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The electrodynamics and thermodynamics of the superconducting state entail quite
definite consequences with regard to the stability character of the supercurrents. In con-
trast to a recent attempt of Heisenberg, superconductivity is characterized in the present
paper not as a state of electronic lattice order in ordinary space, but rather as a kind of con-
densed state in momentum space which implies a long-range order of the momentum vector

p =mv+ {ejc)A in ordinary space as a consequence of the requirements of quantum kinematics.
Indications are that it is most probably the exchange interaction associated with the Cou-
lombian field which is responsible for this condensation in momentum space. Ferromagnetism
and superconductivity thus would play the role of two opposite limiting cases of the same
effect depending on whether the exchange interaction, competing with the zero-point energy,
promotes parallel orientation of the electronic spins or a coordination of the translational
momentum in a state of vanishing total spin.

I ~HE appearance of a paper by Heisenberg'
on superconductivity gives me a welcome

occasion to publish a few remarks concerning
some related ideas I have nourished for several
years but had thought to withhold until I could
make a well substantiated contribution to this
subject. Since Heisenberg now employs the same
interactions that I had in mind but arrives at an
entirely different mechanism which, moreover,
in my opinion, does not yield superconductivity,
it might perhaps be justifiable and even of
interest if I brieHy develop my viewpoint. Of
course, I am quite aware of the necessarily
sketchy character of such a discussion.

interaction potential taken over the unperturbed
system, and this mean value disappears if the
metal is supposed to be electrically neutral.
Accordingly, only the second-order perturbation
is regarded as important. It is given by the
well-known expression of quantum mechanics:

w, = —P,' I Hp,
I

'/(8„Ep-)—
Here IIO„ is the transition element of the pertur-
bation matrix between the state 0 and the state
r and E0 and E, the corresponding unperturbed
energy values. For two electrons, 1 and 2, of the
momenta pp and p~ in the state 0 and p and p„ in

the state r the perturbation matrix has the form:

I. HEISENBERG'S SUPERLATTICE THEORY
Hp ——(e'/U') I it (&/Ir& —rpI

J 0Heisenberg's attempt is admittedly not to be
considered as a definite solution of the apparently
very difficult problem of a molecular theory of
superconductivity. He lays stress upon expressing
his intention by saying that he wishes to point out
a peculiar feature which perhaps characterizes the
place in the theory of metals where one might
look for an explanation of this phenomenon.

Heisenberg considers —and in this respect we
agree with him —the Coulomb inleractioe of the

electrons as essential for the establishment of the
superconducting state. He assumes the first-order
perturbation caused by this interaction to dis-
appear since it is given by the mean value of the

~ The work reported here was carried out under contract
Nionr-455 with the Gffice of Naval Research.

'W. Heisenberg, Zeits. f. Naturkunde 2a, 185 {1947).
5

Xexp I (2mi/lp) f(p„—pp) r~

+(p- p~)rp jldr~drp—
=(4 h"'/i'I p- pI')b(p. +p -p. p. ),---

where
j. for p =0,
0 fo, p~o.

Here we can no longer agree with Heisenberg.
The undisturbed state is highly degenerate as
a result of the spin and the identity of the
electrons. Consequently there might be a first-
order effect in spite of the system's being neu-
tral. On the basis of his argument Heisenberg
would entirely invalidate his own well-known
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theory of ferromagnetism, ' since this theory is
essentially based on a first ord-er Coulombian
perturbation effect in neutral systems, the so-
called exchange effect.

Let us, however, first follow Heisenberg' s
reasoning to its conclusion. A second-order effect
is generally due to a perturbation of the eigen-
functions and thus it is surmised that the plane
waves of the ordinary theory of metals may not
be a suitable starting point. Particularly the
states near the surface of the Fermi lake might
be greatly disturbed by the presence of the
Coulomb interaction. Consequently, it appears
preferable to abandon the perturbation method
and to start with more suitable wave functions
on the basis of the variation method. Heisenberg
considers monoelectronic functions in momentum
space of the type

p(pp) =expLQ. (cos8 —1)—p(p —P)], (2)

where a and P are the parameters to be deter-
mined by the minimum principle, I' = the limiting
momentum of the Fermi distribution, p, 8 =polar
coordinates in momentum space. By this form
for the wave function he anticipates a certain
range, tl ', of the momentum distribution. This
has the consequence that, in ordinary space, he
obtains wave packets of the finite extension pk
instead of the usual plane waves of infinite
extension in space.

The result is that these localizable wave
packets would be arranged best in a kind of
space lattice similar to an earlier attempt of
Kronig. ' One may think of a lattice like the
Cscl-type in which the electrons of opposite spin
correspond to the two kinds of ions (see reference
1, Section 2C).

The decisive question is, of course: Why should
such a superstructure of electrons, which in itself
may appear quite plausible, entai1 supercon-
ductivity? Heisenberg gives an estimate of the
different energy contributions in this super-
structure from which he infers (reference 1, Eqs.
(62), (63), and (64)) that within a certain
temperature range T~&T&T0 an ordered state
with a current would be the thermodynamically

~ W. Heisenberg, Zeits. f. Physik 49, 619 (1928); see also
F. Bloch, Zeits. f. Physik 5/, 545 (1929).' R. de Lar Kronig, Zeits. f. Phvsik 'l8, 744 (1932); 80,
203 (1932).

most stable one, where To is the transition
temperature of the superconductor. But for the
lowest temperatures, 0(T & T~, he obtains a ground
state without currents. He suggests that even at
these lowest temperatures, for which a state
without macroscopic current is the thermo-
dynamically most stable one, the presence of a
"crystal germ" could give rise to a great number
of elementary "current threads" of a fixed
current strength and direction playing a role
similar to that of the gneiss' domains in the the-
ory of ferromagnetism. Normally these threads
would be distributed at random and would not
give rise to a macroscopic current. But if these
current threads could "freeze out" and form a
monocrystal, this system might be unable to
rid itself of its macrocurrent by collisions with
the lattice of the ions. Apparently in virtue of
interactions which are not yet explicitly intro-
duced in the theory (surface eRects) it is thought
that a macrocurrent might be stable or rather
metastable after all.

Heisenberg claims that from this basis he
can derive an equation of the type:4

(8/Bt)(Aj, ) =E, (3)

(reference 1, Eq. (71)) where j, is the density of
the macroscopic supercurrent, 8 is the electric
field strength, and A a coefficient characteristic
of the superconductor. I have not been able to
follow Heisenberg's deduction here. But for the
sake of argument let us assume that Eq. (3) can
be derived on this basis. In fact an equation of
this type has been proposed' several times as
basis of a macroscopic electrodynamics of super-
conductivity in the sense of describing infinite
conductivity. But after the so-called Meissner-
Ochsenfeld effect' had been discovered it became
clear that the assumption of Eq. (3) leads to a
great number of current distributions which
cannot be realized within superconductors and
that one has to introduce a supp/ementary re
striction in order to obtain only the currents
which actually exist. This restriction can be

'Actually Heisenberg obtains an equation some~hat
more complicated than {3) {reference 1, Eqs. {70) and
(71)) but for the subsequent discussion this is not essential.

5 B. L. De Haas-Lorentz, Physica 5, 384 (1925); R.
Becker, G. Sauter, and F. Heller, Zeits. f. Physik 85, 772
{1933).

~W. Meissner and R. Ochsenfeld, Naturmiss. 21, 787
(1933).
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written in the form of the following equation

curl(Aj, ) = B/—'c.

Heisenberg infers Eq. (4) from Eq. (3) by a
purely thermodynamical consideration (reference
I, Section 4b). This proof is, however, dependent
on the assumption that here one has to deal with
a thermodynamical equilibrium state. But this
is precisely the assumption which appears not
a priori justifiable if one considers, as Heisenberg
does, superconductivity as the outcome of a
"freezing-out" process. Indeed, from Eq. (3)
and from Maxwell's curlE= —8/c one infers,
taking the curl on both sides of (3), that:

(8/Bt)(curlAj, +B/c) =0, (3)

or integrating with respect to time:

curlAj, = (Bp B)/c. — (5')

Here 80 is an arbitrary time independent vector
field playing the role of a frozen-in magnetic
field, entirely in disagreement with the experi-
mental finding of Meissner and Ochsenfeld,
though quite in line with the concept of an
inhnite conductivity implying the existence of
undercooked states. Assuming the equation Bo ——0
or Eq (4) w.ould go beyond the contents of (3);
this cannot be inferred on merely thermo-
dynamical grounds, at least not in a case in

which one has all reason not to accept without
proof, the realization of true thermodynamical
equilibrium.

Actually, Eq. (4) accounts for a fact which is
not yet implied by (3), namely that supercon-
ductors are not only uter conductors (j,/0,
8=0), but, moreover, ideal duirnagwstics (HWO,
Bp= 0). The latter property is not a consequence
of the former, nor is the former a consequence of
the latter.

We will not expatiate upon the strange feature
that according to Heisenberg's theory one would
have to distinguish between two temperature
intervals (0&T&T&) and (Ti&T&TO) of en-
tirely different stability character within the
superconducting state (0 & T & T0). While noth-
ing is known which would indicate the existence
of such a characteristic temperature TI., one
could perhaps say that T& might be lower than

~ F. and H. London, Physica 2, 341 (1935}.

all temperatures reached so far. **Thus one may
assume that actually one has to deal only with
the upper one of the two intervals (Ti & T & To).

Turning now to the case TI & T& To we believe
that a state endowed with a current, as the
thermodynamically stable one within this tem-
perature interval (reference 1, Eqs. (62), (63), and
(64)), would not furnish a satisfactory descrip-
tion of superconductivity as we know it today.

Heisenberg thinks of an asymmetric distribution
in momentum space, the asymmetry depending
on the direction of the current (reference 1,
Eq. (58)). That such a model would not be
compatible with the facts can be seen readily
if one realizes that it w'ould again entail a great
number of equivalent equilibrium states which
are actually not realized in nature. For instance,
an isolated superconducting sphere in thermal
equilibrium is free of any current as long as no
external field is applied, whereas from Heisen-
berg's model one would infer that a state with
spontaneous current should be stable even in
absence of any applied magnetic field.

Suppose superconductivity really were to be
interpreted by a great number of different
asymmetric equilibrium states corresponding to
the different current threads, as this is the case
with ferromagnetism for the difTerent orienta-
tions of the magnetic moment. Then one should
expect to find hysteresis whenever one tries to
change the direction or strength of a super-
current, say, by changing the direction or
strength of an applied magnetic field. Nothing
of this kind has ever been observed with super-
conductors and, indeed, any relaxation effect of
this sort would be quite incompatible with all
available evidence as to the peculiar mobility
by which the supercurrents adjust themselves
to the slightest changes of an applied magnetic
field. It is true, there are hysteresis effects in

superconductors. But they are exclusively con-
fined to the transition into the superconducting
state. There is no hysteresis as long as one stays
within the limits of the pure superconducting
state.

The same criticism also applies to a recent
attempt by Born and Cheng. ' These authors

Indeed H. Hoppe in a recent paper, Ann. d. Phys. 1,
4O5 (1947), comes to the conclusion that Tg=0.

M. Born and K. C. Cheng, Nature 161, 968 (1948}.
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again propose an asymmetric momentum dis-
tribution (in this case arranged in certain
"pockets" of the Brillouin zones) in order to
account for different permanent currents in the
superconductor. In reality there are no perma-
nent currents but at best permanent magnetic
Auxes and these occur exclusively in multiply
connected superconducting regions.

It is true that some "frozen-in" magnetic
fields are frequently found in simply connected
superconductors; but they are, according to all

evidence, generally to be attributed to non-

equilibrium structures, to porous superconduct-
ing regions with non. -superconducting inclusions,
etc. They can be entirely eliminated by using

very pure material and monocrystals. This is at
least the interpretation which has been widely
accepted and has found its general expression in
Gorter and Casimir's thermodynamics' and in

the electrodynamical equations (3) and (4). One

may, of course, question whether these thermody-
namics and electrodynamics are the last word
concerning the macroscopic interpretation of
superconductivity. But Heisenberg does not
question this, and we certainly would not expect
the macroscopic theory to be so fundamentally
wrong.

Supplement to Section I
After conclusion of the present paper I re-

ceived a copy of a manuscript of a paper,
"Ueber das elektrodynamische Verhalten der
Supraleiter, " kindly sent to me by Professor K.
Heisenberg. In this new paper Heisenberg with-

draws his previous thermodynamical proof of
the Meissner effect criticized above. However,
now he even undertakes to prove Eq. (4) and

the Meissner eRect by considering only the action
of the classica/ Lorentz force This aga.in is only
possible by way of an assumption which antici-
pates what actually is the main point to be
proven, namely, that case (A), applying the
magnetic field after the superconducting state
has been established, leads to the same velocity
distribution as case (8) in which the magnetic
field is applied already in the normal state and
the transition into the superconducting state is
done while the external field is kept constant.
Heisenberg actually considers only the first case

8 C. J. Gorter and H. Casimir, Physica 1„306 (1934}.

(A) and obtains our Eq. (4). However, it is by
no means trivial; on the contrary, it would just
be the task of a molecular theory of supercon-
ductivity to show why the two cases, A and B,
lead to the same result.

A. Gauge Invariance and Suyexconductor
Potential

We introduce the mean momentum field p, of
the superelectrons, defined as

p, = (rn, /n, e)j,+(e/c)A, (6)

where m, is the effective mass of the super-
electrons, n, their number per cm' and A the
vector potential of the magnetic 6eld (8=curlA).
We may then write Eq. (4) simply in the form

if we assume
curlp, =0,

m, /n, =Ae'.

(4')

Accordingly we may express the vector p, as the
gradient of a scalar y

pt =grady. (8)

This g, which we may call the "superconductor
potential, " is only dined uritkin the supercon
dmctor and, hence, needs not be single-vulged in

multiply connected superconductors.
The vector potential A is not uniquely defined

by the magnetic induction. B. It can be replaced,
as is well known, by an equivalent A' connected
with A by a "gauge transformation" of the form

A' =A+gradk,
' F. London, Proc. Roy. Soc. 4152, 24 (1935). See also"Une conception nouvelle de la supraconductibilite, "

Actuahtds Scientifiques et Industrielles 458 (1937).

II. CONCLUSIONS FROM THE ELECTRO-
DYNAMICS OF THE SUPERCONDUCTOR

Before one undertakes to develop a molecular
theory of superconductivity it might be well to
see how far the electrodynamics as expressed by
Eqs. (3) and (4) already allows one to draw
conclusions as to the kind of stability and the
type of order realized in the superconducting
state. Here we have parti~ to repeat, partly to
supplement, remarks which were published about
13 years ago. 9 Their meaning will perhaps be-
come clearer now when they are discussed in
connection with Heisenberg's attempt.
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w'here k is an arbitrary continuous scalar with

continuous first and second derivatives. Since k,
in contrast to x, is defined to be free of singu-
larities in whole space it has always to be single-

vclQed.
Jf we postulate the supplementary condition

divA =0

for A and for all equivalent A', then k has to
fu1611 the equation:

V'k =0. (11)
curlp, =0, (equivalent to (4)) (4')

satisfies (11) and (14'). Accordingly, for a given
magnetic 6eld 8 there is just one standard
vector potential A which, by the way, is de6ned
so as to disappear for B=0.

Consequently, p, is uniquely determined by
the current j, according to (5). Summarizing,
we then may say that under stationary condi-
tions the vector p, fulfills the following equations:
Within the superconductor:

divp, =0, (because of (10) and of the
continuity equation for j,) (10')From (9) it follows also that p, is not entirely

determined by the definition (6). But the differ-
ence p, —(e/c)A has a well defined meaning. If
A is transformed according to (9), then p, has
to be transformed likewise by

and at its boundary:

p,~ = (m, /r»»e)j, ~ (eq. uivalent to (14)) (14")

For a simply connected superconductor these
equations have one unique solution, provided

j,~ is given on its ~hole surface. Especially for
an isolated superconductor (j,~ =0) this solution
is well known to be

p,'= p, +(e/c) gradk. (12)

Ke may add that, correspondingly, in quan-
tum-mechanics any wave function f(ri, rm r

~ r~) which obeys a Schrodinger equation with
the vector potential A is'equivalent to a f'
which is defined by

p, =0.

P'=P expL(2nie/hc)P k(r )j,
and which fu1611s the corresponding Schrodinger
equation with A'.

It is possible and convenient to chose a
standard value for the vector potential with
respect to the superconductor. We may, for
instance, always chose A so that on the surface
of the superconductor

(16)p, .ds=(e/c)y»,
(&)

taken along a curve within the superconductor
around every hole, k, are given. The quantities p~
are approximately identical with the fluxes
through those holes and at the same time defined
as the moduli of the, in this case, multivalued
superconductor potential g .'

(14)A =0.

Indeed, if we had originally another vector po-
tential A' which did not fulfill (14), it would be
connected with A by a transformation of the
type of Eq. (9)

f
(A+Acj, ) ds= ~ B dS+Ac jds,

4 (a) (&)
(k)

For a multiply connected superconductor the
(13) solution of (4') (13) (14") is not uniquely

determined unless the line integrals

wltll Eq. (11)
A' =A+gradk = (e/c) grady ds = (e/c) (x)».

(Ic}

(gradk)i =Ai'. (14')

From well-known theorems of potential theory
it follows that there is just one single-valued
solution k w ithin the superconductor which

V'k =0,

where, according to (14), k has to fulfill the
boundary condition

By (x)» we denote the modulus of x, i.e., the
increase of g, when being continued once around
the hole k. From the differential equations (3)
and (4) it follows that the p» are constant in
time and independent of the path, insofar as the
path (k) embraces the hole k just once. In
general, the line integral Ac3f'j, ds is negligible
compared with the surface integral J'J'B.dS.
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j,= —A, /Ac. (15')

This means that there is a well defined current
in a magnetic field and no current in the absence
of any magnetic field. In addition, we have the
equation of Maxwell's theory (we neglect the
displacement current and assume as magnetic
permeability p, = 1:

curl curlA = (4s /c)j. (»)
It can be shown that in a simply connected

isolated superconductor Eqs. (15') and (17)
uniquely determine the current by the field in
infini&y as a kind of surface current located
within a layer of the very small depth of c(4s A)&

behind the surface of the superconductor.
Compare Eq. (15') with the behavior of a,n

isolated ordinary conductor in a magnetic field:
In the absence of an electric field there is no
ordinary current; hence we have, in contrast to
(15'), in a normal conductor:

j„=0,
and instead of (15):

p„= (e/c)A.

The latter is a very simple consequence" of the
fact that the Hamiltonian X of free electrons in
a magnetic field is given by:

3C = (p —(e/c)A)'/2m. (20)

Hence a superconductor is distinguished from a
normal conductor by the feature that something
prevents the momentum p, from assuming the
local ~alue of (e/c)A and, hence, from minimizing
the kinetic energy expression (20). We may char-
acterize the superconducting state by saying
that n, electrons per cm' maintain a kind of

' As long as one can disregard quantum e6'ects this (Eq.
(19)) simply followers from the fact that the distribution
function, f(K), is an even function of the components of
the vector p —(ejc)A. Hence J'(p-(e/c)A)f(3C)dP, the
integral over an odd function, must disappear.

B. Long-Rage Order of the Momentum Vector

Equation (15) does not necessarily say that
there is no current in a simply connected isolated
superconductor. In a magnetic field the momen-
tum vector is not necessarily parallel nor is it
I~roportional to the current vector; according to
(4') we may express (15) in the following way:

(c/c) p, =—Acj, +A =0,
or

long dis-tance order roith respect to their momentum

vector p, quite comparable to the ferromagnetic
state, in which case it is the electronic angular
momentum which is maintained over long dis-
tance by a cooperative order-disorder mecha-
nism.

We have chosen the standard vector potential
in such a way (Eq. (14)) that for the isolated
simply connected superconductor it is especially
the value p, =0 which is maintained by the long
range order over the whole body. In general we
can only say that the long-range order is ex-
pressed by the Eq. (4'), curlp, =0. For a straight
wire of constant cross section, which is fed at its
ends by a current, this still means simply

p, =constant over the whole diameter and length
of the wire whereas the current is very inhomo-

geneously distributed over the cross section and
is appreciable only near the surface.

Thus, summarizing this paragraph we may
say that the long-range order characteristic of the
superconducting state concerns, according to
Eq. (4), the momentum vector p rather than the
elementary current threads assumed by Heisen-
berg.

C. The Stability Character of the Suyercurrents

According to the macroscopic electrodynamics,
superconductivity is described in such a way
that an isolated simply connected supercon-
ductor has no current unless an external magnetic
field is applied. For a given applied field there
exists just one current distribution. " It is true,
at first sight it looks as if one could easily con-
ceive of a situation of lower energy, for instance
a state in which in an applied magnetic field no
current would be present. However, such a state
is not provided for by the differential equations
(3) and (4) of the superconducting state although
it would have less electromagnetic and kinetic
energy than the existing state with current. The
stability of the unique realizable state appears
here to be of a quite similar character as it was
the case in the older quantum theory of Bohr,
where it also was still possible to imagine non-
existing states lower than the ground state, and
the stability of the ground state had to be for-
mally accepted from the mere absence of such

"M. von Laue, Nach. d. Akad. der %'iss. , Gottingen
Math. Phys. Chem. Abt. , 86 (1946).
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lower states, excluded by the quantum condi-
tions. Indeed, Eq. (4) has very much the character

oj a guarstum coridilion, we called it a "supple-
mentary restriction" and we shall see presently
to what implications this will lead.

Summing up we may say that in the case of the
isolated simply connected superconductor the
currents are stable —not because they are "frozen
out" but rather because in the given applied
field there is no other current provided for, not
even zero current.

The case of a multiply connected su~a. rcon-
ductor, say a ring, requires special consideration.
In this case the occurrence of a permanent cur-
rent is not dependent on an applied magnetic
held. The field maintaining the current may here
be furnished by the current itself. But such a
ring current does not represent a state of mini-
mum free energy. The state in which the ring
has no current has, of course, less energy if no
external field is applied. Nevertheless, the state
with current has a kind of macroscopic metcsta-
bility. The quantities (16)

pk=(c/e) p, ds= ~ ~B dS+c~ Aj, ds
&a)

(k)

are constant in time as a consequence of (3) and

(4). It requires a firsite change of the macroscopic
variables, e.g. , heating above the transition
temperature or the application of a magnetic
field stronger than the threshold field, in order
to release the free energy locked in by the ring.

It is clear from this remark that it makes little
sense to speak of the stability of a single current
element. One has to consider the system as a
whole including the entire external held and its
sources. In fact, each current element has its
kinetic energy Aj,2/2 which has its minimum
for j,=Q. Nevertheless, a state j,/0 can be
entirely stable if it is the only one compatible
with the external applied field and v ith the
boundary conditions.

III. QUANTUM-MECHANICAL DESCRIPTION
OF SUI%RCONDUCTIVXTY

In the preceding section we have shown that
it is the quantity p, rather than the current j,
which in the superconducting state appears to
be held in a kind of long-range order.

The problem of superconductivity is accord-
ingly reduced to finding the mechanism which at
sufficiently low temperature enforces the estab-
lishment of this kind of order. Before we come
to this point it will be well to recall that Eq. (15)
and, for multiply connected superconductors, the
general Eq. (8) describe a very characteristic
situation if they are expressed in the language of
quantum mechanics.

It is well known that in non-relativistic quan-
tum mechanics, which at any rate should be
competent for explaining superconductivity, the
density of the electric current at the point R in
space for a state represented by the wave function
in multidimensional configuration space iP(ri, r2,

r, . rN) is given by:

j(R) =P f (he/4rrim) [P*grad P

—P grad, /*7 —(e'/mc)A(R)~~} bs dr. (21)

Here bg is the three-dimensional Dirac functioii
b(R —r ). The integration is to be extended over
the whole 3N-dimensional configuration space;
grad is the operator (B/Bx, B/By, B/Bs )

Q) ~~barr=n(R) (22)

is the particle number per cm'. Hence wc obtain

j (R) = —(e'&mc)ri(R)A(R). (23)

This is identical with Eq. (15 ) or, hence, Eq.
(15), provided that n(R) is a function sufliciently
smooth to be replaced by its "coarse-grained"
mean value. In fact, for plane waves ri(R) is
exactly constant.

To be sure, the plane waves are not eigen-
functions of free electrons in a magnetic field.
In reality the eigenfunctions of free electrons do
depend very definitely on the magnetic 6eld.
What happens is well known: the plane waves
coil up and transmute into a kind of wave
packets of cylindric shape, the axes oriented
parallel to the field. These eigenfunctions closely

A. Simply Connected Isolated Superconductor

If one substitutes plane waves distributed over
a Fermi distribution into the expression (21) the
terms with the gradients cancel by reason of
symmetry. The sum
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correspond to the corkscrew orbits of the classical
motion of free electrons in a magnetic field. In
thermal equilibrium they arrange in such a way
that Eq. (19),

p = (e/c)A(R),

is very nearly fulfilled. As we have seen, for
classical mechanics this equation is exactly ful-

filled. In quantum mechanics the uncertainty
relation entails a little difficulty as p cannot be
exactly prescribed at a given point in space R.
The result is the appearance of the diamagnetism
of free electrons first calculated by Landau. "
But this is a very small effect and may be
discarded here.

However the electrons in the superconducting
state are certainly not to be considered as free;
they have a lower energy than in the normal
state, realizable at the same temperature in a
strong magnetic field. If H, (T) is the so-called
magnetic threshold field, which limits the super-
conducting state, the free energy dift'erence per
cm3 between the normal state and the super-
conducting state is given by

(24)

The existence of an energy difference clearly
indicates that the superelectrons have yielded
to some interaction. Hence there is no reason to
expect them to behave like the coiling wave func-
tions of free electrons in a magnetic field.

Evidently, according to (21), it would be
sufficient to show that in the superconducting
state, as a result of those interactions, the
eigenfunctions would resist coiling when brought
into a magnetic field and, in fact, simply stay
exactly as they are without magnetic held, i.e. ,

as if they were frozen in. Although this would bc
by no means the only way of obtaining the
result (23) we will here consider this possibility
somewhat more closely. It means precisely the
opposite of the mechanism proposed by Heisen-
berg: we would expect sharp wave packets in
momentum space, sharp even in the presence of
a magnetic field, provided the field is smaller
than the threshold field. In ordinary space the
wave functions would be very widely extended,
just as the plane waves fill the whole available
volume. Heisenberg, on the other hand, suggests

'~ L. Landau, Zeits. f, Physik 54, 629 {1930).

a certain relative localizability in ordinary space,
a super lattice, and, correspondingly, some dif-
fusedness of the momentum distribution as de-
scribed by the wave function (2). According to
our concept the long-distance order of the mo-
mentum vector would be due to the wide exten-
sion of the individual quantum state, as each
plane-wave eigenf unction represents a constant
momentum vector throughout the whole volume.
We would have one single symmetric quantum
state for a simply connected isolated super-
conductor at O'A. while Heisenberg proposes a
continuum of asymmetric states.

B. Suyereondut:ting Ring

Thus far we have only considered an isolated,
simply connected superconductor. In order to
discuss the case in which an actual transfer of
electricity is brought forward it is simplest to
consider the case of a superconducting ring. In
a ring the superconductor potential may have a
modulus and we have, in general, to dkal with
Eq. (8) or

p, Aej, +(e/e)A =grady, (8')

where the modulus of x describes the Aux

possibly locked in by the ring.
In this case it is instructive formally to divide

the magnetic field 8 and its vector potential A
into two parts:

(25)+0++1,

A =Ap+Ag, (26)

in such a way that the total Aux of 8 and the
total Aux of Bp are the same, but Bp is chosen so
as to disappear entirely in the material of the
ring. For sake of illustration one may imagine Bp
caught inside a hollow cylindric superconductor
which has been put into the hole of the ring.
Although Bp is supposed to disappear within the
material, the vector potential, Ap, will not vanish
there. This simply follows from the fact that on
a closed path located entirely within the material

Ap ds= Bp dS/0.

Since curlA p =0 within the material, we may
write

A p =grad v,

I%here ~ has to be a multivalued function whose
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modulus (i) is just equal to the flux of 80,

( )
—f=grad ds= Bs dg.

In addition v has to fu1611 the equations

V'p =0 in the interior,
and

(grad))~ =0 on the surface.

By these conditions grads is uniquely determined
within the whole ring, Correspondingly, if
$0(ri, rg. r)g) is the wave function of the super-
electrons in the ring without Aux, we have to
write, according to (13),

((t =fo exp[2ri(e/hc) Q, g (r )j (28)

for the wave function embracing the field J30,

even though no magnetic field is yet in the ma-
terial itself. This transformation fo~iP as ex-
pressed by Eq. (28) is, evidently, quite generally
valid for any ring-shaped quantum-mechanical
system which embraces a magnetic Aux in such a
way as not to touch the Aux itself. We now add
the field Bi, supposed to be so small as not to
destroy superconductivity, and me further as-
sume that now, as mell as before, the supercon-
ducting state is characterized by that peculiar
rigidity of the wave function in. a weak magnetic
field. Then we may substitute the (I/ of Eq. (28)
in the expression for the current (21) and obtam

j= —(ne'/m(;)A i = (1/Ac)(gradv —A). (29)

This is exactly the relation (8') for the ring if we

put (s/(;) v =X. It would accordingly be sufficient
to prove this particular rigidity in momentum
space for a conveniently shaped, simply con-
nected, isolated superconductor. The properties
of the ring, and presumably also those of an open
superconducting wire which is fed at its ends,
would then follow automatically.

Obviously, the state represented by (28) is
not identical with )f/0', it is a metastable excited
state which is entirely determined by the fiux of
B. We see the requirement that (f/ be single-
valued imposes to the moduli of v and to the
fluxes tt a quantum condition,

(e/c)( ) = (e/c)d /pe(s X)s==
where E has to be an integer.

C. The Superconductor as a Quantum Mech-
nism Of Macroscoyic Scale

Summarizing the preceding discussion we may
say that the long-range order of the momentum
vector p, implied by the macroscopic electro-
dynamics (IIB) offers a peculiar possibility of
reducing superconductivity to a particularly
simple quantum-mechanical model: If the mo-
mentum vector statistics of at least a fraction of
the electrons is sharp, or else forms a sharp
lattice in momentum space, the wave function
has to be spread, according to the uncertainty
relation, over a wide volume in ordinary space,
and if, moreover, this fraction of the electronic
wave function remains essentially unchanged in
a magnetic field (&II,), then Eq. (4) follows
from (21). If this interpretation should prove
correct, then the characteristic stability and mo-
bility of the supercurrents would be understood
at the same time, vis. , as the outcome of a quan-
tum-mechanical possibility to which we already
have referred (IIC) when we characterized Eq.
(4) as something like a quantum

mechanical

-re

striction: In a simply connected, isolated super-
conductor, for instance, all possible currents
would be represented by the adiabatic transfor-
mations of one single quantum state and would
be entirely determined by the macroscopic bound-

ary conditi ons, viz. , by the orientation and
strength of this applied magnetic field in large
distance: There is exactly one single current dis-
tribution for each applied magnetic field, very
much the same as this is the case, say, for the
ground state of a diamagnetic atom. Correspond-
ingly, one has stability (absence of dissipation) of
this current because there is no state with another
current provided for in the given magnetic field.
The macroscopic, i.e., electrodynamical, bound-
ary conditions coincide here with the boundary
conditions which determine the quantum state.
Hence one may also say this interpretation
characterizes the superconductor as a pure
quantum mechanism of macroscopic scale.

This would be the situation at absolute zero.
For a finite temperature there are, of course,
excitations to be expected. Below the transition
temperature, however, a kind of phase equi-
librium will be established between the normal
and superconducting electrons, two phases, inter-
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penetrating each other in any volume element of
ordinary space but separated in momentum
space. Only a fraction of the formerly super-
conducting charges will still be connected with
the magnetic held by a. relation like (4) and
their number n, will be subject to thermal
Huctuations, while other degrees of freedom,
the lattice vibrations, will be excited. These
excitations cannot serve, however, to dissipate
the supercurrent, since the latter would still
be connected with the magnetic field as before
by Eq. (4) except that n, will undergo thermal
fIuctuations around a certain mean value. This
is quite comparable with the situation in a
diamagnetic molecule, which is also unable to
get rid of its diamagnetic current by transitions
between its vibrational and rotational states.
This is not because these degrees of freedom
would be entirely uncoupled from the electronic
motion, which is not true, but because in all these
states practically the same diamagnetic current is
maintained by the magnetic field. Of course,
there will be fluctuations of this current, as the
diamagnetism will not be quite the same in the
different vibrational and rotational states; and
in the case of the superconductor, there will be
current fluctuations in addition, because of the
fIuctuations of the number n, But these fIuctua-
tions would vary around a mean value of the cur-
rent density, which is the quantity which appears
as j, in (4); they would not open an opportunity
for a transition to a non-diamagnetic state.

We have now to investigate whether a mecha-
nism of this kind can be found among the ac-
cepted interactions between electrons in metals.

IV. THE EXCHANGE EFFECT OF THE
COULOMBIAN INTERACTION

In Section I we have referred to the exchange
effect of the Coulomb interaction playing the
basic role in the theory of ferromagnetism. In
the case of p„=p &

and p„=p» the matrix element
(1') represents the so-called exchange integral of
free electrons,

I»& =4~k'e'/ V
I p» p~ I

'—
corresponding to two states which dier only
insofar as two electrons have exchanged their
momenta. These two states have the same
unperturbed energy. Hence one has a highly

degenerate system aad in the theory of ferro-
magnetism one deals with the secular equation
defined by these matrix elements. The solutions
of this secular problem give the first-order
perturbation of the energy. In actual fact, up
to the present time no one has succeeded in

solving this secular problem ngorously. So far
it has been possible only to determine the series
of energy mean values of those groups of states
which have the same total spin s. With this sim-
plified energy spectrum the statistics have been
worked out in a magnetic field. How far this
procedure can be justified we do not know.

The exchange integral (31) is evidently always
positive In th. e case of two electrons with parallel
spins it is to be multiplied by a factor —1 in
order to give the first-order approximation of
the energy and by a factor +1 for antiparallel
spins. This favors ferromagnetism. Nevertheless,
ferromagnetism does not necessarily follow' from
this model, as was already shown by Bloch, '
since in order to have parallel spins the electrons
in question must have different momenta (Pauli
principle) and this may require more kinetic
energy than can be gained as exchange energy.

For the mean value of the exchange energy of
the group of states which have the total spin s
one obtains the following expression:

E.„,»(s, n) = —2 g I p Q I.»—
4s(s+1)+n(n 4)—

(32)
2n(n —1)

where the Greek indices refer to doubly occupied
electronic states and Latin indices to singly
occupied ones. n is the number of singly occupied
states. I»~ is given by Eq. (31). The kinetic
energy is, of course, given by

E»;„=(1/nt) p. p '+ (1/2m) Q p»' (33)

Bloch' determined as condition for ferromag-
netism of this model the inequality

(X/V) &)(3/4s.)&(1+2 &)F2/SnM' (34)
or

cy/ V~ 10"cm-',

where X/ V is the number of electrons per cm'.
Unless this inequality is fulfilled the lowest state
of the system has s=0.

True, this model has to be taken with several
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grains of salt, and indeed it is too crude to give
correct conditions for the appearance of ferro-
magnetism. In fact, it has been improved in
many respects particularly by taking account of
the lattice structure. Still a closer study of this
simple mechanism might be of interest. The gen-
eral behavior of the exchange integral (31) and
the negative factors with which it is multiplied in
I~. (32) show that even in a case in which the
exchange interaction is not strong enough to
bring the system into a ferromagnetic state this
interaction still has the character of a kind of
attractiopp ipp momentum space. All terms in (32)
are negative and proportional to (pp —p~) '.

One could understand that a mutual attraction
in momentum space might bring forward a kind
of condensation, something like a solid state in
that space, i.e., a state which not only has a
relatively sharp momentum distribution (which
would not mean anything particular as any
Fermi distribution of the ordinary plane waves
of free electrons would show this character) but
which, moreover, would maintain its sharpness
with respect to p even in the presence of a not
too strong magnetic field. As shown in III a
state of this kind would be just sufhcient for
bringing forth superconductivity.

Hence, all this boils down to the question of
whether the exchange eHect of the Coulomb
field actually entails such a condensation in

momentum space as suspected. This is a very
difFicult question which cannot be answered
without entering into a special investigation,
which would go beyond the scope of the present
paper. Here we shall point only to a few indica-
tions which seem to speak in favor of our
conjecture, but, as the same time, show that
relying on the mean value formula (32), so
instructive for discussing ferromagnetism, will
most probably be insufFicient for solving the
problem in question.

That superconductivity occurs at much lower
temperatures than ferromagnetism does in no
way exclude the possibility that both phenomena
might be due to the same kind of interaction.
In fact, this difference as to the characteristic
temperature is just what one would expect. In
the case of ferromagnetism the gain of internal
energy is of the order of the total exchange energy
itself' as the parallel orientation of the spins

The function (36) has for p =pp a logarithmically
infinite derivative and the components of the
so-called mass tensor

(37)m,„=(8'E/Bp,Bp„) '

vanish there as
I p —pp I.

A vanishing effective mess, as this is expressed
by (36) and (37), would imply a finite accelera-
tion by an infinitely small force. Obviously, this
is a rather formal result which may only serve to
indicate that in the neighborhood of the top of
the Fermi distribution the electrons behave very
"quantum-mechanically:" The smaller the mass
the greater the quantum effects. Accordingly,
the familiar mixed procedure, customary in the
electronic theory of metals, vis. , of first calcu-
lating energy bands in p-space (Brillouin zones)
and then applying classical mechanics on wave
packets is certainly not feasible here if we wish
to calculate the behavior of these electrons in a
magnetic field.

It is further noteworthy that the formula for
the magnetic susceptibility g of the so-called

~ P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 |,'1930),

entails, in (32), an increase of the factor
L4s(s+1)+pp(pp —4)]/2pp(pp —1) from $ to 1; in
addition, it decisively aGects the number of
states which are doubly occupied. On the other
hand, if in the superconducting state the elec-
trons arrange themselves only more closely in
momentum space without much change of orien-
tation of their spins, then only a eery small
fractiopp of the original exchange energy can be
released as only a minute diffusedness in the
momentum distribution near the surface of the
Fermi lake is removed by the condensation in
question.

Let us now consider N free electrons in a
volume V distributed over an entirely degener-
ated Fermi distribution of which the maximum
momentum pp is given by

(8pr/3)Pp' V= NhP. (35)
On the basis of Eqs. (31) and (32) it is not
difFicult to calculate the total exchange energy
of a single electron of the momentum p in the
field of the X other electrons as function of p
and pp. The result is well known" to be given by

E-.h(p) = —(2p~'/&) I1+[(pp' —p')/2ppo]

XinL(p+po)/I p —ppl]I (36)
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I.gedcN, -I'eierls durmegeefism, "which in the case
E=E(

~ p ~ ) can be written simply in the form,

x = (e'/—18~he') (E'+2pE")~-no, {38)

would give, in the present case, an infinite
diamagnetic susceptibility A. lso, this result is

entirely formal and nothing but an indicatioii
that here again an extreme effect is to be ex-
pected. It would be necessary to calculate the
simultaneous effect of exchange interaction an~i

magnetic field from the beginning and it would
presumably be decisive to take account of the
effect of the magnetic reaction field produced
by the diamagnetic currents, as the resultant
field in the interior of the superconductor would

be almost zero. One has here to keep in mind
that superconductivity is not correctly described
by any value of the magnetic susceptibility alone.
Hence, one would not be satisfied by calculating
the total magnetization only. It would be neces-
sary to consider the current distribution iti all
(.letail.

The level density at the top of the I erini
distribution would, according to (36), just dis-

appear, though only as feebly as I/In~ p —po~.
This indicates that in the interaction field (36)
the eigenfunctions near the top are less easily
deformed (lIIA) by an external magnetic field

than those of free electrons would be, since the
spacing of the energy levels (Eo—Ek) is decisive
for the first-order perturbations of the eigen-
functions:

4 = 4 0+Xi'p~oa/(Eo Ei)Qk, —

where Pk are the so-called "right" eigenfunctioii
of "zero" order.

However, it can be anticipated that it will

require a better approximation than the one
given by the mean value formula of the energy
spectrum, at least the exact solution of the
first-order secular problem but possibly even a
still better approximation which considers the
electronic correlation effect more appropriately.
The logarithmic singularity of BE/Bp (Eq. (36))
is apparently just too weak to cause a phase
transition at a finite temperature. This can be
learned from an investigation by Sampson and
Seitz" who studied the eRect of (36) on the

'4 R. Peierls, Zeits. f. Physik 80, 763 (1933)."J. B. Sampson and F. Seitz, Phys. Rev. 58, 633 (1940).

magnetic susceptibility of Li and Na on the
basis of the so-called Bardeen integral equation.
These i,»thors showed that the exchange efFect
as given by (36) would yield only a small contri-
bution to the magnetic susceptibility propor-
tional to In(e'po/hhT) and would not entail the
appearance of a discontinuity of the specitic heat
or a sudden condensation at a finite temperature.
However, Sampson and Seitz themselves make
several reservations as to the competence of
their approximation method and come to the
conclusion that even for their very limited aims
"the problem of the electron-electron correlations
has. not yet been solved with sufficient complete-
ness to say accurately to which extent the
minimum of the energy level density would be
infIuenced by their effect."

CONCLUSION

Thus v e come to the conclusion that the
problem of the molecular theory of supercon-
ductivity has not always been posed quite prop-
erly. We tried to show that on the basis of the
electrodynamics ancl thermodynamics of the
superconductor one can draw quite definite con-
clusions with regard to the stability character
of the supercurrents. In contrast to earlier
attempts our discussion led us to characterize
superconductivity, not as a state of electronic
lattice order, as this was proposed by Kronig
and quite recently by Heisenberg, but rather
as a kind of condensed state in momentum
space implying a long-range order of the momen-
tum vector in ordinary space, presumably as an
outcome of the requirements of quantum kine-
matics. We assembled indications which suggest
that it is most probably the exchange interaction
associated with the Coulomb field of the electrons
which is responsible for this "condensation in
momentum space. " Ferromagnetism and super-
conductivity v ould then be considered as two
opposite limiting cases of the same efFect, depend-
iiig on whether the exchange interaction compet-
ing with the zero-point energy promotes parallel
orientation of' the electronic spins or a coordina-
tion of the translational momentum in a state of
vanishing total spin. However, it had to be left
to the future to decide whether or not this
suggestion can be substantiated by a rigorous
theory.


