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PtC16. This was subsequently decomposed to
platinum metal. The same procedure was re-
peated a third time in an attempt to prepare
platinum entirely free of iron, iridium, gold, and
':oppel .
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APPENDIX II: CHEMICAL PURIFICATION OF
THE IRIDIUM FRACTION

The filtrate from the (NH4)2ptC16 precipita-
tiog contained any iridium present, including
some added as a carrier before the precipitation
with NH4Cl. Small amounts of palladium and
rhodium were added, the solution diluted to 400
ml, and the palladium precipitated with di-
methylglyoxime. After standing one hour, the
precipitate was separated by filtration and
washed with dilute (1:99) HC1 and hot water.
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Fr|-. 7. Disintegration scheme of gold (199).

To the filtrate was added sodium nitrite, then
Na2C03 to make the solution neutral. After
boiling, the solution was slightly acidified and
Na2S solution added to precipitate rhodium
sulfide. The filtrate containing iridium was made
alkaline with Na~C03 and iridium sulfide was
precipitated with Na2S. The iridium precipitate
was washed and ignited.
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A thermodynamic treatment has been made of a second-order transformation in two-com-
ponent systems. In addition to the requirement that there be no heat of transformation and no
volume change, it turns out that the composition is equal in the two phases. Equations have
been developed for (dT/dx)p, (dx/dI')z, and (dI'/dT)~ along the equilibrium curves. If we
assume that the transformation of liquid helium remains second-order on the addition of a
mole fraction x of He' to a He' solution, then for the limit of very dilute solutions

('dT/dx)p=21 deg. and (Cx/dP)z =6)&10 4 atmos. '.

I. INTRODUCTION

" 'N order to give a thermodynamic treatment of
~ - the change in temperature of the lambda-
point of liquid helium with pressure, Ehrenfest'
was led to the concept of thermodynamic transi-
tions of higher order. In the usual phase transi-
tions there is a discontinuity in the temperature
and pressure deriva, tives of the free energy (the
entropy and volume, respectively) but the free
energy is equal in the two phases. Such a trans-
formation was called first-order by Ehrenfest.
At the lambda-point of liquid helium the free

' P. Fhrenfest, Comm. Leiden Suppl. No. 75b.

energy and its first derivatives are equal on both
sides of the transformation but there is a discon-
tinuity in the second derivatives of the free
energy in crossing a line in the pressure-tem-
perature plane along which the transformation
occurs. This was called a transformation of the
second order. Similarly, a transformation of the
nth order is one in which a discontinuity first
appears in the nth derivative of the free energy.

Recent experimental investigations of the
properties of dilute solutions of the isotope He'
in ordinary helium make it of interest to inves-
tigate the thermodynamics of higher order
transitions in systems of more than one com-
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ponent. The treatment given will, for reasons of
brevity and simplicity, be con6ned to two-com-
ponent systems and to a second-order transition.
The same methods can be extended to more
complicated systems and to higher order transi-
tions.

Ke take as variables the pressure, P, tem-
perature, T, and the mole fraction of component
two in each phase, x(I) and x(II). Of these four
variables any two may be independently chosen
when the phases are in equilibrium. The condi-
tions for equilibrium between the phases is that
the partial molal free energies of each component
be equal in the two phases,

Ci(I) =Ci(II) and Ci(I) =Gi(II), (1)

and that fol any variation

dGi(I) =dCi(II) and dCi(I) = dpi(II), (2)

if the two phases are to remain in equilibrium.

[aG,(I)/a TjdT+ [aC,(I)/aP jdP
+[BCi(I)/ax(I) jdx(I)

= [BC,(II) /BT jdT+LBC,(II)/BP jdP
+fBCi(II)/ax(II) jdx(II) (3)

with a similar equation for 62. By eliminating
dx(II) between the two equations one obtains

[(8,(I)—8,(»)) (BG,/ax(II))
(8&(I) 8&(—II) ) (BGi—/ax(II)) jdT

—[(V (I)—V (II})(BC,/ax(II} )
—(Vi(I) f/i(II) ) (BCi/—ax(II) )jdP

[(BCi/ax(I)—) (BCi/ax(II) )
—(BCi/ax(I) )(BCi/ax(II)) jdx(I) =0, (4)

where the substitutions

BC/BT= —8, the partial molal entropy, (5)

I and II. For a first-order transformation the
coefficients of dT, dP, and dx(I) will be finite,
and one may immediately write down the ex-
pressions for (dP/d T),&r &, (dx(I)/d T) p, and
(dx(I)/dP) &. Also, since there is a similar
expression for dx(II), the coefficients (dx(I)/
dx(II)) p and (dx(I)/dx(II)) r may be obtained.

In a second-order transition the coefficients
of d T, dP, and dx(I) will be zero. If the coefficient
of dx(I) vanishes, x(I) must equal x(II) or the
composition must be equal in the two phases.
The coefFicient of d 1then becomes

(1 —x)58i+xd, 82 =65,

where S is the total entropy per mole. Likewise,
the coefficient of dP becomes —5 V. The require-
ment that the coefficients of dT, dP, and dx(I)
vanish is equivalent to saying there is no entropy
change (or no latent heat) and no volume change.
58i, 682, AVi, and AP2 are not individually zero,
but are related by the expressions

~8i/&82 =~Vi/~ Va =x/(x —1),

and from the Gibbs-Duhem relation

x/(x —1)= [BCi/ax(I) j//[BGi/ax(I) j
= [BC,/ax(II) j/[BC2/ax(II) ]

= [aaC,/ax]/[aaC, /ax|. (10)

If we require that the transformation remain
second-order then the coefficients of d'1, dP, and
dx(I) in Eq. (8) must remain zero along the
transition line. If we call A the coefFicient of d T
then

(dA/dx(I)) p=O=(aA/ax(I))
+ (aA/ax(II)) (dx(II)/dx(I)) p

+ (BA/a T) (d T/dx(I)) p.

and
BG/BP = I, the partial molal volume, (6)

Since (dx(I)/dx(II))p=1 along the transition
line, we obtain

have been made. Using the t"ibbs-Duhem equa-
tion,

x(BC2/»)+ (1 x) (BGi/—ax) =o

Equation (4) becomes

[(1—x(II))n8, +x(II)aS~jdT
—[(1 x(II) )6$'i+x(II)—3 Vi jdP
—[I—(x(II)/x(I)) j

&& [BCi/ax(I) ldx(I} =o, (8)

where 6 indicates the difference between phases

(dx/dT) p=~Cp/T(a. 8, a,8,). -
The coefficient of dx(I) in Eq. (8), represented
by C, when differentiated in the same fashion as
A above does not give a determinate equation
since

(BC/ax(I))+ (BC/ax(II)) (dx(II)/dx(I)) p =0.

However, the requirement that C remains zero
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RTA(8 lnK/BT)

is that x(I) remain equal to x(II), or that (dx ) h(8 lnK/BP)
dx(I) =dx(II) along the transition curve. Sub-
stituting in Eq. (3), we obtain

(dx/d T)p =68g/(686g/Bx) = AS2/(DBC2/Bx)
D(8 V/BT)

= (58g —58 2)/(5 BC(/ Bx—ABC2/Bx).

t'dT)

Edx&

A(8 lnX/Bx) RT'h(8 lnK/BT)

5(81nK/BT) ACp

RTA(8 1nX/BP)
(17)

h(8 V/BT)
'See G. N. Lewis and M. Randall, Thermodynamics

(McGraw-Hill Book Company, Inc. , New York, 1923)
Chapters XVII and XX for the de6nition of fugacity and
the discussion of the laws of. the dilute solution.

In a similar fashion one obtains the equations
summarized below.

(d T/dx) p ——5(86'/8 )x/6S) ——A(862/Bx)/6S
= I b, (BC~/Bx) a(—862/Bx) ]/

L~~& —~s,]
= T(hiS& 582—) /C p

= —(AVg —AV2)/h(8 U/BT), (11)

(dx!dP), = —~V,/a(86, /Bx)
hV—g/(862/Bx)

= —L~V, —~V,]/
Lb.(BC)/Bx) h(8—62/Bx) ]

S(8 V/BT—)/(S8, S8,)—
=5(8U/BP)! (6 V g 5l'.), —( l 2)

(dP/dT), =AS)/hVg =5Sg/DV2
= (AS' —682)/(AVE —6V.)
= ECp/Th(8 V/BT)

= —A(8 V/BT)/5(8 V/BP) (13).
II. APPLICATION TO DILUTE SOLUTIONS

In the limit of very dilute solutions the pre-
ceding equations may be simplified. In the limit
of x=0, 8&=S and V& ——V so that ~S& and ~V,
both are zero for a second-order transition. We
can also use Henry's law, f=Kx, where f is the
fugacity. ' Then, using the well-known thermo-
dynamic treatment of dilute solutions, at x=0,

862/Bx= (RT/x)+RT(8 lnK/Bx),
(BCg/Bx) = RT, —

A/2= RTa(8 lnK/BT), — (15)

AVE ——RTA(8 lnK/BP). (16)

Then Eqs. (11) to (13) become

~dPy
I dT),

3(8 lnK/BT)

h(8 V/BP)
(18)

RTD(8 InK/BP)

3(8 lnK/BP) Th(8 V/BT)

6(8 V/BT)
(19)

3(8V/BP)

III. CHANGE TO A FIRST-ORDER TRANSITION

We have treated the case where the transition
remains second-order over a finite range of
pressure, temperature, and composition. We
may consider that the diR'erence in free energy
between the two phases is expanded in a, Taylor's
series around a point where the transition is
second-order. The coeAicients of the first-order
derivatives wi11 be zero and the requirement that
they remain zero involves the vanishing of a dis-
criminant of the coe%cients of the second-order
terms. ' 4

This condition is expressed by the equality of
the various terms in Eqs. (17), (18), and (19). lf
this condition is not met, then the transition is
second-order at only one point and changes te a
first-order transition when the composition is
changed. For convenience we assume that the
singular point is at x =0.The fugacities are equal
in the two phases so x(I)K(I) =x(II)K(II).
Then Eq. (8) becomes

55d T—6 Vdi'

+RT(1—(K(I)/K(II))]dx(I) =0. (20)

The coe%cients of dT, dP, and dx(I) are zero,
i.e. , the transition is second-order, at x =0.
To determine the slope of the equilibrium line
we must determine the limit of the ratios of the
coefhcients as x approaches zero.

K(I)dx(I) +x(I)dK(I)
=K(II) dx(II) +x(II)dK(II)

3 P. S. Epstein, Textbook of Thermodynamics (John Wiley
and Sons, Inc. , New York, New York, 1937), pp. 128-133.' P. W. Bridgman, Phys. Re&. 'IO, 425 (1946).
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along the equilibrium line, so when x is small

dx(II)/dx(I) =K(I)/K(II) = 1, (21)

and we need not distinguish between dx(I) and
dx(II).

(d T/dx) p Lim——itRT[(K(I) /K(II) ) —1]/AS

= [RTA(8 lnK/Bx)
+RTA(8 InK/BT)(d T/dx) p]/
[ RTA(8 —InK/BT)

+ (Acp/T) (dT/dx) p]

or

(d T/dx) p = JRTA(8 lnK/BT)
+[(RTA(8 lnK /BT))'
+ACpRA(8 lnK'/Bx) ]&]/

(ACp/T). (22)

In a like fashion

(dP/dx) T, = J RTA(8 InK—/BP)
a [(RTA(8 lnK/BP))'

A(8 V/BP)R—TA(8 InK/Bx)]&]/
A(8 V/BP), (23)

(dP/d T), = [ A(8 V/8 T)—a [(A(8 V/8 T))'
+ (ACp/T)A(BV /BP)]&]/A(8 V/BP). (24)

In these expressions the double sign of the
square root corresponds to the existence of two
equilibrium lines in the (T, x), (T, P), or (P, x)
planes. These lines mark first-order transitions
bebveen the phases and at their intersection the
transition becomes second-order. If one of the
quantities under the square root sign in Eqs.
(22)—(24) is zero, then in the corresponding plane
the two lines coincide and the transition is
second-order in that plane. If any two of the dis-
criminants are zero then the third must be also
and Eqs. (17)-(19) are obtained.

If one of the products in a discriminant is zero,
then one of the lines in the corresponding plane
becomes parallel to an axis. Thus, for example,
if in Eq. (22) A(8 Ink/Bx) =0, then one of the
lines is (dT/dx) p=0.

When the transition is second-order along an
equilibrium line, then the extrapolation of the
free energies of the two phases would yield the
result that one phase is stable on both sides of the
line and the other can exist only along the line
itself. We must therefore say there is some

physical reason not included in the thermo-
dynamic treatment that one phase becomes
unstable. This point has been discussed by
Bridgman4 and Keesom. ' When the transition
is second-order only at a point and changes to
first-order along two equilibrium lines, we per-
haps must discard some regions on the basis of a
physical argument.

IV. APPLICATION TO LIQUID HELIUM

The recent measurements of Fairbank, Lane,
Aldrich and Nier' on the distribution of He'
between liquid and vapor He4 may be used for a
thermodynamic calculation of the initial slope
of the temperature-composition curve for the
lambda-transformation. These authors measured
Cv/C&, the ratio of the concentration of He' in
the vapor and the liquid, as a function of tem-
perature for both helium I and II. We may with
su%.cient accuracy treat the gases as ideal in
which case the fugacity equals the pressure. The
solutions were very dilute, around one part per
million of He, so the limiting laws may be used.
Then fr=Ex, f4 P, the——vapor pressure of He',
Cv=fm/P, C~=x=fm/K, or Cv/C~=E/P. Then

d In(Cv/Cz)/d(1/T)
= [d InK/d(1/T)] —[d InP/d(1/T) ]
= —[(H8(gas) —Hq)/R]

+ [(H4(gas) —H4(liq. ))/R].
When In(Cv/C&) is plotted against 1/T one
obtains two straight lines which, within the
accuracy of the measurements, intersect at the
lambda-point, but which are very di6'erent in
slope. From the data of Fairbank, Lane, Aldrich,
and Nier' one obtains from the slope above the
1am ha-temperature,

H4(gas) —H4(liq. ) —(Hs(gas) —H s)
=14 cal. mole '.

Taking the heat of vaporization of He',

H4(gas) —H4(liq. ) =22 cal. mole '

at the lambda-temperature, then the partial
molal heat of vaporization of He', from helium I,
H~(gas) HO=8 cal. mole—'. From the slope

~%. H. Keesom, Helium (Elsevier Publishing Company,
Inc. , Amsterdam and London, 1942), Chapter V.' Fairbank, Lane, Aldrich, and Nier, Phys. Rev. 73, 729
(1948).
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below the lambda-temperature

H4(gas) —H4(liq. ) —(Ha(gas) —Hq)
= —147 cal. mole —'

and at the lambda-temperature

Hs(gas) H~ —169——cal. mole '.

Above the lambda-point the heat of vaporiza-
tion of He' from the solution is less than that of
He' as one might expect from the greater zero-
point energy of the lighter isotope. The very
large heat of vaporization below the lamba-point
is unexplained. It should be pointed out that B3
is a measure of the change in enthalpy on the
addition of an infinitesimal amount of He' to a
He' solution, and the large energy e8ect may be
because the addition of an atom of He' causes a
lowering in energy of a large number of He4

atoms.
The data of Fairbank, Lane, Aldrich, and

Nier' indicate that at the lambda-point Cv/Cz,
is equal in the two phases, or that K(I) =K(II)
The coeScient of dx(I) in Eq. (20) is therefore
zero. 65 and hV are also zero for He', and, in

fact, remain zero along g curve in the I', T plane,
but their derivatives are finite along this curve.

AHg ——TASg —RT'6(8 l——nK/BT)
=161 cal. mole —'.

The value ACp = —7.6 cal. mole ' deg. —' has been
chosen by Keesom'. Although it is not possible

to assign a very exact value on the basis of the
experimental measurements, the value chosen
proved to be consistent with the observed dis-
continuity in BV/BT and the observed change
of the lamba-temperature with pressure as related
by Eq. (19). If we assume that the transition
remains second-order along a line in the 1, x
plane, then by Eq. (17) (dT/dx) p =21 deg. And
taking (dP/d T),= —80.8 atmos. deg. ' from
Keesom, ' by Eqs. (18) and (19), (dx/dP)r=6
)&10 4 atmos. '. It should be emphasized that
these values apply only to the limiting case of
very dilute solutions.

Thus the initial slope of the temperature-com-
position curve for the lamba-point will be an
increase in temperature of about 0.2' per mole
percent of He' added. The accuracy of the experi-
mental data is not high, but unless the vapor-
liquid equilibrium measurements on He II are
very much in error one can definitely conclude
that the lambda-temperature will be raised by
the addition of small amounts of He', provided
the transition remains second-order. There are
no available measurements on 6(81nK/Bx) so
the possibility that the transition goes over to a
first-order one in the T, x plane in accordance
with Eq. (22) cannot be excluded.
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