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lt has been shown that the interaction potential bet. ween t.No particles can be uniquely
determined from the supposed knowledge of the observed phase shifts for the whole energy
range, but for only one particular angular momentum. Coulomb forces between charged
particles, as &veil as all kinds of inel istic scattering, have so far not bee1l considered.

' 'T is well known that the fraction of particles
- - scattered by an angle 8 through a unit solid
angle by a central field of force is given by the
expression

~
(1/k)g&(2&+1)&&(cosd)e"«sing'~~', (1)

where q~ is the so-called phase shift defined by
the asymptotic behavior of the radial wave
functions

cgr +—vg~ nls(kr l(w/2) + 'gI),

c,r-'+-v, —co+s(kr 1(s./2) + g(), — (2)
0~r ~ac,

of and v~ being themselves solutions of the radial
wave equation for angular momentum /,

(I.+ V(r) Iv =0,
L = (d'/dr') —D(l+1)/r']+k',
k = (27r/k) P = 2s/X.

As we see the phase shift g~ is uniquely deter-
mined by the interaction potential V(r). Sup-

pose, on the other hand, that the phase shift for
a given l is known from scattering measurements
for the whole (or at least the major) part of the
energy range from zero to in6nity, the question
arises whether, conversely, the interaction poten-
tial is uniquely determined by the phase shift.
The true answer to this question, of course,
must be of some importance to the judgment of
the expected usefulness or necessity of intro-
ducing the so-called S-matrix method in quantum
mechanics.

On the suggestion of W. Pauli the problem has
been successfully, but rather incompletely,
dealt with by C. E. Froberg' in the form of
solution of a certain integral equation. Because
of the lack of any convergence proof, or

' Carl-Erik Froberg, Phys. Rev. 'l2, 519 (1947).

even a clear formulation of the method itself if&

higher approximations, his treatment of the
problem can scarcely be considered more than a
6rst approximation, corresponding to the Born
approximation in scattering theory.

In this paper we shall try to give a detailed
method for calculation of the interaction poten-
tial. The starting point is the phase shift as a
function of the energy expressed by a definite
integral over the potential function. Since the
leading idea has been to consider this phase shift
as analogous to the Fourier transform of a coor-
dinate function in the ordinary theory of Fourier
integrals, we shall start with some preliminary
considerations which, I hope, will make the
understanding easier.

Consider the Fourier transformations:

F(r) = (4/w) G(k) sin2krdk,
Q

G(k) = " F(r) sin2krdr.
"o

Ke can 6nd the condition for the validity of
these transformations in the whole region
0 &r & ~, 0 &k & ~, of the variables by intro-
ducing one of the transformations into the other.
We shall then And that some improper product
integrals have to be 8-functions. For instance,
the integral

K

lim (4/w) ~ sin2kr sin2kr'dk
K~co D

sin2K(r —r') sin2X(r+r')
= lim

(r —r') (r+r')
= g(r —r') —b(r+r') (5)



is a di8erence of two b-functions, the second of
them being insignihcant in the case of positive
values of r. For r =0, however, the two terms are
equal, leading. tu a zero value of the functirin

F(rl I epl eseil ted by tile Voltnel lilt egl'al. I ills (&f

:oitrse also follows (lire&. tly frr&tn 1:qs, (4).
Nfl' lntr~K1LKillg

(6)

f(r) being an integrable function in the region
r—+~, we get

f(r) = —(4/ir) G(k) (d/rlr) sin2krdk,

of an auxiliary equation,

IL+ U)u =0, (11)

wi(1) ~ome aI)proximate potential fu))(;tion P(f)).
Mfith a good starting function tlirt ~a1culatio»s
~so&&ld be easier. Usually, however, w~. slia111ia& ~.

t.o start with the function V=0.
From Eqs. (3) and (11) we now easily obtain

k sin(it —$) = J' (V—U) Yj, (r)dr, . Yi=uivi, (12)

an equation which is well known and frequently
quoted in the case of U=O and )=0. Com-
parison with (9) suggests the existence of an
inverted equation

k('(k) = ~ f(r) sin'kr«.
"0

(13)
Zi(r) =uiv2+uovi.

F(0) =~ f(r)dr =0.
0

These transformations, of course, are equivalent
to ordinary Fourier cosine integrals in the case of

The condition for the validity of Eqs. 12) and
(13) may be written

In the case of F(0) $0, the transformations may
give rise to some improper integrals. Therefore,
when applying analogous formulae from the
theory that is to follow one should examine
separately the convergence of the integrals.

Hx introducing the expressions

u& ——v j
——sinkr, u2 ——v2

——coskr,
Yi;(r) ult 1) Zk(r) uis2+u'8~1)

the transformations (7) obviously can be written

—(4/ir) (1/k) Yi(r)Zi '(r)dr = 8(k —k') (14)

—(4/ir) (1/k) Y~(r')Z&'(r)dk = 8(r —r'). (15)
Jo

Th= equations are obviously equivalent, but so
far it has not been possible to prove directly the
validity of (15). Hence, we should have to prove
I:q. (14), but we shall rather prove the equatioii

(4/7r) (1/k) Yi'(r)Zi'(r)dr = b(k —k'), (16)

which divers from (14) only by the term

kG(k) = f(r) Yi(r)dr,
0

and this is the form we shall meet in the follow-
ing transformations of a potential function to its
scattering phase shift and vice versa.

Ke now make use of the solutions

41
lim ———Yi., (R) sin(2k'R —lir+ it(k') +$(k'))
a~~

'1 his term makes no difference because an inte-
gr;ction with respect to dk' gives zero.

PROOF OF THE COMPLETENESS RELATION

Cir '+'~u i—+sin(kr —I(ir/2) + ((k)), The proof of Eq. (16) is based exclusively upon
C,r '+—u, icos(kr —l(ir/2)+ ~~(k)), (10) the differential equations (3) and (11), defining

0~ r —+~, the functions u and v together with the asymp-
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totic values of the functions when r—+~. In this
way we avoid all kinds of complicated trans-
formation theorems analogous to those already
established, as for instance in the t:heory of Bessel
functions.

To clarify the idea, consider once more the
simplest case of V= V=O, 1=0,

Y~'"+4k' Yq' =0, (1/k) Y~'~sin2kr,
Z~"+4k'Za =O, Z&~sin2kr,

f~ 00,
(17)

In the general case of arbitrary U, V, and l
the functions Y& and Z& are obeying third-order
equations only when U = U. When U / V and,
hence, N~, N2 is different from vI, v2, it can be
shown that

3f Yg,'+ $4l(l+1)/r' jYp+ (U'+ V') Fg

—(V—U)(u, vg' —ug'vg) =0,

Mzr~:+(up~ +ui v2 2us v2 +u2vi
(19)

+up vy —2u2 vy ) =0,

3l = (d-"/dr ') —
t 41(3+1) /r' -j+2(U+ V) +4k'-'.

Ke shall also have use for the equations

(V —U) Y~+(d/dr)(u~v~' —u&'v&) =0,

( V—U)ZJ, + (d/dr) (ugv g' u, 'v, —

+u2vy —u2 vy) = 0, (20)

d 4l(l+1)
(Ilrf&) — —Za —(U'+ V')Zp

dr r3

= Lu&v2' —u&'v2+u~vi' —u2'vij(V —U) Y„.

KVe now change k into k' in Z& and corre-

sponding product functions with diAerent sub-

scripts, like ujv2. If we combine Eqs. (19) in the
same way as Eqs. (17), we obtain, after some

I f we replace k by k' in the last equation, mul-

tiply by Z&. and Y&, respectively, subtract, and
integrate, we obtain

4 t
" 1 Fj, '(R)zg '(8) —Fp"(R)zg (8)

—~i; Zadr= ——
m. "o k n.k(k' —k")

sin2R(k —k') sin2R(k+k')

v (k —k') s (k+ k')

= b(k —k') b(k+—k'), when R—+~. (18)

rearrangements,

4(k k—) Y,'Z, .+(d/dr)[Y, "Z., Y—,'Z, 'j.
—(d/dr) L Yg(uyvm +up v2 —2uy v2

+u2vy +u2 vy 2u2 vy )j
+ (d/dr)[(uIvI u1 ~ 1) (uIv2 uI vQ

+u2vi' —u2'vi) j. (21)

Upon integration from r=O to r=R, and as
R~~, the two last terms disappear and we are
left with an equation rather similar to Eq. (18).
In fact, we get

sin(2R(k —k')+gg, +$g —g, —&p.)= lim
8-+oo v (k —k')

sin(2R(k+k')+ g~+ (A, +g~ +6 )

v (k+k')
= 5(k —k') —b(k+k'). (22)

Hence, the completeness of the product func-
tional system and the validity of Eq. (13) have
been proved.

METHOD OF SOLUTION

Starting from Eqs. (11) and (13), we introduce
a known potential U= Vo, which may be equal
to zero, and solve Eq. (11), obtaining thereby
the approximate wave functions u~ and N2 with
the approximate phase shift &. Now we replace
the unknown functions v& and v2 in Eq. (13) by
u~ and N2, thus finding an approximate value of
the potential difference V—U. By calling this
V& —U we have a first approximation U~ of the
unknown potential V.

In the next approximation we put U= U~, and
by solving anew Eq. (11), we obtain better ap-
proximate functions Nj, u~ and a better approxi-
mate phase shift f. Writing again v~=u& and
v2=um in Eq. (13) we obtain an approximate
value V2 —U~ of the potential diR'erence V—Vj

and so on.
This, of course, is an iteration method and we

should have to prove its convergence or at least
apply it to some elementary problem in order to
illustrate how it works. Unfortunately, there is
no simple potential law to which it could be



applied without entering into calculations con-
taining non-elementary functions and integrals.
However, there is an improper potential law to
which the method —with some precautions—
might be applied without leading to non-
elementary calculations. This is the inverse-
square distance law for the potential which, for
~ onvenience, we write in the fornax

V = —(2l+1+»)»/r-' (23)

so that the solutions of the wave equation (3)—
apart from a factor (»rkr/2)& —are Bessel func-
tions of kr with index numbers &(f+-', +»). The
true phase shift now is g= —(»r/2)». Similarly,
we may use an auxiliary potential

U = —(23+1+8) b/r'

corresponding to the approximate phase shift
g= —(~/2)S.

The integral (13), of course, is then an im-

proper, non-convergent integral. It can be made
convergent, however, by the introduction of a
convergence factor in the integrand. This
amounts to the same as averaging over a great
number of diferent values of the upper limit,
k =E, of the integral when all these values tend
to in6nity. In this way we only eliminate oscil-
lating terms with respect to the upper limit of
the integral. With respect to the lower limit,
k~o, the integral is convergent only if

~
» —b

~
& 2,

that is when the phase shift difference is smaller
than x.

Putting now in the (n+1)th approximation

r "&~=r'V„=-—(2l+1+»„)», we find from (13)

by making e—+e„, that

r'(V„—U„+q) =(21+1+2»„)(2/s) sin(s/2)(» —» )
= (2l+1+2»„)(» —»„). (24)

On the other hand,

r'(U„—U)+(2l+1+»+» )(» —» '). (25)

r' '( V„+g—-V) = (2l+1+»+» .qi)(» —» q. g)

= (» —»„)'-'. (26)

By starting now from U= Vo ——0, &0=0, we
obtain from (26)

r»(U' —U') =»» » —», =»'/(2l+ 1),
r'( V2 V) =»'/(2—l+ 1)', »»2»4/(2l+ 1)',
r'(U» —U) =»'/(21+1)' » »»=—»'/(2l +1)',

' (27)

r'(U» —V) =»"/(2l+1)" etc.

These results show clearly that the convergence
is extremely good in all cases where the phase
difference at the starting point is not too close
to the very limit of convergence.

Now in the case of an ordinary integrable
potential we may argue that if it is numerically
smaller than a given inverse-square potential of
the form (23) the convergence will be even better
than in the case considered above in (27).

Hence if an approximate starting potential U
can be found giving a phase shift diA'erence g —$

numerically smaller than some given number in

the entire energy region, we may be safe that the
method outlined above is convergent. Thus it
has been proved that a perturbing central field of
force can be uniquely determined from the
observed scattering phase shift.


