
PH YSICAL REVIEW VOLUM E 74, NUMBER 6 SEPT EM HER f 5, 1948

Theory of Scattering Processes*

EUGENE FEENBERG

washington University, St. Louis, Missouri

(Received June 8, 1948)

The formal infinite series for the probability amplitudes are transformed by (i}a regrouping
procedure which separates out "repetitive" terms from all orders beyond the second and corn-
bines them to produce a common factor multiplying all orders, (ii) a procedure of summation
to a closed form (essentially an analytical continuation} replacing the above common factor by
a generalized energy denominator, and (iii) unlimited repetition of (i) and (ii). Procedure (ii)
is based on the generalized energy quantity

h ~ + g Vpq Vqp+ ~ VpqVq, V

q+gh". p (9) q Wgh" p (q)(r)

and the formal identity

Pq qp+ g pq qr rp+
(P) W h " {P)(9') / h. " (P)(V)( )

employing the notation (x) =8—E .

INTRODUCTION

HE present discussion of scattering theory
resembles an earlier treatment of the

energy eigenvalue problem. ' Both utilize a formal
transformation to modify the energy denomina-
tors and reduce simultaneously the number of
intermediate states in all orders beyond the
second. In the absence of interaction the scatter-
ing system and the incident particle are de-
scribed by the Hamiltonian operator H and the
complete ortho-normal set of eigenfunctions p,
with eigenvalue 8 . These functions are obtained
as a discrete set by the imposition of a periodic
boundary condition in a large cube of side I..
Transitions are produced by an interaction oper-
ator V. The calculations are facilitated by includ-
ing the diagonal matrix elements of the inter-
action operator in H (as a diagonal matrix) and
in 8,. What remains of' the interaction operator
is then denoted by V.

I seek a solution of the equation

Equation (1) can be expressed in the form

4'= (~. ~) 'UP'+e. , (3)

and all transition probabilities and cross sections
are evaluated in the limit y—+0. In view of the
profound difference between Eqs. (1) and (4) it
is not surprising that function f' does not al-
ways, in the limit p —4, include the incident wave
p, with unit amplitude. '

Equation (4) possesses the formal solution'

provided that a suitable interpretation, con-
sistent with the asymptotic boundary condition,
is found for the inverse operator (E,—H) '. It is
well known that the analytical device of dis-
placing the singular point from the real axis into
the upper half of the complex energy plane pro-
duces a solution containing no incoming spherical
waves. ' With E=F,+iy (y)0), Eq.. (3) is re-
placed by

4'=(&—~) 'U4'+4.

(2, H U)P =0, — —

subject to the asymptotic boundary condition

p~p, +outgoing spherical waves.

* The research described in this paper was supported in
part by contract N6ori-117, 0%ce of Naval Research.

' E. Feenberg, Phys. Rev. I4, 206 (1948). Presented at
the second Symposium on Applied Mathematics of the
American Mathematical Society, July 29-31, 1948.

' A. Sommerfeld, 8'eLLenmeckanik (Frederick Ungar
Publishing Company, New York), p. 442; P. A. M. Dirac,
The Principles of Quantum Mechanics (Oxford University
Press, London, 1930), p. 184; J. Schwinger, The GeneraL
Theory of Scattering Processes (unpublished seminar notes).

s An alternative equation p = (E—H) ' Vp —p»(p»*,
(S—a)- Vp)+e. = (Z —a)- Vp —(1i'~)e.(V.*, Vy)+ e.

'

has the desirable property of automatically insuring that
the incident wave g» appears with unit amplitude in the
wave function.

'The notation (x)—=E—Es is used in Eqs. (6) and (7)
and in the remainder of the paper.
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e'=Z I(&-%-'UI ~

=Z e.S'-

V~ Vm VbaS',(xga) = +Q
(x) b (x)(b)

identity

V,bVb. V V o

bc. ..ms (b) (C) (m) (n)

Vsb Vbc ' Umn Vna

bc ~ mm cca (b) (C) (m) (n)

V Va, V.g - Umn Vna
+

(a) cd. . .ms (c)(d) (m)(n)
V.b Ub, V,+2 + (6)

b, (x)(b)(c)
V bVb Vad' ' Vmn Vna

+ 0 ~ ~

bye (a)(b) d".~n (d) (m)(n)S'..=1++
b (a)(b)

VzbVbc ' ' Vla Uan Vna

+ 2
bc i gc (a) (b) (c) - (l) ~ (n)Vab Ub, U.

+Z + (7)
(a) (b) (c)

S'..(x W a) = U..+ P
(x) b ~. (b)

Limit (E E,)S', —

With the aid of Eq. (8) the infinite series of

The unsatisfactory character of this solution sums denoted by S' (xWa) can be rearranged

is evident in the apparent deviation of S'„ from in the factored form

the initially assumed value of unity. Even more
V~b Vba

disturbing is the fact that

appears not to vanish. However, one should not
pass adverse judgment too hurriedly on the solu-
tion represented by Eq. (6). The more obvious
blemishes are removed in the following section.

The explicit consideration of convergence di%-
culties may be deferred by introducing a suitable
convergence factor in the interaction operator V.
The matrix elements are then functions of a
cutoB parameter x. I suppose that Vb. approaches
the value Vb, ' of the unmodified theory as X~O
and decreases rapidly with increasing ) for
Eb/E, . In this manner it is possible to insure the
absolute convergence of Eqs. (6) and (7) exclud-
ing a finite region, centered about the origin, in
the X, y plane. Obviously the extent of the
excluded region can be reduced by transforma-
tions having the general character of analytical
continuation. Such transformations may, how-
ever, make extremely difFicult the direct verifica-
tion that P' is a solution of Eq. (4).

+P + '' S- (9)
bc ~c (b) (c)

S, =|,

S„(x/a) =
(x)

V~b Vba
U„+ Q

b Wc (b)

V bVb. V,+E + 0 ~ ~

bc wc (b) (c)

It is immediately clear that a failure of the
condition S' = j. does not in fact complicate the
theory nor does it create difficulties for the
physical interpretation. The reduced amplitudes

S..=S'c./S'~

yield a solution in which the coefficient of the
incident wave has precisely the value required
by the asymptotic boundary condition stated
in Eq. (2):

FACTOMZATION OF THE AMPLITUDES The reduced amplitudes are characterized by
The transformation of Eqs. (6) and (7) re- one significant property: they are all linear func-

quired to overcome the difFiculties mentioned tionals of the incident wave @ . There are eo
in the introduction begins with the algebraic repetitive terms insolirbng the state a as an inter
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V bUbc V~~V,

bc. . mny a (b)(c) (m)(n)

V*b Vb. V ~Vna

bc ~ ~ mn «a» (b) (C) ' ' ' (m) (n)

V~b Ubc' ' V s Vsa
+

bc" im«a (b)(C). (m) (X)

V.b Vb. Ug.
+

bc i«a "(b) (c) (l)

VbVb~U*~ V~axp +. +E
n«a» (X)(n) b«a (b)

Usd Vde' ' ' Uggn Una
x p — . (12)

dc ~ ncn «a» (x) (d) (e) (m) (n)

Proceeding as in the derivation of Eq. (11) one
finds that the amplitude 5„factors into

V,b Vb
(x)S„= V..+ P

b «a» (b)

V bVb. V,
+ p + 0 ~ ~

bc «a» (b) (C)

mediate station on the road from a to x. Eq. (11)
establishes the result that such repetitive terms
are devoid of physical meaning.

A second algebraic identity is useful in factor-
ing out repetitive terms involving the final state
x as an intermediate station on the road from
atox:

given meaning by a process of analytical con-
tinuation. One may however consider the possi-
bility that the theory requires modification in
the sense proposed by Heitler, i.e. , the more-or-
less general omission of repetitive terms. Equa-
tion (13) suggests the simple modification

U~b Vba
(x)S,= V,+ Q

b«a» (b)

Vsb Vbc Vca
+ E —+ (14)

bc «a» (b) (C)

in which neither a nor x occgrs as an intermediate
station on the road from a to x.

THE REGROUPING PROCEDURE

The set of functions

Vne U.u
&s»"'p =&,+

s «g» ".np (g)

V„q U,„U
+ E +. (13)

s «s» "np (g. ) (r)

represents a formal generalization of the corn-

plex energies (displaced energy levels and associ-
ated damping constants) occurring in the energy
denominators of the Dirac resonance scattering
theory. To establish the connection with energy
denominators, observe that (for p/gh ~ n)

L~ &.» -.pj '=—
1+

b«a (x)(b)

V,bVb, V,
+Z + s ~ ~

bc«a (X)(b)(C)
(13)

1
1+

(P) - s«s»"' (P)(V)

~I

+ Z + (16)' (p)(a)()
Dirac and others have shown that the first

order pole 1j(x) in the amplitude S„has the
consequence that only states for which energy is
conserved occur in the asymptotic wave function.
%hat then can be the meaning of the additional
powers of 1/(x) (of arbitrarily high order) present
in the second square bracket? A partial and per-
haps not altogether satisfactory answer is that
this factor is meaningless as it stands, but can be

To verify the equality, the right-hand member
of the first line may be expanded as a sum of
products in which the variable indices run over
all values excluding gib np. The second line can
be expressed similarly, again restricting the vari-
able indices to values difkrent from gh. ~ np. The
following example serves to illustrate the pro-
cedure as regards the expansion of the sums in
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the second line of Eq. (16):

Vn. Vq. U" V.~

VuqV. n
'

+
(p)' «I&"-'t (c)

V„,V„V„V,„
"~""' (p)(a)(r)(s) ~*~ ~" -~ (p)(a)(r)(s)

In Eq. (21) all repetitive terms in which a
given station on the road from x to a is traversed

more than once have been removed from the explicit
numerator products and relegated to relatively
harmless positions in the generalized energy
denominators.

An immediate consequence of Eq. (15) is

Now Eq. (13) reduces to

S
jV h.

V~b Vba
V..+ Q

so*a (b)

VbVb, V„
+ Z + (18)

sc ~as (b) (c)

a form similar to Eq. (14), but differing from it
in important respects. Continuing the develop-
ment of the regrouping procedure, write

U,b

(E—b„)S„=V,+ Q
bgxa (b)

Vb, V.
X Vb, + Q +, (19)

c ~ra (c)

(E 8,)S o = V. + Q—
byway E—$,~

Uxb Vbc

and apply the procedure leading from Eq. (11)
to Eq. (13) to the factor in square brackets. The
result is

S'~~ =
E—8, E,—8,+iy

(22)

Limit S' = 0, (E,Wb,). (23)

Casual inspection of Eq. (7) suggests that the
limiting value is infinity rather than zero. This
observation supplies a measure of the profound
modification produced in the convergence prop-
erties of the wave amplitudes by repeated appli-
cations of the regrouping transformation.

The function 8,I,...„~ is itself a proper subject
for the regrouping transformation. Regrouping
from left to right as in Eq. (21) the result is

&g~ "-n =En+
hgh" nyq

Equation (22) contains two important special
cases. In the first E —8, vanishes in the limit
as the fundamental volume is allowed to become
infinite. Then S' =1 for all values of y and
f' =f. The second case occurs in connection with
the Dirac frequency shift and line breadth. s If
E, 8, does —not vanish Eq. (22) implies

+
~c~xa (E S,.b)(c)—

V,g Vg
X V..+Q +

~gxa (d)
(20)

V~q V„V,„+ Z + (24)
(E tgg&" ~nv)(E hg&" ~ne~)

r pgh ~ ~ npq

The reverse order yields
Equation (20) is designed to suggest unlimited
repetition of the regrouping procedure. The limit-
ing formula for 5, , obtained by induction, is

Vnq Vn
&,~" .,=E,+

q ggI$ ~ 'rtp Q @gal... pq

(E—b )S,o= V,+ Q
b~~a E—5

V,bVb, V,
+ 2 + (21)

~~~ (E B..b)(E 8.~,)——
crabs

+ Z + . (23)
(E toga "~uq~) (E @u& nut)"

r ggh ~ .Npq

I' P. A. M. Dirac, The Principles of Quantum Mechanics
(Oxford University Press, London, 1930).
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REFORMUX ATION

An additional set of functions

proves useful in providing a convenient formula-
tion of the preceding results. The subscripts xb
represent the indices of a matrix element in the
usual sense while bgh mnx stand for states
excluded from the summations involved in
the definition of Ub, b. ..„„...b. Equation (26) is
equivalent to an implicit (integral) equation; in

particular

Uaa;aa = &pa+
bag* (b)

(2&)

an equation of interest because the systematic
omission of states for which Eb/E, reduces it to
the Heitler integral equation. '

An immediate consequence of Eqs. (15) and
(26) is

@gb "map =Ep+ Ugb "map; pp. (28)

The regrouping procedure applied to Eq. (26)
yields

p pb

Ub, b. ..„,,b = U~+
Py-zing". me E—$~g. .. „„

V,p Vp, V,b

+
P&*bg'''tga (E &abg" map)(E bgbg" waapg)
g jAbg a ~ a5fSP

V.p U.bga". ,;,b= I'~+
Pgbg' "~"~ &p U'zbg "m~p pp

(29)

At the end of the infinite chain of relations one
has

V„Vga
Ub, b" -;a = Ir.b+

gp. bgb. "ma* (g)

V„V„V~
+ ~ (26)

g. ~bgb" e~ (q)(r)

(31)

with
ap=pa(scatterer)L &e'p'"'". (32)

The method of Dirac and Sommerfeld yields

2m'&
E 4-U-p-. p.

h'c'
(33)

for the asymptotic behavior of f. In Eq. (33) f
is an outgoing spherical wave and Ea, +Ep,
=E~+Ep. The differential cross section for scat-
tering into the element of solid angle dO is

tion of the regrouping transformation. With
plane waves for the first order eigenfunctions the
matrix elements all vary inversely as J3. Since
the density of states in momentum space is pro-
portional to this volume it is apparent from Eq.
(15) that

Bgb. .. p=Ep+0(L '), y/0.

Consequently the transformed energy denomina-
tors revert back to the original form if the funda-
mental volume is increased indefinitely while y
is held fixed at a non-zero value. At the same
time the sums over intermediate states in Eqs.
(11) and (21) approximate to integrals in mo-
mentum space. Both Eqs. (11)and (21) yield the
same limiting amplitude for a fixed value of y.
However, using Eq. (11), the convergence to the
integral form is obviously nonuniform in y be-
cause of the second and higher order poles (in y)
produced by the coincidence of two or more vari-
able indices in the multiple summations. Such
duplications and the attendant nonuniform con-
vergence to the limiting integral form are absent
in Eq. (21).

Similar remarks apply to the problem of elastic
and inelastic scattering of a particle by a com-
posite system. In this case

U,. =V +Q . (30)
b y az Q —Qb —Uz~. bb

DISCUSSION

oap, a,p,dQ =
4gr'O' EpEp, g Lg

Uapa, p, dQ, —(34)
c4 Po

The scattering of a particle by a static poten-
tial provides a trivial, but illuminating, illustra-

6 W. Heitler, The Quentin Theory of Radiation (Oxford
University Press, London, 1944), p. 240.

using relativistic expressions for the total energy
of the incident and scattered particles. To sim-
plify the formulae only the matrix subscripts
appear explicitly on the amplitudes U (the full
notation is Ua&p&ap;apn&p ).
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In the limit of infinitely large fundamental
volume Eq. (27) assumes the limiting form

L'U p .p, =L'V ~,p, +
c h

I
L'V pa pL'U p, p,P'dEP'dQ'

xp E,+Ep, E —Ep +—~y

=I'~ n .p, +
c'h'

I
L'V p pL'U p, p,Ep'dEp'dQ'

xpE'
J 8 .+Ep.—E —Ep

V pa'p'L U p' p p'dQ, (35)
c'h'

~ Reference 6, p. 249.

the symbol I' denoting, as usual, the principal
value of the following integral. The omission of
the principal value term reduces Eq. (35) to the
form of Heitler's integral equation. If only
I.' V~pe, p, is retained one has the first order Born

approximation.
The derivation of the Thomson scattering cross

section, including the classical damping denomi-
nator, provides another simple application of the
regrouping formalism. However, the calculation
is identical with that given by Heitler, ~ since the
energy denominators all reduce to the usual
difference of unperturbed energies in the limit
g~W ~

From the point of view of the full utilization
of the advantages inherent in the regrouping
formalism the foregoing applications are trivial.
Non-trivial applications first appear in problems
involving the interaction of quantized fields with
matter. In such problems the energy displace-

ments U,~...„~.» do not vanish in the limit L,~~;
moreover these displacements are complex num-
bers with negative imaginary components (in the
limits~). Thusthefactor (E—8„) 'in Eq. (21)
for S, is non-singular along the real energy axis
(certainly an improvement over the singularities
of arbitrarily high order at E,=E, in S defined

by Eq. (13)).However, the derivation of Eqs. (33)
and (34) clearly reveals that Eq. (21) cannot yield
conservation of energy in the classical sense.
Classically the total energy of the system is given
by the sum of the energies of the several parts
(scatterer and scattered particle or particles)
when they are well separated in space. In quan-
tized field theories the existence of the inter-
action reveals itself in the failure of additivity
for the energy of field and matter. Even if the
real part of the energy shift produced by the
interaction is absorbed into a correction to the
mass of the scattered particle, there remains the
imaginary part of 8„to cause failure of conserva-
tion. Perhaps this result is not unsatisfactory; if,
however, it is rejected the modification of the
theory by the substitution of (x) for E 8„in-
Eq. (21) offers a workable alternative.

A further important point is that the multiple
sums in Eqs. (21), (25) and (29) have precisely
the form required for a straight forward transi-
tion to multiple integrals in the limit I~~. The
nature of the complication which is here avoided
appears clearly in Eq. (17), the left-hand sum
having the limiting form of a double integral plus
the square of a single integral.

In the light of these remarks it seems likely
that the regrouping formalism will prove useful
in the study of field theories, particularly where
the true physical content is obscured at present
by inadequate perturbation methods.

The writer is greatly indebted to Dr. Henry
Primakoff for many stimulating discussions.


