite of that of ¢o. Thus the interference term
between ¢y and ¢; gives rise to odd powers of
cosf only and we have the result that the terms
in the angular correlation to the first order of v/¢
is an odd polynomial of cos6.

The author wishes to take this opportunity to
thank Professor E. Teller for invaluable discus-
sions and advice.

15 N. Kemmer, Proc. Roy. Soc. A173, 91 (1939).



