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The theory of the interaction of nuclear electric quadrupole moments with molecular rotation
is extended to asymmetric-top molecules containing one or two quadrupolar. nuclei. The first-
order theory is developed in detail, and in a form which makes use of published numerical
tables of line strengths of asymmetric-top pure rotation transitions, and involves the second
derivatives of the electrostatic potential V taken along the three principal axes of inertia. Only
two of these are independent, and {B'V/Bz") and (B'V/Bx")-(B'V/By" ) are a convenient
choice of the parameters of the problem. A general formulation of the theory, which includes
higher order effects, is given. In case a molecule contains only one quadrupolar nucleus, the
structure of the quadrupole multiplets should be sufFicient to identify pure rotation transitions.

1. INTRODUCTION

HE theory of the electric quadrupole inter-
action of nuclei and molecular rotation has

been developed for linear and for symmetric top
molecules containing one or two quadrupolar
nuclei. ' ' This paper extends the theory to
asymmetric-rotor molecules containing one or
two such nuclei, in a form which makes use, for
first-order work, of previously published nu-
merical tables of line strengths of asymmetric
rotors. ' These tables extend to rotational levels
involving J=12; a second paper will be con-
cerned with developing convenient asymptotic
expressions to be used for rotational levels for
which J)12. The eBects of accidental near
degeneracy and the small splitting of the higher
levels for a given J are considered.

2. THE FIRST-ORDER HAMILTONIAN

The first-order interaction of nuclear electric
quadrupole moments with the electric field of an

* The material of this paper is taken from a thesis sub-
mitted to the Faculty of Arts and Sciences of Harvard
University for the degree of Doctor of Philosophy in
Chemical Physics. Some of the work was supported by the
Navy Department through Contract NSori-76, Task
order V, Once of Naval Research.

Part of the material given here was presented at the
meeting of the American Physical Society at Columbia
University, January 28, 1948.' Kellogg, Rabi, Ramsey, and Zacharias, Phys, Rev. 57,
677 (1940).

'Dailey, Kyhl, Strandberg, Van Vleck, and %'ilson,
Phys. Rev. 70, 984 {1946).' D. K. Coles and %'. E.Good, Phys. Rev. 70, 979 (1946).' J.Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).

s P. C. Cross, R. M. Hainer, and G. W. King, J. Chem.
Phys. 12, 219 (1944): hereafter called CHK.
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atom or a molecule is described by the Hamil-
tonian"

Q;L(eQ;((O'V/Bs') )A,)/2J(27 —1)I;(2I;—1)j
Xt3(&; J)'+;(&; J) —i J'g (l)

where the I~ are the nuclear spin angular mo-
mentum operators and J the molecular angular
momentum operator. The summation extends
over all quadrupolar nuclei present. Q;, the
quadrupole moment of the nucleus, is defined by'

eQ; =e(3s r,')A, —

where r; is referred to the center of the ith
nucleus as origin. The average is taken over the
nuclear state 351=I. Also we have7

(O' V/Bs')A„——(Q~ e~(3 cos'e~ 1)/r~') All.
—

The average is taken over the state M& =J. Here
r; is the vector from the center of the ith nucleus
as origin to the molecular charge e;;8; is the
angle between r; and the space-fixed s axis.

The first-order problem consists of two parts,
(i) the evaluation of the dependence of the
((O'V/Bz');) on the rotational state, and (ii) the
approximate or exact solution of the secular
equation obtained from Eq. (1), which involves
obtaining the matrices of the operators in square
brackets.

e H. B. G. Casimir, On the Interaction between Atomic
Nuclei and Electrons, (E. F. Bohn, Haarlem, 1936).

~ The components of the dyadic VE have everywhere
been written in explicitly. For a linear molecule or sym-
metric top {B~V/Bz'~), where z' is a molecule-fixed axis,
becomes the q of Bardeen and Townes (see reference 4).
In the present problem z' will not in general coincide with
an internuclear bond.
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The result of the second part is obtained by
the same methods used for simpler molecules.
This rests on the independence of the operators
in square brackets of the symmetric-rotor
quantum number X, and hence also of the asym-
metric rotor pseudo-quantum number v. The
special dependence of (B'V/Bz')A„ for the various
molecular types introduces only a scale factor
into the expressions for the splitting of an energy
level.

For molecules containing one quadr upolar
nucleus the characteristic value' of the operator
in square brackets in Eq. (1) is

—,
' C(C+ 1) I(I+1)—J(J+1), (2)

where C = F(F+1) —I(I+1)—J(J+1) and F
takesthevalues I+I, J+I 1,

~
J—I~. iftw—o

quad rupolar nuclei are present, explicit ex-
pressions can be written only in some special
cases. ' In general one may set up the secular
equation by the method of Bardeen and Townes. '
It is also possible to write the secular equation in
either of the two vector coupling representations
I&+12=I, J+I=F or I~+J=F„F~+I2——F. The
former scheme is convenient for identical nuclei. "

The matrices of I~ J and I2 J in these schemes
can be obtained from previous work on atomic
spectra '0 "

The energies for molecules containing three
quadrupolar nuclei may also be obtained by
using the four-vector scheme of reference (10),
but the resulting expressions will be complicated,
and their application in analysis of spectra very
laborious.

3. ROTATIONAL DEPENDENCE OF (8'V/Bz')A

A principal task of this paper is the evaluation
of the average value of (B'V/Bz'-) in terms of
rotational quantum numbers and quantities
which are constants for a given vibrational and
electronic state. In work with asymmetric tops,
the expression obtained involves a transforma-
tion which depends on the asymmetry of the
molecule and the J-value in question. Therefore

8 If two identical nuclei of spin 1 or $ are present in a
molecule with CE axis, the secular equation factors suf-
ficiently to give explicit expressions for the energies.

H. M. Foley, Phys. Rev. /1, 751 (1947)."M. H. Johnson, Jr., Phys. Rev. 38, 1635 (1931)."E. U. Condon and G. H. Shortley, The Theory of
Atomic Spectra (Cambridge University Press, Teddington,
England, 1935}Chapter III.

an equation is derived which involves only quan-
tities which have been tabulated for J&12 in
CHK in connection with other work on asym-
metric tops.

(B'U/Bz"-) is the zz-component of the dyadic
VE (z here is a space-fixed axis). We may obtain
it in terms of the components along molecule-
fixed axes x'y'z' (which will be chosen as the
principal axes of inertia) by a transformation
involving the direction cosines between z and
x'y's'. The result is

B2 '[&/Bz2 —a 2(B2 U/Bx 2) +a z'R(B2 V/Byi2)

+a,.-'(B' V/Bz")

+2a„a,„..(B' V/B-x'By')

+2a„a„.(B' V/Bx'Bz')

+2a.„a.. (B' V/By'Bz') (3)

where the u's are direction cosines. According to
the definition of (B'U/Bz')A„ the right side is to
be averaged over the state J, r for which M J =J,
and also over the vibrational and electronic
state. (This latter averaging is only implicit in
our work).

In averaging the right side of Eq. (3), con-
siderable simplification occurs. The matrix ele-
ments of n„and n,„ in a symmetric rotor
representation vanish except for X'=%&1, and
those of n„except for X' =E." Thus the
matrices o.„e„and o;,„n„ in this representation
have non-vanishing elements only for E' =X~1.
They have therefore no diagonal elements in an
asymmetric rotor representation, since the trans-
formation to this representation involves either
only odd or only even E. The average value of
n„o.,„ is zero in either representation since it is
a purely imaginary Hermitian matrix.

Equation (3) thus reduces on averaging to

(B-"V/Bz')A, ——(a„')A,(B 'V/Bx' ')'--
+(a ')A. (B'UIBy")+(a**")A.(B"V/»'-') (&)

The average is over the state J, 7. with MJ =J.
The fact that the components of V'E are averages
over vibrational and electronic states is not

'2 The properties of these matrices are given, for instance„
in CHK, in addition to a table of the elements in a sym-
metric rotor representation. All the properties of asym-
metric rotors used here are expressed in the formulation
of CHK; the notation as regards direction cosines and
axes is diferent, however.
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explicitly indicated. Approximate numerical
computation of (B' V/Bs')~„will be described
first, since the discussion will indicate in which
cases more detailed expressions may be required.

The average of a squared direction cosine
appearing in Eq. (4) may be written

a$

Z I r' ~ J~J'J'~ J (5)

where n is the direction cosine between s and
whichever of x', y', or s' coincides with the dipole
moment. The quantities (7) are tabulated nu-

merically in CHK for J& f2 and for asymmetries
~= —1.0, —0.5, 0, 0.5, and 1.0, where ~ is Ray's
asymmetry parameter, defined for instance in
CHK.

In order to obtain the average value of a
squared direction cosine in terms of these
tabulated quantities, "we must undo the sum-
mation over the Zeeman components in Eq. (7).
This can be done explicitly since the M-de-
pendence of the matrix elements of the direction
cosines of the asymmetric rotor may be written
down in terms of the factors in Table I of CHK.
In addition we can make use of a sum rule (Eq.
(21), CHK) to eliminate the J'; J+1 matrix
elements in Eq. (6).

The result of all this is

O'V 2J
Bs' g, (2J+1)(2J'+3)

XgL(B' V/Bx") Xg, ;g,

I

+ (B' V/By" )Xg, ;g,

+ (B' V/Bs") Xg, :g, ], (8)
"The procedure for obtaining squares of individual

direction cosine matrix elements from the CHK tables is
given by S. Golden and E. Bright Kilson, Jr. in "The
Stark Effect for a Rigid Asymmetric Rotor, " Appendix C
(to be published).

The direction cosine elements in general exist for
J'= J or J~1. The restriction that M&= J,
however, eliminates the elements a&,& j and gives

(&'&A. =Z j J&z z..i+i z("+ f&z z z vf I (6)

However, the line strength of an asymmetric
rotor transition Jr~J'7-' is, in a rigid rotor
approximation, proportional to the quantity

where the X'&, ;&, are Q-branch entries in the
table of CHK. These entries are subdivided into
e, b, and c sub-branches, where c, b, and c are the
principal axes of inertia. The moments of inertia
about these axes satisfy I.&I~(I,. The x'y's'
axes are to be identified with a, b, and c ac-
cording to this restriction. In using the tables
one must remember, in order to get all the
X'g, ;~, , that X'J,J, =X'&, .J,. In practice, the
summations seldom include more than two im-

portant terms.
The accuracy of any result obtained in this

manner depends upon the accuracy with which
interpolation may be made in the table. Because
of the coarseness of the tabulation this may in

many cases not be sufFicient, and an expression is
desirable which involves explicitly the trans-
formation from a symmetric rotor representation
to the representation which diagonalizes the
energy of the asymmetric top in question, since
the coefficients of this transformation depend
upon the particular value of the asymmetry
parameter ~.

One may derive such an expression by writing
down the complete matrices of the squared direc-
tion cosines of Eq. (4) in a symmetric rotor repre-
sentation, for instance by matrix multiplication
of the direction cosine matrices given in Table I
of CHK; then using the transformation men-
tioned above. Using the relation"

B' V/Bx" +B' U/By" +B' V/Bs" =0

one obtains by this procedure

O'V 1

Bs',„(J+1)(2J+3)
X Q K(Sx,'(3E' J(J+1)) (B—' V/Bs")

2Sz Sz+g~f (J, X+1)
X ((B'V/Bx") —(B' V/By" ))), (10)

where

f(J, ri) =g((J+n)(J+n+1)(J —n)(J —n+1)$.
'4This relation holds because of the way in which the

average over the electronic state is carried out. A small
sphere surrounding the nucleus is excluded from the inte-
gration. The electron distribution within the sphere has
spherical symmetry, and its interaction with the nucleus
does not a&ect the fine structure formulas, nor the values
of the constants obtained from the measurements of the
fine structure.
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Here the 5~, must be eva1uated for the asym-
metry and the J in question. Such an expression
will probably only be useful. when, for a low J,
a higher degree of precision is required than is
available from the CHK table for the particular
asymmetry involved. It is completely unsuited
for use in analysis of rotational spectra. It
furnishes, however, a starting point for develop-
ment of asymptotic approximations which will

be given in the second paper. It should be ob-
served that, for a symmetric rotor, Eq. (10)
reduces to the relation

O' V 3E' J(J+—1) O' V

as',„(J+1)(2J+3) Bs"

and this could have been obtained from Eq. (4)
by writing in the diagonal elements of the o.'
in a symmetric rotor representation. (There are,
however, easier methods of obtaining this ex-
pression). It further reduces to

J O'V

2J+3 8s''-

for linear molecules.
Since the CHK tables extend only to J=12,

and Eq. (10) should be especially tedious to
apply for J&12, it has seemed advisable to de-
velop asymptotic approximations to (O'V/Bs')A„

for these higher levels. It has so far been possible
to obtain such approximation for slight asym-
metry and for these levels which are highest or
lowest for a given J. These approximations will

be published in a later paper.

4. IDENTIFICATION OP ASYMMETRIC ROTOR
SPECTRA

One of the uses to which this theory may be
put is that of identification and analysis of pure
rotation spectra of asymmetric tops containing
one quadrupolar nucleus. The structure of a
quadrupole multiplet arising from a given transi-
tion depends on the scale factors eQ(8'V/Bs')A~
of the initial and final states and on the charac-
teristic value of the operator in square brackets of
Eq. (1), given in Eq. (2). This characteristic
value depends on J and J, but I is assumed
known. The structure thus depends on three

unknowns, J and the quadrupole coupling
parameters eQ(8'V/Bs')A, . Since for I=1 the
multiplet will consist of five (AJ = &1) or six
(6J=0) components, for I=—,

' either nine
(DJ=&1) or ten (BJ=O) components, and so
on, one should in principle have a highly over-
determined set of equations giving the separa-
tions of components in terms of the three
unknowns.

If the J-values of the transition can be deter-
mined in this way, one should also be able to get
v and 7-' by a process of elimination in which

approximate expected frequencies and selection
rules are used, or by comparison of observed
values of eQ(8' V/Bz')A, for initial and 6nal states
with those predicted from Eq. (8). In order to
make such predictions, there must be available
estimates of the second derivatives of the poten-
tial along the principal axes.

Dr. C. H. Townes has suggested a way in

which to make such guesses. Ke assume that
the component of V'E along the bond from the
nucleus in question is the same as that observed
experimentally in a linear molecule in which the
same nucleus appears, similarly bonded. If we

in addition make the approximate assumption
that the charge distribution in the vicinity of the
nucleus is symmetrical about the bond and use
the relation V'V=0, we can obtain the com-
ponents of V'E along the principal axes in terms
of the components along the bond and the direc-
tion cosines between the bond and the principal
axes. Then, approximately,

8'V 1 8'V
L3a ' —1j, i=1, 2, 3 (11)

Bx;" 2 BI'

where I is an axis along the bond and xi', xi', xs'

are the principal axes of inertia.

5, HIGHER-ORDER TERMS IN QUADRUPOLE
COUPLING

The preceding sections have been concerned
with developing in detail formulas for the first-
order quadrupole contributions to the energy.
The problem of calculating higher order con-
tributions will be outlined here. Only the one-
nucleus case will be discussed; the extension to
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molecules containing two quadrupolar nuclei is
immediate.

Bardeen and Townes have developed formulas
for the elements of the symmetric rotor quad-
rupole Hamiltonian which are oR'-diagonal in J. '
Their formulas apply when the nucleus in ques-
tion is on the symmetry axis, so that

B' V/Bx" = B' V/By",
B' V/Bx'By' =B' V/Bx'Bs' =B' V/By'Bs' =0. (12)

The matrix then turns out to be diagonal in X.
In the present problem these simplihcations

are absent. In general the quadrupole Hamil-
tonian will have non-vanishing elements con-
necting diRerent values of J and v. While for
most nuclei in linear and symmetric tops the
second-order eRects are small, in asymmetric
tops there exists the possibility of near accidental
degeneracies, E&,—8&, , which will make the
second-order corrections important. Further-
more, for a given J the highest levels are essen-
tially degenerate in pairs (small X-type doubling)
so that for these levels elements oR'-diagonal in r
must always be taken into account.

The complete quadrupole Hamiltonian may
be written

(13)

Q„„= p(3x„x„b„„r')dr, —

(J,F(H( J+2,'F)

sQ(J,JiVE„iJ+2r'J)
16I(2I—1)[(2J+1)(J+1)]&

X[(I+J+F+2)(I+J+F+3)
X (I J+F—1)(I —J+—F)

X (J I+F+—1)(J I+F—+2)

X(I+J F+1—)(I+J F+2—) j,»

(14)
(JrFiHi J+lr'F)

sQ(JrJ~vE, .
~

J+lr'J)
8I(2I—1)J(2J+1)&

X [F(F+1) I(I+1)——J(J+2)]
X[(I+J+F+2)(I J+F)—

X(J I+F+1)(J—+I F+1)j', —

sQ(Jr J) VE*.)
Jr'J)

(JrFiHi Jr'F) =
8I(2I 1)J(2J——1)

X [3C(C+1)—4I(I+1)J(J+1)j,
where Q is defined in Eq. (1). The matrix is
diagonal in Ii and Mp. The J;J—1 and J;J—2

elements may be determined from Eq. (14) by
the Hermitian property of H. The evaluation of
the matrix elements of VE.,=(B'V/Bs') is the
difticult problem here, as before. For symmetric
tops, using the substitution of Eq. (3), one finds

TABLE I.

~gx' ~gy' ~gg'
gx'gy' gg'
Ck'gx~CXgg~ Ag&~

Ilgwu&CLgg& A'gg&

A
B;

Cg' I

1
1—1—1

1—1
1—1

Cg*

1—1—1
1

"J. Bardeen and C. H. Townes, Phys. Rev. V3, 627
(1948), as corrected in an erratum, p. 1204."G. Racah, Phys. Rev. 52, 438 (1942).Racah's formulas
were first applied to the quadrupole problem by Bardeen
and Townes, reference 5.

and the symbol: indicates the inner product of
the two dyadics. The matrices of the "scalar
product" of two tensors in the FIJI scheme
have been developed by Racah" and his formu-
las may be used here. The Hamiltonian has the
following non-vanishing matrix elements.

(JZJ
~
VE,.( J+1ZJ)

3E[(J+1)' —E']& B' V

(J+1)(J+2)[2J+3j&Bs"

(JEJ~ VE„(J+2EJ)
3[I(J+1)'—Z'I I(J+2)' —Z'I 1& B'V

(J+2)(2J+3)[(J+1)(2J+5)j& Bs"

Substitution of these into Eqs. (14) leads to the
expressions of Bardeen and Townes.

For asymmetric tops the evaluation of
(JrJ~ VE„~J'r'J) may be simplified by the use
of group theory. The asymmetric top wave
functions belong to representations of the four-
group D2, so also do the direction cosines o.

appearing in Eq. (3). Table I giires the sym-
metries of the direction cosines and their
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prbducts. Thus if the two states have the same
symmetry, only those combinations of direction
cosines belonging to representation A give non-
vanishing elements. If the two states have dif-
ferent symmetries, one of the combinations

~11 ~ g ~

A A, cl + A will give I1on-vanlshlng
elements.

It is this latter case which is involved in the
near degeneracies due to slight E-doubling.
This should make possible the individual deter-
mination of (O' V/Bx'By'), etc. It seems reasonable
that these "cross-derivates" should be small,
but by how much they deviate from the 0 value
in symmetric rotors must be found from experi-
ment. Equation (14) shows that in this case the
multiplet will have the appearance of a "flrst-
order" quadrupo1e multiplet, only the scale
factor di8ering. Accidental degeneracy arising
from levels involving diferent J may, however,
occur between levels of arbitrary relative sym-
metries.

The matrices Eq. (14) may be used in the
above cases, either to evaluate the second-order
energy corrections, or to make possible the
treatment of near-degenerate levels by degenerate
perturbation theory.

The evaluation of the various matrix elements
of the combinations of direction cosines which

may occur will not be discussed in detail. Un-

forunately, it seems that the line-strength tables
can no longer be used. Expressions analogous to
Eq. (10) may be derived involving explicitly the
transformation from symmetric to asymmetric
rotor basis. Finally, approximation procedures
such as will be the subject of the second paper
should be applicable.
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R. C. MAJUMDAR AND A. S. APTE*
Department of Physics, University of Delhi, DeLhi, India

(Received May 3, 1947)

The equation of motion of a point particle possessing a charge and interacting with a meson
field (both vector and scalar) is derived from a generalization of the scheme of Infeld and
Wallace for determining the equation of a point electron in an electromagnetic field. The
retarded and advanced meson fields of the point particle and the nature of the simultaneous
expressions for the symmetric, $(ret+adv}, and radiation, +(ret —adv), potentials and field
intensities are investigated. The simultaneous radiation field is found to be always finite for
r~, whereas the corresponding symmetric field allows expansion in powers of r with —2 as
the lowest, r being the radius of the 3-dimensional sphere surrounding the singularity which
represents the point particle. It is shown that the removal of the singularities from the sym-
metric field leads to the equation of motion given by Bhabha for the vector meson field in

the case of the retarded field; the symmetric field, on the other hand, leads to the equation
of motion in which the radiation damping is absent. The corresponding equation of motion
of a point particle in a scalar meson field is also given.

I. INTRODUCTION
' 'NVESTIGATIONS of the meson 6eld and its
' - scattering by nuclear particles in recent years
have led to important developments in the
theory of fundamental particles. The highly

Scholar, Tata Institute of Fundamental Research,
J)ombay.

divergent nature of scattering cross sections for
large energies of the meson wave was a puzzle
for a long time and was considered to set a
limit to the validity of quantum mechanics. 1t
was first realized by Heisenberg' and Bhabha'

' AV. Heisenberg, Zeits. f, Physik 113, 61 (1939).
'- H. J. Bhabha, Proc. Roy. Soc, A172, 384 (1939),


