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Effects of the magnetic moment of the electron of the
six-vector type are calculated. According to the hypothesis
followed here, the electron's behavior in the field of a
nucleus is described only approximately as that of a point
charge. More accurately, it behaves as a particle having
mainly the properties of a point charge which are corrected
by the addition of a small "intrinsic" magnetic moment.
In the present note the purely empirical point of view of
an intrinsic magnetic moment is followed without any

attempt at a justification from the point of view of quan-
tum electrodynamics which has been given by Schwinger.
Formulas are worked out for the eff'ect on hyperfine struc-
ture, on the Landd g factor and the contribution to the
Lamb-Retherford line shift. The arrangement of the calcu-
lations is such as to have the same system for the ordinary
hyperfine structure and the other effects. The finite rather
than zero size of the nuclear current system is explicitly
included in the formulas.

I. INTRODUCTION

HE measurements of the hyperfine structure
of hydrogen and deuterium in its ground

state made by Nafe, Nelson, and Rabi' disagreed
with theoretical prediction. ' The observed energy
difference of hyperfine structure levels hs ap-
peared to be too large for both isotopes, and the
ratio of the energy difference of the lighter to
that of the heavier isotope also appeared to be
too large in comparison with theory. Part of the
latter effect has disappeared as a result of refine-
ments in experimental precision. The remainder
of this effect has been explained by A. Bohr' as
a result of the centering of the electron's wave
function on the proton within the deuteron. Un-
published attempts by the writer to explain the
factor ~1.0024 by which both ~H and ~D exceed
theoretical prediction were made during the
summer of 1947 on the basis of the distortion of
electronic wave functions by the magnetic field
of nuclear moments. These were not successful
and suggested that any explanation having to do
with nuclear properties would be likely to be a
forced one because it could not reproduce in a
simple way the close equality of fractional dis-
crepancy for H and D. It was natural to look for
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an explanation in an incomplete understanding
of the nature of the electron. This point of view
makes the discrepancy between theory and ex-
periment automatically the same for H and D.
Since the magnetic moment of the electron in
Dirac's theory is the result of the Schroedinger
vibratory motion of a point charge and since
there are reasons for doubting the exact validity
of ordinary space-time concepts, it appeared
reasonable to question the exact relationship be-
tween the effective magnetic moment and the
fundamental constants. It appeared, on the other
hand, that it would be safest to make the modi-
fication in the theory so as to have a relativis-
tically covariant answer. Pauli's investigation'
of covariant forms pointed to the interaction
energy having the form of Eq. (1) of the next
section and it was proposed' to consider the
possibility of the addition to the Hamiltonian of
an interaction energy of the Pauli type. The
order of magnitude of the intrinsic Pauli type
moment p,, required by experiment appeared to
be a reasonable one because p./po turned out to
be of the order 0. where po is the Bohr magneton.
In a reference system moving with a velocity
close to the velocity of light c the Bohr magneton
po appears as an electric moment equivalent to
displacing a charge e through a distance h/2mc.
A limitation in the validity of space time con-
cepts of the order e'/mc' could conceivably result
in a modification of the length h/2mc by the
amount e'/mc' and introduce a relative uncer-

4 W. Pauli, Handbuck der Pkysik (Verlag Julius Springer,
Berlin, 1933), Vol. 24/1, p. 211.

~ G. Breit, Phys. Rev. V2, 984 (1947).
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tainty of the order (e'/mc')/(li/mc) =a into the
value of the moment.

The writer's first publication contained an
error' in the evaluation of the expected contribu-
tion to the hyperfine splitting of s terms which
exaggerated the other expected eRects. Among
the eRects of the moment p, which were listed'
there was mentioned the possibility of finding a
characteristic deviation from the Landh g for-
mula. It was noticed by Rabi that this possibility
was especially suitable for experimental test and
as a result the eRect of p,, was found by Kusch
and Foley. ' Soon after the writer became aware
of the development by Schwinger of an im-

proved quantum electrodynamics which predicts
u./go= —n/2x and a more detailed publication
appeared to be unwarranted at the time.

In reviewing the calculations which led to the
first publication it appeared that there might be
considerable work involved in reproducing them
or in developing abridged methods. The present
note has been, therefore, prepared even though
the more vital physical questions involved have
in the meanwhile been treated more deeply by
others and especially by Schwinger. It contains
formulas for the eRects of p, and compares the
eRects with those of ordinary hyperfine structure
allowing for some of the eRects of finite nuclear
dimensions. A brief comparison with experi-
mental results is also included.

II. THE INTERACTION ENERGY

The Hamiltonian is taken to be

H = eA 0 ce(—p+eA—/c) Pmc'—
+~.[n (~~) —u2(@~)] (1)

in the original Dirac notation, with P standing
for Dirac's a4. The matrices a„o„, r, are the
four-row square matrices. The externally applied
electric and magnetic fields are b, X. The Pauli
part of the electron's moment is p, The nucleus
is considered to be fixed in position. Its magnetic
field is taken to be produced by a current system
distributed through a volume which is supposed
to give rise to a magnetic field

3C = [&(@~V)—y~h]u =curl[&u Xp~], (1.1)

6 Julian Schwinger, Phys. Rev. 73, 415 (1948); G. Breit,
Phys. Rev. 73, 1410, (1948).' P. Kusch and H. M. Foley, Phys. Rev. 72, 1256 (1947).

where
u 1/r (1.2)

Here r is the distance from the center and the
asymptotic form for N is supposed to apply for
large r. The nuclear magnetic moment is LLf~. The
vector potential due to the nucleus is

A~ = [V'u Xpic], (1 3)

as is seen from Eq. (1.1).According to Eqs. (1.2),
(1.3), this vector potential approaches asymp-
totically that of a magnetic dipole p& for any
function u which has asymptotically the same
gradient as 1/r. For such u

AN [yx Xr]/r', (1 3')

which is the vector potential of a dipole p~. The
same is clear from the first expression for 3'. in
Eq. (1.1) according to which

~-&(S~&)(1/r), (1.3")

which is directly related to the picture of a dipole
as two coincident poles. The validity of this
representation does not depend on whether u is
assumed to be spherically symmetric or not. It
will be assumed that AN is finite and di8'erentiable
as well as continuous everywhere. In this repre-
sentation the nuclear current density is

J= (c/4s. ) [yN X& (&u) ], (1 3/I/)

and is finite everywhere. For this type of current
density one has

divJ=O.

If instead of Vu one had an arbitrary vector in

Eq. (1.3) the divergence of the current would not
necessarily be zero.

In the special ease of

u = r'/2a'+3/2a —(r &a)
= 1/r (r) a)

the current distribution becomes a spherical cur-
rent sheet on a sphere of radius a and the mag-
netic field inside the sphere is then 2@~/a'. In
this case —@+Au =3'/a' for r &a and 0 for r)a.
It has a discontinuity at r =0,. On the surface of
the sphere the current density integrated through
the thickness of the sphere is (3c/4~) [year Xr]/a'.
This corresponds to the change of hu= —3/a'
inside the sphere to Au =0 outside which gives in
the integration of Eq. (1.3") through the sphere
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H'= —e(eA), H" =p,p3PCa), (1.4)H"'= —p,p«(Se).

The energy H' enters standard discussions of
hyperhne structure. For II" one has

H" =p.»[(«) (e ~&)—(~s~)~3& (1 5)

Denoting the nuclear spin by I, the nuclear spin
quantum number by I and the absolute value of
p~ by LM~ one has

(1.51)y~ =p~I/I

thickness the value 3r/a' for the second factor
of the vector product. In this special case AN has
a discontinuity at r=a. This case can be con-
sidered as the limit of a continuous I and discon-
tinuous X. It is mentioned so as to add concrete-
ness to the meaning of u. In particular, hu, when
integrated through the volume inside the sphere,
gives —4~ and AN has a constant value inside
the sphere. On account of Eq. (1.2) and Gauss'
theorem the integral over-all space is —4' also
in the general case.

The interaction energy arising from effects
other than the electrostatic energy will be broken

up into a sum of three parts.

The Dirac matrix
«= (~)/» (1.61)

corresponds in terms of these wave functions to
the multiplication rule

)=I'
gg) gi 0J 'Eg) « f)

as has been shown by Dirac. ' This rule means
that eP is obtained from P by changing the f into

ig a—nd the g into if In th. e representation
which corresponds to Eq. (1.6) the matrix p«

is diagonal and has diagonal elements 1, 1, —1,
—1 in ascending order of p in P„.When operating
on the two-row-column matrix having f, g as its
elements the operator p« leaves f unchanged and
changes g into —g. Its eGect amounts to a change
of sign of g' in the hnal expression. For the calcu-
lation of matrix elements of

of J with Ur(re)» 'p«where U can be either hu
or u'/r. For its evaluation as well as that of other
quantities it is convenient to use the radial func-
tions f, g for which the radial equations are

(P«+me) f l[—dg/dr+(1+k)g/r]=0
(P« m—c)g+h[df/dr+(1 I«)f/—rj=0. (1.6)

Hl/ (Bl/I) (1.52)

B"= (p,p~/I) p«[(eV) V —eh ju. (1.53)

For a spherically symmetric u

one has

and hence

U(Jr)(re)r- p«,

(re)/r = pg«,

(1'.63)

(1.64)

rfr qB"=
r&r )

(Jr)(ra)r ' = (Lr)(re)r '
+k(«)'» '= k(pi«)'=k (1.65)

It fo)lows that

rtr q
u' Oo

+ ~-3-1 -~
I
—» (1 54) (P, U(Jr)(re)r 'p3$) =2 ~ (f' —g') Ur'dr (1.66)ri» )

(f'+g') r'dr = 1.
4O

(1 6&)
~E"= —,'[F(F+1)—J(J+1)—I(I+1)j

X(B"J)~/J(J+1), (1.55)
In the result of substituting Eq. (1.54) into Eq.
(1.55) there occur, besides, terms of the typewhere J is the operator representing the elec-

tronic angular momentum and J is the inner
quantum number so that J(7+1) are the charac-
teristic values of J'. The quantity (B"J)q is the
diagonal element of B"Jin the J representation.
In the evaluation of this matrix element one
needs to know the matrix elements of products

U(~J)».

Their evaluation brings in Dirac's quantum num-

P. A. M. Dirac, Proc. Roy. Soc. A118, 351 (1928). In
accordance with later custom the symbol jof Dirac's article
is called k in the present paper.

The diagonal matrix elements of H" for hyperfine where the normalization is such that
structure levels of quantum number F are ob-
tained as
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One has
k =pm[(La)+1].

(~J) =~L+4

(1.71)

(1.72)

and hence according to Eq. (1.71)

ber k which is an eigenvalue of the operator range of values close to r =0. In this case the term
in Au matters only for s terms. It contributes to
the right side of Eq. (1.75) the amount

—(y,pN/I) g'(0). (1.8)

The function g is related to the non-relativistic
Schroedinger function by

(irJ)pa = kp~+k p~ =—k+r'pi, (1.73)
so that

(0 &(~J)p~4)

[(k+5)f'+(k —k)g'jr'«(1 74)

Combining Eqs. (1.54), (1.66), (1.74) one obtains

PePN
(&"J)~= f u')—k(P+g')} Au ——

}r)
u

where ' denotes differentiation with respect to r.
The terms in u' in this expression arose from
corresponding terms in Eq. (1.54). For u=1/r
the part of H" arising from these terms has the
same form as the interaction energy between
magnetic doublets p~, p~. There is present in

addition a contribution in Au. According to Eq.
(1.3'") this quantity is confined to nuclear di-

mensions. For the current sheet considered right
after Eq. (1.3") the value of Au was seen to be
finite everywhere. There are clearly many types
of volume distributions of current density for
which Au is finite. The example of the current
sheet shows that at r=0 the quantity hu is of
the order —3(a ') where the average is taken
over the nucleus and c is the radius of the ele-

mentary spherical current sheet into which the
volume distribution is broken down. The value
of Au at r =0 is, therefore, not necessarily much

larger than for the spherical current sheet. The
functions f and g become infinite at r=o for s
terms. The integral of {P+g')r'dr converges. In
view of the finiteness of hu the integral of the
term involving Au in Eq. (1.75) converges also.

The results will be considered next for /ight

nuclei, i.e., for the limit Z=O where Z is the
atomic number. For these nuclei the radial func-
tions f, g differ from their non-relativistic ap-
proximations which are finite only in a narrow

g'= 4m( s' (Z = 0) (1.81)

~'I., o = & —&I., o. (1.84)

The term H"' of Eq. (1.4) brings in the inter-
action which is expected in classical anology on
account of the motion of p, in the electric field
of the nucleus. This field is

8 =Zer/r',

and one can express II"' as

(1.9)

H"' = Zep. p2{re)/r' =i p@epa—e/r'. (1.91)

In accordance with Eq. (1.62) e operates on f, g
and

One has thus

I'0

o
(1.92)

(H"') = (f, H"'f) =2p,Ze ~ fgdr. {1.93)
dp

where subscript 5 stands for Schroedinger.
The quantity I'/r is —1/r' outside the nucleus.

Inside the spherical current sheet it is —1/u'
which is of the same order as Au. The integral
over the nuclear interior arising from (u'/r)g' is
therefore comparable with that originating from
g'Au. Neither of these is important except for s
terms. For these, however, the combination
(1+k)g' which occurs with u' vanishes because
k = —1 for s terms. The integral of —(1+k)f.'ru'dr
does not vanish but since f/g is of order aZ it is
much smaller than the corresponding contribu-
tion of hu. The terms in u'/r are important,
therefore, only for non-s terms. Neglecting the
contribution of f' to these terms one obtains for
their contribution

—(p.p~/I)(1+k)(r '). {1.82)

Combining Eqs. (1.75), (1.8), (1.81), (1.82) one
obtains the approximation

(&"J)~=(p.p~/I) I 4&s'{0)&~, 0—
—(1+k)(r-~)h', , ,}, (1.83)

where b~, p is the Kronecker 8 and
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The interaction energy H' occurs in the ordi-

nary theory of hyperfine structure. Since the
current distribution is not ordinarily taken into
account and since the ordinary way of deriving
hyperfine structure formulas can be put into a
neater form, a brief derivation of the formula for
the expectation value of H' will now be sketched.
According to Eqs. (1.3), (1.4) and similarly to
Eq. (1.55), one has for the first-order perturba-
tion e8ect of H'

F' = -,'[F(F+1)—J'(1+1)—I(I+1)]
X(B'J)~/J(~+1), (2)

B' = (ep~/I) u'[(r/r) Xe], (2.1)

and only the case of spherically symmetric e is
under consideration. The quantity (B'J)q is
analogous to (B"J)q of Eq. (1.55). Its evaluation
can be made by noting that

For a nuclear current distribution concentrated
at very small r the factor (—u'r') is unity and
one has the usual approximation'

(B'J)~ 2k—(ep~/I) fgdr; (a =0). (2.3)
eJ p

In this limiting case the integral occurring in the
expression for the hyperfine structure interval
factor is the same as that for the effect of the
nuclear electric field which occurs in Eq. (1.93).
The latter should really be modified also because
Eq. (1.9) does not take into account the finit
rather than zero—nuclear volume. This may be
done in the approximation of' a spherically sym-
metric charge distribution for which

h = Zerv'/r—

corresponding to an electrostatic potential

JLr Xe]= I (Je)(er) (Jr)—I /i, (2.11)
and a revised

Zev(r), (2.5)

as a consequence of multiplication rules for the
components of e. Multiplying both sides of the
above equation on the right by 1.i/r one obtains

(II"')=2p@e fg( v'r')dr—
4 p

(2 6)

J[(r/r) Xe]= (Je)s/i —(Jr)/ir. (2.12)

One also has the following identities

(Je) =psk+s (2.13)

(Jr)/r = hopis (2.14)

Combining Eqs. (2.12), (2.13), (2.14) there
fo11ows

J[(r/r) Xe]=kpss/i .(2.15)

The operator k commutes with both e and p3.
For a state having a definite eigenvalue k the
operator k amounts to multiplication by the c
number k. Multiplication of such a state by the
right side of Eq. (2.15) amounts, therefore, to
multiplication by pss/i followed by multiplication
by the c number k. For operations on the f, g
column matrix of Eq. (1.62)

pss/i= —
( 1 0 ~, (2.16)
(0
(1 0

and hence, combirung Eqs. (2.1), (2.12), (2.15),
(2.16),

(B'J)g = 2k(ep~/I)
J fg( u'r')dr. (2.2)—

For very concentrated charge distributions
—v'r'=1 and Eq. (1.93) is obtained again.

IG. LIMIT OF SMALL S AND SMALL
ÃUCLEAR RADIUS

For a small nuclear radius and sma11 Z the
eR'ect of p, on the hyperfine structure is given by
Eqs. (1.55), (1.83). The effect of the interaction
of 8 and p, is given by Eq (1.93).which is the
limiting form of Eq. (2.6) for small nuclear
radius. The hyperfine structure arising from ef-
fects other than p, is obtained from Eqs. (2),
(2.3). For Eqs. (1.93), (2.3) one must still make
the approximations corresponding to small Z.
These are obtained by means of the first Eq.
(1.6) which gives

f=(h/2mc)[dg/dr+(1+k)g/r] (3).
This approximation breaks down for small values
of r if the Coulomb potential is supposed to be
valid everywhere. The radial integrals involved
are, however, familiar ones from the theory of
hyperfine structure and it is known that they

' G. Breit, Phys. Rev. 38, 463 (1931).The quantity re-
ferred to as B' in the present paper is ca11ed A in reference 9.
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may be approximated by neglecting the differ-
ence between pp+me and 2me as is done in Eq.
(3) and by identifying g with the Schroedinger
radial function at small r where g is infinite. The
reason why this procedure works is that the
contribution to the radial integral of Eq. (2.3)
which arises from the small range of values of r
within which the approximations are poor is not
significant and also because the two approxima-
tions have mutually compensating effects. The
approximate value of the radial integral is

TABLE I. Values of (8"J)z/(8'J)z for
single electron spectra.

Term =s11g p1(g p3/g dgm

Ratio (~./~) = —1

so that the modified Landb g factor becomes

g' = 1+L1 —2(v./vo)]

J(7+1)+5(S+1)—I.(1+1)
X

2J(5+1)

fgdr (Io/2m—c) —2mgs'(0)J,
+(1+k)(r o)b'r„o, (3.1)

=g —2(~./~p) (g —1),

which means that

g' —1 = L1 —2~./~p](g —1)

(4.3)

(4 4)

(H'")=2Zp pIo.[ 2~s'(0)—
+ (1+k)(r-o)b'I, o]. (3.3)

Here the positive number

pp ——elp/2mc (3.4)

is the Bohr magneton. The ratio of the effect of
p, on hyperfine structure to the normal eftect is

(&"J)z/(&'J) J = I./I o(1 =o)—
(8'"J)g/(8'J) g = —(1/2k) (p, /po) (LAO). (3.5)

The values of the ratio for different terms are as
in Table I.

The effect of an external magnetic field is to
give an addition to the energy

(hz)
~
~

~

= —p.(xo), (4)

because for small Z multiplication by p3 amounts
to multiplication by —1. This result may be
compared with

yo(xor), (4.1)

which is the contribution to the energy involving
3'. and e in the absence of p, The effect of p,, is,
therefore, to increase the contribution of the
electron spin to the Landh g value by the factor

1 —~./~o, (4.2)

so that

(&'J)~ = (2pop~/I) E2&s'(0)
+k(1+k)(r o)b'r, p], (3.,2)

Here g is the ordinary Landb g factor.
The experimental discrepancy' between the

atomic and molecular beam values of the pro-
ton's and deuteron's magnetic moments indi-
cated' the probable existence of p, In order to
obtain the value of p, from these experiments it
is essential to note that the molecular beam
measurements" have been made, making use of
a calibration of the magnetic field by means of
the deflection produced in virtue of the atomic
magnetic moment of a single electron s term.
According to Eq. (4.4) this moment is pp —p, .
The molecular beam experiment thus measures.

~~/(~o —~.) (4.5)

The atomic beam experiments on the hyperfine
structure of the ground states of hydrogen are
essentially independent of applied magnetic fields
since they are concerned with absorption fre-
quencies extrapolated to zero field. The theo-
retically expected value of hyperfine structure
separation is proportional to

~~(~o —~.), (4 6)

in accordance with Eq. (3.5) and Table I. The
theoretically expected ratio of the atomic to the
molecular beam values is, therefore,

(po I .)'/wo'=1 ——2u. /~p (4 &)

This ratio represents the theoretically expected

' S. Millman and P. Kusch, Phys. Rev. 60, 91 (1941}.
The writer is grateful to Professors I. I. Rabi and N. F.
Ramsey for discussions concerning the way in which the
Columbia group standardized their measurements by
measuring different moments in the same magnetic field.
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value of the "measured" to the "calculated"
value of the hyperhne structure of the ground
state where by "calculated" one means calcu-
lated neglecting p, . The experimental value of
this ratio is believed to be" close to f.00242,
which indicates that

p, /po ——0.00121. (4.8)

which gives

g'(po/, )/g'(p, /p) —2 y1.00182, (5.1)

g (s~/p)/g (pg/p)=3X1. 00242 (5 2)

as the expected ratios of measured g values. The
hrst of these may be compared with the experi-
mental value 2(1.00172&0.00006) of Kusch and

Foley. ' The disagreement is almost within experi-
mental error. The agreement of the results of
Kusch and Foley with expectation is even better
if instead of the experimental value —0.00f2f
of Eq. (4.8) one makes use of Schwinger'so value
—po/2pr = —0.001163 for this number. The num-

ber taking place of f.00f82 on the right side of
Eq. (5.1) is then 1.00174(4). The preliminary
result of Foley and Kusch" for the ratio of the
g' for s~/2 of Na to the g' for P~/2 of Ga is 3.00732
&0.00018 which according to Eq. (5) is 1 —2p, /po
which gives 2p, /pp = —0.00242&0.00006 in good
agreement with the value in Eq. (4.8). It is

understood, "however, that there is other experi-

"I. I. Rabi, private communication.
's H. M. Foley and P. Kusch, Phys. Rev. 73, 271 (1948).
i'll I. I. Rabi and P. Kusch, private communication.

No correction is being made here for the e8ect
of centering of the electron's wave function on
the proton within the deuteron which has been
brought out by Bohr. ' The latter eR'ect is an
order of magnitude smaller than that of Eq. (4.8).
It is absent for the lighter isotope of hydrogen
and need not be considered in connection with
Eq. (4.8) if only measurements on the lighter
isotope are used.

From Eq. (4.3) one obtains for the ratio of two
values of g' for two spectroscopic terms I, I I

g r/g n 2pe f 1
-=1+ -I ——

I

gt/git Po ~gz gzx~.

f 1 iq
=1+0.00242

]
———[, (5)

(gII gI)

(H"')/(H"'), = —1/Lk(2L+1)]. (6.1)

In connection with the Lamb-Retherford-Bethe'~
line shift one has substituting numbers into
Eq. (6)

(H'")„,= —11 64(p, /. pp) (Z'/n') cm '
= —3.49&&10'(p,/pp)(Z4/n') mc/s, (6.2&

(H'")p* = —1.455(/. // o)Z' cm-'
= —4.36)& 104(/4/pp)Z4 mc/s. (6 3)

For the value of p, /pp corresponding to Eq. (4.8)
one has for the displacement of 2s the value
0.00176 cm '=53 mc/sec. and for p, /pp= —n/2pr

the displacement is 0.00169(2) cm ' = 51 mc/sec.
These amounts are small in comparison with the
total shift" of about 1000 mc/sec. According to
Eq. (6.1) the shifts of the 2pg/p 2pp/p terms are,
respectively, —~ and +6 of the shift of the 2s
term. The expected separation between 2s and

2p~ /pr pd oceudbHy'"is . 002304cm '=70mc/sec.
for Eq. (4.8) and 0.00226 cm-'=68 mc/sec. for

/, // o
———a/2 pr.

Dt. Comer. USrom

The addition of a six-vector type of interaction
between the electromagnetic held and the elec-
tron spin variables to the usual four-vector type
is in good agreement with experiments on the

'4H. A. Bethe, Hendbuch der I'kysik {Verlag Julius
Springer, Berlin, 1933), Vol. 24/I, p. 211.

"Willis E. Lamb and Robert C. Retherford, Phys. Rev.
72, 241 (1947).

mental evidence which indicates that Na is an
exception and that Schwinger's —a/2pr is favored
by experiment.

The expectation value of H"' is expressed in
terms of a radial integral by means of Eq. (1.93).
Substitution of the Schroedinger function ap-
proximation for the radial integral gives Eq.
(3.3). The electric field is supposed to be central
but not necessarily Coulombian in this formula.
For the Coulombian case well-known formulas"
for Ps'(0) and (r ') give on substitution into
Eq. (3.3)

(H"'), = —2 (n,/yp) 0.'Z'n 'Ry,

where n is the principal quantum number and Ry
is the value of the Rydberg in ergs. Also for the
same n the ratio of (H'") for a term with LAO
to that for I.=0 is
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hyperhne structure of the hydrogen isotopes and
on the Zeeman Efkct of gallium and other
elements.
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preparation of this paper. His thanks are also due
to Professor Schwinger for a helpful discussion.

Note ie proof. The results of the present paper which
matter most for comparison with experiment are the ratios
of contributions to the hyperfine structure interval factors
and to the spin part of the Lande g factor contained in

Eqs. (3.5), (4.2). It appears desirable to supply an explana-
tion of these results making more use of physical pictures
than has been done above. This may be done in the follow-

ing way. The four-component Dirac equation can be re-
duced to an approximate two-component form which
shows" the ordinary hyperfine structure in the absence of
p,. as arising from three effects: (a) an interaction of
nuclear spin and electronic orbital angular momentum
having an r ' dependence and proportional to the scalar
product of the two angular momenta; (b) an interaction
of the nuclear spin with the electronic spin having the
same mathematical form as the interaction energy between
two magnetic doublets; (c) an additional interaction energy
of n.uclear and electronic spins which matters only for
s terms, giving in this case the whole hyperfine structure
effect.

'~ G. Breit, Phys. Rev. 3'I, 51 (1931).

Spin contribution
=1/2k

Total
(L WO)

Spin contribution

Total
(L =o)

which differs from Eq. (3.5) only through the absence of
the factor —p,./po. This is as it should be because the
contribution of p,, arises, in the approximation of small
Z from a spin current which differs from the current that
gives rise to ordinary hyperfine structure in the absence of
p. the proportionality factor —p,./po. This is seen to fit in

with Eq. (4.2) above and in the limit of small P the effects
of p just discussed appear as though the number p, o were
changed into po —p,, wherever the interaction of the mag-
netic moment of the electron spin is dealt with.

For L&0 only effects (a) and (b) matter. %'hen their
sum is projected onto the total electronic angular mo-
mentum one finds that the answer depends only on L and
J in agreement with the fact that the interval factor is
proportional to L(L+1). But it is clear that the scalar
product of the interaction energy with J must contain
(L+e/2)L for the effect (a) and consequently —(eL}/2
for effect (b). The ratio of the contribution corning from
interactions with electronic spin to the total is, therefore,

—(eL)/2L(I +1)
= —

I J(J+1)—L(L+1)—S(5+1)j/2L{L+1)
=1/2k. (&)

For L =0 on the other hand only effect (c) matters and the
ratio of the electronic spin contribution to the total is
un. ity. One has thus


