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Theory of Strain Interaction of Solute Atoms*
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A general method is developed for evaluating the strain-energy interaction of solute atoms
in body-centered and in face-centered cubic lattices. The method has many features in common
with that used in the evaluation of the interaction of electric or magnetic dipoles, a surface
distribution of forces replacing a surface distribution of electric charge or of magnetic poles.
Particular emphasis is given to the interaction of interstitial solute atoms in b.c.c. lattices,
where the possibility exists of a self-induced preferential distribution of solute atoms in one of
the three types of tetragonal interstitial positions.

I. INTRODUCTION

HE present study was undertaken for the
purpose of understanding the strain inter-

action of interstitial solute atoms in body-
centered cubic (b.c.c.) meta1s. Many of the
problems encountered were found to be common
to substitutional as well as to interstitial solu-

tions, and not to be con6ned to b.c.c. lattices.
In this paper primary emphasis is therefore
placed upon the general theory.

The particular interest of interstitial solutions
in b.c.c. lattices lies in the tetragonal symmetry
of the interstitial positions in these lattices. As
was erst demonstrated by Snoek' in his anelastic
studies of alpha-iron containing carbon and
nitrogen, studies which have been recently ex-
tended by Ke' to tantalum, the positions occu-
pied by interstitial solute atoms in b.c.c. lattices
are of the type (0, —', , —',), or (—',, 0, —',) or (—',, ~, 0).
These three positions have tetragonal symmetry
with their tetragonal axes along the x, y, or s
principal axes, respectively. They will be desig-
nated as the x, y and s type positions. In the
absence of an externally applied stress, and of
strain interaction, the interstitial atoms will be
distributed at random among the three types of
positions. %'hen a tensile stress is applied along,
say, the s axis, the equilibrium distribution of
solute atoms will be one in which more atoms are
in the s type position than in the other two. The
continual striving of the solute atoms to maintain
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the equilibrium distribution during cyclic vibra-
tion gives rise to the anelastic effects observed,
and interpreted in this manner, by Snoek. On
the other hand, even in the absence of an ex-
ternally applied stress the existence of a strain-
energy interaction between the solute atoms gives
rise to the possibility of a self-induced preferen-
tial distribution. The author has previously sug-
gested, without, however, a detailed analysis,
that it is just such a self-induced preferential
distribution which gives rise to the tetragonality
of martensite, alpha-iron supersaturated with
atomically dispersed carbon. Such a self-induced
preferential distribution would, of course, have
a critical temperature above which, in the ab-
sence of applied stresses, the distribution would
be random. Nevertheless, the effect of the order-
ing tendency should be detectable above the
critical temperature in the magnitude of the
preferred distribution induced by an externally
applied stress, just as coupling in ferromagnetic
materials inAuences the magnetic susceptibility
above the Curie temperature. Such an eR'ect has
been sought by Ke,' with negative results. The
magnitude of this effect above the critical tem-
perature will, of course, depend upon the mag-
nitude of the strain-energy coupling between the
solute atoms. The calculation of this coupling is
one of the objectives of this paper.

When solid solutions are quenched consider-
ably below their solubility limits it has fre-
quently been observed, ' through x-ray diHfrac-
tion studies, that the solute atoms segregate
along certain crystallographic planes prior to

s C. Zener, Trans. A.I.M.E. 167, 550 (1946).' C. S. Barrett, Structure of Metals (McGraw-Hill Book
Company, Inc. , New York, 1943) p. 470.
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8= —,'(FIIki+ F22h2)

+g(F21711+F12I12) r

mhere the force coefficients are defined as

F],——a],h].

(3)

(4)

The first term in Eq. (3) would alone give the
strain energy if the two atoms were so far apart
that the coupling term a~2 were negligib1e. This
first term is not, however, itself independent of
the coupling. Thus, if we regard a~2 as a first-
order small quantity, I"2 will give rise to a first-
order small change in h~, and hence to a first-
order small change in the first term of Eq. (3).
If, however, the force Fi has a potential VI(III),

precipitation of the stable phase. The driving
force for such segregation may of course reside
in the difference between the bonds linking like
and unlike atoms, the strain energy playing only
a minor role in determining the shape of the
segregate region. On the other hand it is possible
that in some cases the driving force for segrega-
tion arises entirely from strain-energy inter-
action. A second purpose of this paper is to
examine this possibility.

H. GENERAL THEORY

One can enumerate many ways in which
solute atoms may interact, as for example by
electrostatic forces if they carry a net charge.
In this paper we are considering only that inter-
action which arises from a coupling of their
strain energies.

The essential features of strain interaction
can best be obtained by an analysis of an auxili-
ary problem. Suppose two atoms of a lattice,
designated by subscripts 1 and 2, are acted upon
by external forces I"~ and F2. These forces are
then linear functions of the components of the
resulting displacements along the direction of the
applied forces. Thus if hi and h2 are these dis-
placement components, then

F1 IIIIIII+II12II2 &

~2 a12~1+a22~2.

The strain energy of the lattice is a quadratic
function of k~ and h2, and hence may be written as

8= -', (Fib i+ F2I22).

In view of Eq. (i), this strain energy may also
be written in the form

the value of h~ in the absence of interaction is
such as to minimize the sum

2 FI IIII+ Vl(III) ~

The first order changes in this sum, due to
the coupling between the two atoms, vanishes.
If we therefore neglect second-order small quan-
tities, the change in the total energy introduced
by the coupling between the two atoms is given
by the second term in Eq. (3), namely by

aint 2 (F21III+ F12I22) ~ (3)

The force coefficient F2~ may be interpreted as
the external force which must act upon atom 1

in order to maintain its displacement component
hi zero in the presence of the force I'2 acting upon
atom 2. This force coeFficient may also be in-
terpreted as the negative of the force f2, 1 with
which the rest of the lattice acts upon atom 1

when the two displacement components have
the values (0, II2) respectively. The strain energy
interaction may thus be written in terms of these
lattice forces as

aint =
2 (f2, II21+fl, 2I22) ~ (6)

It is to be particularly noted that the sign of
the interaction energy is negative if the lattice
coupling forces f, ;are in , the same direction as
the displacements h;. At first sight this conclu-
sion seems erroneous, since under these condi-
tions strain energy is increased by the coupling.
This apparent contradiction is removed when me

recall that the total energy includes the poten-
tial of the applied forces, and that in the case
under consideration the lowering of these po-
tentials more than compensates for the rise in
strain energy.

One further simplification will be introduced
before passing to our original problem of solute
atoms. We have already considered the coupling
ai2 as a small-order correction, and have neg-
lected second-order small changes in the quan-
tities ~FIIhi+ V(hi) and 2F224+ V(h2). In order
to take into account these second-order small
changes we would have to know more precisely
the form of the potentials VI(hi) and V2(f22). We
are therefore not justified in retaining second-
order small quantities in the right side of Eq.
(6).Since the lattice forces ftiand fI, 2 are ,already
first-order small quantities, the displacement
components h~ and h2 will be regarded as having
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those values which minimize ~F~~k~+ V~(h~) and
—,'F~2h2~+ V~(k~), respectively, i.e., h; will be re-
garded as the solution of the elastic problem in
which only the force potential V;(h, ) is diff'erent

from zero.
The characteristic feature of the forces ex-

erted by a solute atom upon a lattice is that the
resultant of all the forces is precisely zero. In
b.c.c. and f.c.c. lattices these forces occur in

pairs, the two forces of each pair being equal in

magnitude but opposite in direction, their line
of action passing through the solute atom posi-
tion, and acting on two atoms symmetrically
placed on either side of the solute atom. Thus a
substitutional solute atom in a b.c.c. lattice is
associated with four pairs of forces, each pair
acting along one of the four cube diagonals. An
interstitial solute atom is associated with three
pairs of forces. If it is occupying a z type position,
one pair acts along the 3' principal axis, the other
two along the [110]and [110]axes. The pairs
of forces will be called force dipoles. %'e shall
denote each corresponding pair of solvent atoms
by the subscript o", the relative radial displace-
ment of each atom of the pair with respect to
the other, referred to their equilibrium displace-
ment, we shall denote by h;„j denoting the as-
sociated solute atom. Each system of force di-
poles will then have a potential which is a func-
tion of the corresponding displacements h; . The
interaction energy may then be generalized from
the form of Eq. (6) to

In our former equation for the interaction energy
the force coeScient f&, ~ was the force exerted by
the lattice upon lattice atom 1. In the present
equation the coefficient fq q, is the radial force
dipole exerted by the lattice upon the pair 0 of
solvent atoms associated with solute atom 1

while the relative separation of all pairs of lat-
tice atoms surrounding solute atom 1 are held
fixed when solute atom 2 is introduced.

III. LONG RANGE FORCES

In estimating the strain energy interaction of
solute atoms, we shall adopt the conventional
procedure used in estimating the interaction of
magnetic or electric dipoles. Thus, in estimating
the strain energy interaction of a particular

solute atom 1 with all other solute atoms, we
imagine this solute atom enclosed by a small
sphere, and that all the other solute atoms are
outside this sphere. In the first approximation
we consider that the positions of the solute
atoms outside the sphere are completely inde-
pendent of the presence of the single solute atom
within the sphere. The interaction computed in
this manner will be called the long-range inter-
action. In the second approximation we take
partially into account the eHect of the presence
of the single solute atom inside the sphere upon
the positions of the solute atoms outside the
sphere. The change in the interaction energy
introduced in this approximation will be called
the short-range interaction.

From Eq. (7) we note that the effect of solute
atom 2 upon the strain energy of solute atom 1

may be expressed in terms of that stress pattern
at the site of solute atom 1 which is induced by
the presence of solute atom 2. In the evaluation
of the long-range interaction it is therefore
sufticient to compute the stress within the sphere
arising from the presence of all the solute atoms
outside the sphere. In the evaluation of this
stress we continue to follow the conventional
method used with magnetic and electric dipoles.
For interstitial solutions, in place of considering
a discrete number of sets of dipole forces, one
set for each solute atom, we shall consider that
a set of dipole forces is associated with each
potential interstitial position, the magnitude of
the forces in each set being equal to the actual
magnitude for a solute atom times the atomic
concentration of solute atoms referred to the
number of potential lattice sites. A very similar
procedure may be adopted in the case of sub-
stitutional solute atoms in a b.c.c. or f.c.c. lattice.
Here the dipole forces specifically associated
with each solute atom are defined as the di6'er-

ence between the actual dipole forces exerted
by the solute atoms and the dipole forces which
would be exerted if the solute atom were re-
placed by a solvent atom. The net force acting
upon each lattice atom is thus precisely zero
provided this lattice atom is not near a surface,
either the exterior or the interior surface. The
problem of long-range interaction has thus been
reduced to finding the stress produced by a
system of surface forces.
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In the case of a substitutional solution in a
b.c.c. or a f.c.c. lattice the net force acting on

any element of surface is directed normal to the
surface, and is in the direction away from the
uniform distribution of force dipoles provided
the solute atoms are larger than the solvent
atoms. For our present purpose we are not
interested in the magnitude of the surface
density of this force, but only in the fact that
this surface density is uniform and is independent
of crystallographic orientation, being the same
on the interior surface as on the exterior surface.
The forces acting on the exterior surface will

give rise to a hydrostatic tensile stress through-
out the specimen, including the interior of the
sphere. The magnitude of this hydrostatic tensile
stress will simply be the bulk modulus X, times
the observed dilation of the lattice, O. On the
other hand, the forces acting upon the interior
spherical surface will give rise to a compressive
stress which tends to counteract the stress pro-
duced by the forces acting on the external sur-
face. However, the inner surface forces must
not only compress the inner sphere, they must
also compress the whole of the surrounding lat-
tice, i.e., the surrounding lattice must be de-
formed so as to maintain contact with the com-
pressed sphere. Now the elastic modulus for the
compression of a sphere is E, while the elastic
modulus for the compression of a spherical
cavity' is (4/3) p, where p is the rigidity modulus.
That fraction of' the surface force which is
available for compressing the sphere is therefore
the ratio E/(E+4p/3). The net hydrostatic
stress 0 within the sphere is therefore given by

with
(4/3)~

CL =
Z+ (4/3) p

Upon taking as an example the typical case of a
Poisson ratio of 1/3, we 6nd that n itself has a
typical value of 1/3. Jt is of interest to note that
the present treatment gives the correct value of
zero strain interaction in the limiting case of a
Auid, for in a Quid the rigidity modulus p, , and
hence n, is precisely zero.

Our next step is to evaluate the eiTect of the
' A. E. H. Love, Mathema6caI Theory of Elasticity (Cam-

bridge University Press, Cambridge, 4th ed. , 1934) p. 18'7.

hydrostatic stress 0 upon the strain energy of
our solute atom. Towards this end we consider
a unit volume to which we apply a hydrostatic
tensile stress a. The number of solute atoms will
be denoted by n, the total energy of the system
by E. If we now denote by U the energy re-
quired to introduce a new solute atom under
conditions of constant stress, exclusive of the
work done by the applied forces, then

dE —Odv = Udn. (10)

This equation may be written in the form of a
perfect diR'erential, namely as

d(E av) =——ed~+ Udn,

from which we deduce

(8 U/8&r) „= (Bs—/Bn) . . (12)

In our actual problem the stress 0. is produced
by the forces of the solute atoms within the
lattice itself. These forces have of course a po-
tential, and the dilation of the lattice is just such
as to minimize the sum of these potentials and
of the strain energy. In evaluating the change in

energy associated with the introduction of a
solute atom into our spherical regiorl, we must
therefore neglect the change in strain energy
crdv, as this is compensated by the change in
the potentials of the solute atoms. We may there-
fore apply Eq. (12) for the variation of the
energy of a solute atom due to the long-range
interaction of the other solute atoms. Ke may
thus write for the long-range strain interaction

Zg. t,
———(80/Bn). cr, (13)

where n is the number of solute atoms per unit
volume. Upon combining Eqs. (8) and (13) we

thereby obtain for the long-range interaction
energy

Since, at least for small concentrations, 0 is a
linear function of n„ this equation may be
rewritten as

Ez t = —nnX(BO/Bn)~ (15)

It is to be noted that Ez„t in this equation is the
increment in energy, due to the other solute
atoms, when one additional solute atom is in-
troduced. Since this is proportional to n, the
interaction energy per solute atom is just half
as great as given in Eq. (15).
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We shall now consider the interaction of inter-
stitial solute atoms in a b.c.c. lattice, where the
stress pattern surrounding each solute atom has
tetragonal symmetry. So far we have emphasized
the similarities in the interaction of solute atoms
and of magnetic and electric dipoles. A considera-
tion of interstitial solute atoms in a b.c.c. lattice
provides us with the opportunity of pointing
out some striking dissimilarities in the two types
of interaction. Suppose, for example, that we
have a single crystal in which only the z type
positions are occupied, and further that the
solute atoms in these positions are associated
with only a single force dipole, acting parallel
to the z axis. The long-range inAuence of all the
other solute atoms upon one particular solute
atom may then be represented as the effect of
two sets of surface forces, one acting on the
external surface, and one acting over the surface
of a sphere surrounding the given solute atom.
The external surface force will give rise to a
pure tensile stress Z, whose magnitude is inde-
pendent of the shape of the specimen. The mag-
nitude of Z, is identical in the case of a thin
slab normal to the z axis as in the case of a long
rod along the z axis. The shape invariancy of
the effect of the surface forces is of course in

marked contrast to the corresponding cases with
magnetic or electric dipoles. The physical in-

terpretation of this difkrence lies in the fact
that the stress 6eld produced by the mechanical
forces is confined to the specimen itself, while
the magnetic and electric 6elds produced by a
surface distribution of poles are not so confined.

In the case of actual interstitial solute atoms
in b.c.c. lattices, we cannot consider each solute
atom as equivalent to a single force dipole. If
such were the case, then when all the solute
atoms were in the same type of position, e.g. ,

the z type, the observed contraction along the
x and y axes would be related to the extension
along the z axis by the appropriate Poisson ratio.
Thus in the case of carbon dissolved in iron this
ratio would be 0.37. Its observed~ value in
martensite is 0.15, indicating that at least in
this system the solute atoms exert radial forces
upon the neighboring four atoms lying in a
plane normal to the z axis.

' S. Epstein, The AQoys of Iron end C'arbor, I. (McGraw-
Hill Book Company, Inc. , New York, 1936) p. 212.

The stress in the interior of our sphere due to
a preferred distribution of sets of dipole forces
not having cubic symmetry is diAicult to evalu-
ate. The author has not been able to evaluate
the constant 0. in the relation corresponding to
Eq. (8). It is anticipated, however, that only a
slight error will be made by assuming this con-
stant to have the same value as in the case of a
hydrostatic tensile stress. We shall therefore set

(X.) c„c„cu /e. ,)
F„~=a cu cu c~ I e„„(8a)

k Zs ) c12 c12 cll (s~~)

as the relation between the stress in the interior
of the sphere due to long-range interaction and
the over-all strain produced by the solute atoms.
The interaction energy associated with this
stress may be found by an analysis identical to
that used in the case of a hydrostatic tensile
stress. We 6nd that the effect of the stress
upon the energy required to introduce a solute
atom into a given type of interstitial position is

+zan= —P» b&g&g~ (13a)

where be& is the ith principal strain attending the
introduction of one solute atom per unit volume
into the given type of interstitial position, and
0.

& is the ith principal stress.
Equations (8a) and (13a) will now be used to

evaluate the in8uence of long range strain inter-
action upon the relaxation associated with a
stress-induced preferential distribution of inter-
stitial solute atoms in one of the three types of
interstitial positions. We suppose a tensile stress
a is applied along one principal axis, hereafter
called the preferred axis. We shall denote by
N~ and N„ the number of solute atoms per unit
volume, in the preferred and non-preferred type
of interstitial positions, respectively, and by
be~, be„ the increments in principal strains along
the preferred and along one of the non-preferred
principal axes, respectively, introduced by one
atom per unit volume into a p position. Upon
denoting the preferred axes by the subscript 1,
the principal strain components associated with
the solute atoms become

(eg, ~, eg) = l &~be~+N„be„,
—,'N„be, +(N„+$N )be„, (16)
$N„be, +(N, +$N )be„},

and the change in long-range strain energy inter-
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hs ——Tp/(T yTp), — (20)

Tp = (2/9)nEipp(bep —be„)', (21)

in agreement with Polder, and where the con-
stant y has the explicit form

y = (3/2) L(cii+cip)/(cii+2cip)fee. (22)

In the author' s' original derivation of Eq.
(20) the constant y was undetermined, and was
assumed to be of the order of magnitude of
unity. The recent measurements of Ke' upon
the relaxation strength associated with inter-
stitial solute atoms in a b.c.c. lattice showed
definite disagreement with Eq. (20) when p was
taken as unity. Upon taking our previously
estimated value of a, namely 1/3, and upon
observing that C» is always less than C», we
find that y varies between 1/3 and 1/2, being
0.38 for iron. The data of Ke are not suffi-

ciently extensive to distinguish between the
above lower theoretical limit of 1/3 and his
assumed value of zero.

The change in the constant p from unity to
0.38 for the case of iron has important theo-
retical consequences.

' As was shown by Polder, '
the data on the variation of the lattice param-
eters of martensite with carbon concentration
may be used in conjunction with Eq. (21) to
obtain an explicit expression for Tp for iron con-

~ D. Polder, Philips Research Reports, 1, 5 {1945).

action associated with the transfer of one solute
atom from an ip to a P interstitial position be-
comes, according to Eq. (13a)

b U= —(be, be„—) (p, —p „). (17)

When we now utilize Eqs. (8a) and (16) to
compute o„and a„, we find

bU= a(X—, siN—„)(cii cip)—(bep be„—)' (1.8)

We now utilize this explicit expression for the
change in Iong-range strain interaction energy to
compute the equilibrium value of N~ ——,'X„, as
was first carried out by Polder' for an arbitrary
bV, and compute the relaxation strength

~s—= (&v —&s)/&ip, (19)

where Ep is the elastic modulus Bmp as measured
under conditions in which N~ remains constant,
and Eg is the same modulus measured under
conditions in which N~ has its equilibrium value.
We find

T, =470X,. (23)

According to this equation, the carbon concen-
tration would have to be above 0.64 wt. percent
for the critical temperature to lie above room
temperature. The self-ordered structure of mar-
tensite has been observed at carbon concentra-
tions as low as 0.4 wt. percent. We are therefore
led to believe that the long-range strain inter-
action between the carbon atoms is not sufficient
alone to cause the observed self-induced ordering.
One possibility is that the strain-interaction
between close pairs of carbon atoms is of such a
sign and magnitude as to aid the Iong-range
strain interactions in establishing an ordered
distribution. This possibility is investigated in

the following section.

IV. SHORT RANGE STRAIN INTERACTION
AND SEGREGATION

Interesting qualitative conclusions may be
reached merely by considering the general form
of the strain interaction as developed in Section
II. %'e there saw that the strain energy inter-
action of two solute atoms 1 and 2 is negative
if the force resulting from solute atom 2 upon
the nearest neighbors of solute atom 1 is in the
same direction as that exerted by solute atom 1
itself. In applying this rule it would appear un-

profitable to consider cases where the solute
atoms are themselves nearest neighbors, since in
such cases the interaction will usually be domi-
nated by types of interaction other than strain.

The first example to be considered will be
substitutional solutions in b.c.c. lattices. If two
solute atoms are neighbors along a principal
axis, as in e of Fig. 1, having four common lattice
atoms as nearest neighbors, the strain inter-

C. Zener, E/asticity and Anektsticky of Mehxls (Uni-
versity of Chicago Press, Chicago, I11inois, 194S) p. 125.

taining carbon, namely

Tp = 1190X, (23)

where X, is the weight percent concentration of
carbon. Now the critical temperature for order-
ing by Iong-range interaction is very close to
yTp, namely'

T,= 1.05' T.

One should therefore anticipate that for iron
the critical temperature would be igven by



STRAIN IN TERACTIDN

action will be negative. Thus in this case the
cosine of the angle between the vectors from
each solute atom to a common nearest neighbor
is positive, namely 3 &. On the other hand, if the
two solute atoms are situated as in b of Fig. 1,
having two neighbors in common, the corre-
sponding cosine is negative, namely —3-&, and
hence the two solute atoms repel one another.
A still less favorable situation is illustrated in c
of Fig. 1, where the two solute atoms tend to
displace a common nearest neighbor in opposite
directions. We conclude that the strain energy
interaction of substitutional solute atoms in

b.c.c. lattices is highly dependent upon relative
crystallographic orientation, a common (100)
axis being preferred, while a common (110) or
(111)axis tends to be avoided. By examining in

a similar manner the interaction between solute
atoms spaced further along a (100) axis than
one lattice constant, we conclude that they like-

wise have a negative interaction strain energy.
A linear array of solute atoms along a (100) axis
thus has a lower strain energy than if the solute
atoms were in pairs, which paired system in

turn has a lower strain energy than if the solute
atoms were atomically dispersed. %'e next in-

quire as to whether a planar array, formed by
placing linear arrays side by side, would have a
still lower strain interaction. At first sight it
would appear that the energy would. not be
lowered since, when two linear arrays are placed
next to each other so as to have a common face,
the attraction of each solute atom by its nearest
neighbor in the other linear array is exactly
counteracted by the repulsion of the two next
nearest neighbors. However, in a plane array of
solute atoms in a plane containing two crystallo-
graphic axes, the strain will be confined essen-

tially to the unit cubes containing the solute
atoms, the strain outside these unit cubes de-
creasing exponentially as we go away from the
plane of solute atoms. Such a planar array must
therefore have a lower strain energy than an
assembly of isolated linear arrays.

If we exclude from our discussioa the case of
nearest neighbor solute atoms, as discussed
above, the case of substitutional solution in

f.c.e. lattices appears less interesting. It seems
that no strong strain-energy attraction between
two substitutional solute atoms can be obtained
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FK'. 1. Examples of strain interaction.
Q Solute atom; ~ solvent atom.

for any positions. Thus if two solute atoms are
one lattice constant apart along a (100) axis, the
common nearest lattice neighbors are displaced

by the two solute atoms in directions normal to
one another. 'If the two solute atoms are on

opposite corners of the face of a unit cell, the
displacements of their common lattice nearest
neighbor due to the two solute atoms are in

opposite directions, and hence the solute atoms
repel one another. A similar situation of no
strong strain energy attraction exists in the case
of interstitial solutions in f.c.c. lattices. In order
that substitutional so)ute atoms may form a
stable planar array in a f.c.c. lattice, it appears
as if they must themselves be nearest neigh-

bors, and hence interactions other than strain
energy must be operative.

Since considerab1e data are available regard-

ing the interstitial solution of carbon in the
b.c.c. lattice of alpha-iron, this case will be
treated in considerable detail. The energy of the
iron lattice will be considered as expressible in

terms of central force bond energies, i.e., bond
energies which are a function only of the distance
between the two atoms under consideration. As
is well known, ' such a representation of the lat-
tice energy cannot be exact, since it woulel re-

quire that the Cauchy relations between the
elastic coefficients be satisfied. For a cubic metal
these relations reduce to the single equation

C» =C44.

In most cubic metals this relation is far from

being even approximately satisfied, c» being

' A. E. H. Love, reference 5, pp. 616—627.
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a'A = (3a'/2) c41,
a'B =a'(cii cia)/2— (27)
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Fg(j. 2. Bond energy of iron atoms in b.c.c. lattice,
computed from elastic constants.

greater than c44 by a factor as great as 3. How-
ever, in the case of iron, this relation is approxi-
mately satis6ed, c» being only 22 percent greater
than @44.

Once we have decided to use central force
bonds, and hence require that the lattice satisfy
Eq. (26), only two elastic coefFicients, or inde-
pendent linear combinations thereof, are avail-
able for specifying the force constants of the
bonds. We shall therefore consider only two
types of bonds, those between nearest neighbors,
and those between next nearest neighbors. These
will be designated as the a and p type bonds,
respectively. In the unstrained lattice the n
bonds are along the (111)axes, the P bonds along
the (100) axes. The two shear coeKcients cia

and (cii —cia)/2 will be chosen to determine the
force constants of the a and p bonds, correspond-
ing to the fact that the local distortions sur-
rounding solute atoms are primarily shear dis-
tortions. We denote by A and 8 the force con-
stants of the n and p bonds, respectively, i.e. ,

A =d'U /dr'
B=d'Up/dr',

where U and. Up are the corresponding bond
energies, and where the second derivatives are
to be taken at the value of r corresponding to an
unstrained lattice, namely

(+3/2)a, a bond
a, p bond,

where a is the lattice constant. One then finds
that

Upon taking the known values of the two shear
coeScients' for iron,

c44 = 1.16X 10"dynes/crn'
(cii —cia)/2 =0.48 X 10",

we find

(28)

a'A = 4.j. X10 "ergs
595,000 cal/mole bond, (29)

8=0.276A. (30)

Z =4'Ue +2&»egg
X =Cllc +C12(C +8 ). (32)

"E.Goens and E. Schmid, Naturwiss. 19, 520 (193j.).

One could interpret the force constants A and
8 as being the second derivatives of a single
bond energy U(r) taken at the distance of sepa-
ration corresponding to nearest and next nearest
neighbors. An estimate of U(r) has been ob-
tained by expanding in a Taylor series about
r =a up to.the cubic term, and determining the
three coefFicients by the condition of stability
with respect to a cubical expansion and by the
condition that the second derivation at (+3/2)a
and at e reduce to A and 8, respectively. An
estimate of V obtained in this manner is repro-
duced in Fig. 2.

We are now in a position to compute the dis-
tortion surrounding an interstitial carbon atom.
Suppose a carbon atom is at a s type position,
as in Fig. 3. It then acts downwards upon iron
atom 1, upwards on atom 2, and horizontally
upon atoms 3—6. In the preceding section we saw
how the over-all distortion may be computed in
terms of these forces. In the present case the
computation will be reversed, since the over-all
distortion is known from the data upon the
variation of the lattice parameters of martensite
with carbon content. Upon letting C be the
atomic concentration of carbon, the over-all
tetragonal strain in martensite induced by the
addition of carbon is given by'

e„=0.90C,
(31)e„=e» = —0.14C.

As discussed in the last section, the carbon atoms
may be thought of as giving rise to these strains
by means of a distribution of surface forces.
The dependence upon carbon concentration of
the stress system arising from this surface dis-
tribution of forces is
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The vertical force F~ acting upwards on atom 2

and downwards upon atom 1, and the horizontal
force Ii~ acting upon each of atoms 3—6, are
given by

CFr (a'/——2)Z.,

CFOG(

(a'/——2&)X,. (33)

Ke now solve for these two forces from Eqs.
(31)—(33), and express the results in terms of /I

through Eq. (27), obtaining

I"p =0.50aA,
I'~ =0.3003.. (34)

An approximate description of the distortion
of the lattice in the vicinity of the carbon atom
is now obtained by allowing all the atoms shown
in Fig. 3 to attain those positions which mini-
mize the strain energy, all other atoms of the
lattice being held constant. %'e 6nd that atoms 1

and 2 are displaced along the vertical axis by
the amount

bIQQ =0.052@;

and finally, atoms 7—14 are displaced along the
corresponding (111)axes by the amount

5jyy =0.0226.

With these distortions, and the general theory
developed in Section II, some conclusions may
be drawn regarding short-range strain energy
interaction of carbon atoms in iron. We shall,
somewhat arbitrarily, take the radius of the
sphere surrounding a carbon atom as equal to
one lattice constant, a. Interstitial positions lying
on or outside of this sphere will then be regarded
as potential sites for other carbon atoms. We
sha11 consider the given carbon atom as being
in a z type position, as in Fig. 3. Of the six nearest
potential z type positions, the two on the same z
axis have a strong positive interaction, the four
lying on the same x—y plane have fairly strong
negative strain interaction, namely —2000
calories/mole. If p is the probability of any
given potential interstitial position being occu-
pied in the absence of interaction, the above

8$QQ =0.j.3c;

atoms 3—6 are displaced in the horizontal plane
radially away from the carbon atom by the
amount
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Fro. 3. Vicinity of carbon atom in iron lattice.
Q Carbon; iron.

mentioned interaction reduces the probability of
occupancy of two of the neighboring z type
positions from p to essentially 0, at the same
time increasing the probability of occupancy of
four of the neighboring s type positions from p
to 28p, the factor 28 being the value of
exp(2000/RT) at room temperature. The short-
range interaction thus greatly increases the
average number of carbon atoms in a neighboring
z type position. On the other hand, the nearest
potential x and y type positions correspond to a
positive interaction, and hence to a reduction
in the probability of occupancy. We therefore
conclude that in the case of carbon in iron, the
short-range interaction aids the long-range in-
teraction in giving rise to a self-induced prefer-
ential distribution.

While the conclusions regarding long-range
interaction have been expressed in terms ap-
plicable to any solute atoms in any b.c.c. or
f.c.c. lattice, the above conclusions regarding
the short-range interaction of carbon atoms in
iron cannot be extended to the general case of
interstitial solute atoms in b.c.c. lattices. Each
case will have to be examined separately. Thus
we anticipate carbon will introduce considerably
less distortion in the b.c.c. lattice of tantalum,
which has a larger lattice constant than iron. If
the strains are half that in iron, the interaction
energy will be reduced by approximately a factor
of four, resulting in an increase in the proba-
bility of occupancy of a neighboring interstitial
position of like type by a factor of only 2.3,
rather than of 28 as in the case of iron.


