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The unitary transformation from linearly to elliptically polarized states of photons is de-
termined in a scheme of the second quantization ($1). It is given by e&=e& cosq+ie& sin@,
e,=ie~ sinq+e2 cosy where el and e2 are orthogonal unit vectors corresponding to linearly
polarized states of photons and e~ and e„are those corresponding to left and right elliptically
polarized states of photons. A general formula for a probability of an emission of light from an
atom is deduced on the basis of the Dirac electron theory so as to include up to both a magnetic
dipole and an electric quadrupole term ($2). Its general form is improved as compared with
the hitherto obtained one. The general theory is applied to electric dipole and quadrupole and
magnetic dipole spectral lines ()3 and $4). Polarization states of the Zeeman components
corresponding to all combinations of magnetic and orbital magnetic quantum numbers of an
atom are completely determined for an arbitrary given direction of an observation on the
basis of quantum mechanics.

INTRODUCTION It was also found that a left circularly polarized
photon has a spin +1 in a direction of its mo-

mentum and a right circularly polarized photon
has a —1.'

The general theory was applied to the longi-

tudinal Zeeman effect of electric dipole spectral
lines. ' When 7eeman components of spectral
lines are oblique to an applied magnetic field,
their polarization states vary in a complex way
as a direction of the observation changes. ' Such
a change for quadrupole lines was discussed by
Rubinowicz. ' However, his theory was based on
the classical electrodynamics. A theory of this
phenomenon based on the quantum mechanics
of light has not yet been worked out.

The theory contained in the present paper is
a generalization of the previous paper. '' Its
purpose is to work out a complete theory of
polarizations of photons and spectral lines, to
determine an elliptically polarized state of a
photon in a scheme of the second quantization,
and to apply the general theory thus obtained to
the above-mentioned special phenomena.

HE relation between various polarization
states of photons has not yet been fully

discussed, because scientists have been little in-
terested in this line from the theoretical point of
view. However, it becomes necessary to know
this relation if one wishes to apply the theory to
practical cases. For example, in order to discuss
polarizations of spectral lines emitted from an
atom on the basis of quantum mechanics of light
it is necessary to know in what way elliptically
polarized states of photons are represented in the
scheme of the second quantization.

Kramers' discussed the quantization of free
radiation, taking circularly polarized states as its
bases. A detailed discussion on the circularly
polarized states of photons was given later by
the author. ' lt was shown that the spin angular
momentum' of a system consisting of an assem-
blage of circularly polarized photons has a normal
form and this assemblage is only a system having
a normal form of its spin angular momentum. '

' H. A. Kramers„"Theorien des Aufbaues der Materie, "
Hand-und Jahrbuch der cheat. Phys. (Eucken-olf, Leipzig, also discussed briefly from another standpoint by W. Pauli,
1938), Vol. 1, p. 429. reference 3, p. 252.' G. Araki, Prog. theor. Phys. 1, 125 (1946). This paper ~ It is cited, in Ql. Heitler, Quantum Theory of Radiation
will be referred to as I. (Clarendon Press, Oxford, 1936), p. 63, that the angular

The separation of angular momentum into orbital and momentum of light is discussed by N. Bohr, C. Mannebeck,
spin was first carried out by Darwin, but in a form of G. Placzek, and L. Rosenfeld.
special representation for a held of light as an assemblage of 6 G. Araki, Prog. theor. Phys. 2, 1 (1947). This paper
linearly polarized plane waves. The separation in a form will be referred to as II.
which is independent of such a representation is also given E. Segrh, Zeits. f. Physik 66, 827 (1930);E. Segre und
in I. C. G. Darwin, Proc. Roy. Soc. London A136, 36 (1932). C. J. Bakker, Zeits. f. Physik V2, 724 (1931).
W. Pauli, HamSuch der Physik (Verlag-Julius Springer, A. Rubinowicz, Naturwiss. 18, 227 (1930); Zeits. f.
Berlin, 1933), 24/1, p. 247. Physik 61, 338 (1930);65, 662 (1930).A. Rubinowicz und

An unitary transformation between polarization states J. Biaton, Ergeb. d. exakt. Naturwiss. 11, 176 (1932).
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ELL I PTI CALLY POLARIZED PHOTONS

1t was shown in P that a unitary transforma-
tion of polarization vectors of a photon has tmo
parameters except for a trivial transformation,
and the values of these parameters corresponding
to linearly and circularly polarized states were
determined. The values of these parameters
which correspond to elliptically polarized states
of a photon will be determined in the following.

To apply the general theory to a problem of
polarizations of spectral lines, a general formula
for a probability of an emission of light mill

next be deduced on the basis of the Dirac electron
theory so as to include up to both a magnetic
dipole and an electric quadrupole term. The
expression of the formula mill be improved in a
general form compared with the one formerly
obtained.

These general theories will finally be applied
to electric dipole and quadrupole and magnetic
dipole spectral lines. Polarization states of the
Zeeman components corresponding to all combi-
nations of magnetic or orbital magnetic quantum
numbers will be completely determined for an
arbitrary given direction of an observation.

~. ELLIPTICALLY POLAMZED STATES OF
A PHOTON

A system of photons is described by a vector
potential' (an operator) in a scheme of the second
quantization. We shall denote this potential
by A. If the photons are characterized by the
energy ku and momentum kk the vector potential
is written in the following form:

A = c(2s/ V) &+~ A(k), (1.1)

A(k) = (fi/s)) &}a(k) exp(~1m)
+a)(k) exp( —ikx) I (1.2)

is a monochromatic constituent and j' means an

TAmE I.

b„

FIG. 1. Polarization ellipses.

adjoint (a Hermitian conjugate). In this repre-
sentation the Hamiltonian and momentum of the
whole system have normal forms [cf. (2.4) of I].
These expressions are independent of the way in

which polarizations of photons are represented.
We shall nom introduce modes of polarizations.

The operator a(k) is represented in two dilferent
ways as follows:

a(k) = e~(k) u~(k)+ e2(k) a2(k)
=eg'(k)og'(k)+ e2'(k) am'(k), (1.3)

where ei and e2 are real unit vectors which are
perpendicular to each other and to k, and ei'
and e~' are normalized complex vectors mhich
are orthogonal to each other and to k in the sense
of a unitary geometry. The transformation from
(e~, em) to (e~', e~') is then unitary, and a Her-
mitian unit form of components of a is its in-
variant. These normalized vectors will be referred
to as polarization vectors of k photons. Hermitian
operators u~$(k)a~(k) and a~)(k)cm(k) represent
numbers of linearly polarized photon s, and
a~'f(k)u~'(k) and a~'f(k)a~'(k) are those charac-
terized by the polarization vectors e~'(k) and
e2'(k). u;(k) and a/(k) (j=1, 2) will be referred
to as number amplitude operators.

The most general unitary 2 2 matrix is given by

}(cosyexpi8~ sing expi(8~+8) &}

g
—sin y expi(82 8) co—sy expi82 & (1.4)

[cf. (3.11) of I]. A transformation such as

1&expi8~ 0
E 0 expi8~) (1.5)

0 &y&~/4
' x/4&y&m/2

b 0 &y&~/4' ~/4«&~/2

Direction of
major axis

e1
e2

Fccentricity

(~.~Oa)(1—cot~y)&

(I.j.Ob)(1 —cot'y)& .

is trivial for polarization vectors. Consequently,
we can omit this type. The most general unitary
transformation of polarization vectors can thus
be written as follows:

e~' ——e~ cosy —e~ sins exp( —ib),
e~' ——e~ sins exp(ib)+e~ cosy,

'A longitudinal part of the vector potential and a
scalar potential are omitted by a gauge transformation. where b is equal to 8+8&—82 [cf. (3.1), (3.4),
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and (3.5) of I) and k is omitted for the sake of
simplicity.

It was shown in I that e~' and e2' correspond
to two linearly polarized states for b=o and an
arbitrary value of q, and to left and right circu-
larly polarized states of the photon for h=lr/2
and y=lr/4. Elliptically polarized states must
correspond to another set of values for 8 and q.
Ke shall now determine values of these param-
eters which correspond to elliptically polarized
states with given major axes and eccentricities.

In the previous paper A (k) was represented by
two linearly polarized orthogonal states or by
left and right circularly polarized states as its
base. Now we adopt, as the base, left and right
elliptically po1arized plane waves as follows:

b, (k) =el cosy sm(cat —kx+ ag)
—e2 sin y cos(cat —kx+ ag),

b, (k) = —81 silly cos(cat —kx+ e,) (1.7)
+e~ cosy sin(cat —kx+ a,),

0= y —s./2. (1.8)

The monochromatic constituent of the vector
potential is then given by

2 &A(k) =Ag(k)bg(k)+A„(k)b, (k). (1.9)

If we assume for the sake of convenience that
ei, e2, and k form a right-handed system, vector
potentials given by bg(k) and b„(k), correspond,
in general, to left and right elliptically polarized
plane waves of monochromatic lights, respec-
tively, because an electric field of light is given

by A —/c. Particularly in the cases where y=0
or y=s./2 linearly polarized lights are given
whose directions of oscillations are perpendicular
to each other, and for y=s./4 they correspond
to left and right circularly polarized lights,
respectively. When y is not equal to 0, Ir/4, or
s/2, ends of electric vectors derived from bg(k)
and b„(k) describe ellipses. Directions of their
major axes and their eccentricities are given in
Table I. This is shown in Fig. 1 (against light).
These ellipses will be referred to as polarization
ellipses.

Now we put

qg(k) =A, {el cosy sin(cat+ eg)
—em sin y cos(cat+ eg) },

Qp(k) =A g {—81 silly cos(cat+ e„)
+e2 cosy sin(cat+ e,) },

p, (k) =q, (k), p, (» =q, (k).

a(k) = (~/2It)'{ q(k)+~p(k) j~}, (1.12a)

a (k) =( /»)'{q;(k)+~p;(k)/ }
(j= t, r), (1.12b)

and substitute these expressions for the right-
hand side of (1.9). Comparing the result with
(1.2) and (1.12a) we, 6nd that a, q, and p are
decomposed as follows:

a(k) =ag(k) +a,(k), (1.13a)

q(k) =q (k)+q.(k), p(k) =p (k)+p.(k). (113b)
The operators with a su%x l correspond to a
system of left elliptically polarized photons char-
acterized by (1.10a), and the operators with a
suSx r correspond to a system of right elliptically
polarized photons characterized by (1.10b).

Further, if we introduce

qg(k) =A 1 sin(cat+ eg),

q„(k) = A„sin(cat+ c„),
pg(k) = qg(k), p.(k) = q.(k),

(1.11) has the following form:

qg = egqg cosy eg(pg/—ca) siny,
pc= elpg COSy+82caqg Silly,

(1.14)

(1.15a)

qg
——ql cosy+ (p1/ga) siny,

pg =pl cosy —
caqm silly,

q, =q2 cosy+ (pl/ca) sin y,
pr =pu COSy —caql Sill y.

(1.17)

q„= —eg(p„/ca) siny+82q„cosy,
y„=elcaq, Siny+elp, COSy, (1.15b)

where k is omitted for the sake of simplicity. In
this transformation operators with a suf6x l or r
are substituted, respectively, by those with the
same sufFix and do not mix with those with
different su%ces. Consequently, the operators
with a suSx 1 or r still correspond to left or right
elliptically polarized photons, respectively. The
relation between (al, a2) and (ql, pl, q1, p2) is
given by an isomorphic equation of (1.12):

ag(k) = (~/2&)'{qt(k)+&pg(k)/~ }
(j=1,2), (1.16)

where (ql, pl) and (q2, p2) are canonically conju-
gate Hermitian operators of linearly polarized
photons which are, respectively, characterized by
e,(k) and 81(k),

By (1.3), (1.12b), (1.13a), (1.15), and (1.16) the
transformation from (ql, pl, qg, pm) to (q„pg, q„, p„)
can be obtained as follows:
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A commutation relation between qi pi q2 and

pg is that
polarization vectors and number amplitude oper-
ators:

qiPi piqi =gapa pmqm=+ (I 18)

and other pairs are commutative. This re1ation
is invariant for the transformation (1.17):

e~ = e~ cosy+ie2 sinrp,

e„=ie~ sin y+e2 cosy,

a&
——e&c„a„=e~„. (1.26)

qipi P iqi —=q,p, p,q,—= i7i, (1.19)

other pairs being commutative. Moreover, it is
also invariant for the transformation (1.15):

%iPi Piil&=% P. P~tI~=@i (1 20)

other pairs being commutative. By (1.15) and
(1.19), tl&, P„ il„and P„satisfy

y&y„+co'q, ,q„=0. (1.21)

Therefore, the Hamiltonian and the momentum
of a system of photons take normal forms for
the representation given by (1.13b):

P 2+~2iI 2 P 2+~mq 2

p 2+~2iI 2 p 2+~2q 2 (1.23a)

P i+~2q 2+P 2+~2q 2

=PP+u)'qP+P2'+ aPq22. (1.23b)

Consequently, the real transformations (1.15)
and (1.17) are canonical. Two pairs (qi, pi) and

(q„, p„) are canonically conjugate Hermitian oper-
ators of left and right elliptically polarized
photons, respectively, because of the invariant
relation given by (1.23a). A transformation from
canonically conjugate coordinates and momenta
to number amplitude operators is therefore given

by (1.12) and

&i = (id/2&) *(qi+~P i/~)
a, = (ra/25) &(q,+ip, /(u), (1.24)

Lcf. )$2 and 3 of I]. The Hermitian operators
aitai and alai represent the number of left
elliptically polarized photons characterized by a
polarization ellipse specified by (1.10) (a), and
a„ta, and a„$a, represent that of right elliptically
polarized photons characterized by (1.10) (b).

The relations (1.12) (b), (1.13) (a), (1.15) and
(1.24) give the following transformations of

"The spin of the system does not take a normal form
unless y is equa1 to m/4. This was shown in $/3 and 4 of I.

[cf. (1.15) of Ij.'0 This normal form is invariant
for both the transformations (1.15) and (1.17):

The transformation of number amplitude oper-
ators is contragredient to that of polarization
vectors Lsee (1.3)].Therefore, we have

a&=a~ cosy —m2 sony,
a„= —iai sing+a~ cosy. (1.27)

The Hermitian unit form of number amplitude
operators is invariant for the transformations
(1.26) and (1.27).

Comparing (1.25) with (1.6) we see that
elliptically polarized states correspond to 8 = s/2
and an arbitrary value of q, where directions of
major axes and eccentricities of polarization
ellipses are characterized by y according to
(1.10). The other values of 8 correspond to the
other complex basic states of polarizations, in

&which we are interested not from a practical but
only from a theoretical standpoint. The ex-
pression (1.25) of polarization vectors includes

thus all practical cases of polarizations: linearly,
circularly, and elliptically polarized states. The
result discussed in I is naturally involved in the
present case: ei ——e+ and e„=ie for q&= w/4; the
transformations (1.15) and (1.17) reduce to (4.8)
and (3.23) of I, respectively, by putting y=s/4,
where p„/ra and —

&Oq„ in I are to be replaced,
respectively, by q, and p„ in the present paper.

2. PROBABILITY FOR EMISSION OF PHOTON

A semirelativistic formula for an intensity of
light emitted from an atom was discussed in CI7

of II. A probability per second per unit solid

FIG. 2.
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where U is a point function, it can be shown
that

1/(2&rv) Q (pb, V "p,) = —(pb, Pp, ), (2.5)

FIG. 3. Polarization states of quadrupole lines.

angle for an emission of a photon from the atom
is given by

~= (2~)'(v/~)'I (6, 94) I' (2 1)
where

0=1/(2s v) P exp( —zkx;) {eV&'&+S&»Ike j} (2.2)

and 2m', k, and e are, respectively, an energy,
a momentum, and a complex conjugate of a
polarization vector of the emitted photon. (e is
not a polarization vector itself but its complex
conjugate!) The Hartree atomic unit is used
throughout this and the following sections
(k=e=tn= 1). f, and Pb are normalized eigen-
functions of the atom in its initial and 6nal
states, respectively. X is the number of electrons
contained in the atom.

It is well known that electric dipole and
quadrupole parts are included in the above
formula. "A magnetic dipole part has, however,
not been separated in the form corresponding
just to the fact that an electron has a magnetic
moment of unit Bohr's magneton, although it
was imagined from a correspondence to the
classical electrodynamics. " The separation of
these parts can be carried out as follows.

We expand 0 in a power series in IkI. We
have then

0=1/(2&rv) P {eV&&&+S«&tkej

)(eV'»)+ "} (23)

where 8 Eb is—replaced by 2s v, and P = —g x,

where a pseudovector

M = —(L+2S)&&./2 (2.8)

is a magnetic dipole moment of the atom, 0. is the
Sommerfeld hne structure constant, and pseudo-
vectors

p b{ x,V&i&j S —Q S&i& (2.9)

are, respectively, orbital and spin angular mo-
menta of the atom.

From the Schrodinger equation (2.4), it follows
on account of a Hermitian property of a Laplacian
operator that

2~v(A, (exb) (».)4")

=(1/2) 2 {(6,&;(ex.)(kx.)4.)
j-1

—(4» (ex*)(» )~A") }

is an electric dipole moment of the atom. Using
an identity

2(kx)(eV) = Lkej LxV]+(ex)(kV)
+ ( )(eV), (2.6)

the second and third terms of (2.3) can be
transformed into the following form:

N

1/(2 ) 2 {S"'Lkej—b(» )(eV"') }
j~1

= —Lke/IkI jM —i/(4s v)

XP {(«;)(k«'&)+ (kx;) (e«'&) }, (2.7)

= (pb, {(«b) (kV ' )+ (kxb) (eV"') }p.). (2.10)As was mentioned in t}7 of II, if we assume that
eigenfunctions of the atom satisfy the Schrodinger

This equation enables us to write the second term
of (2.7) as follows:

—(1/2) 2 ~ 0"+U0" =&-&. (2.4)

» H. Bethe, Hardback der I'kysik {Geiger-Scheel, 1933},
24/1 pp. 429, 473; G. Wentzel, i'„pp. 779, 783.

'~ E. U. Condon and G. H. Shortley, Theory of Ato~ic
Spectre (University Press, Cambridge, 1935), p. 90; 0.
Klein, Zeits. f. Physik 41, 407 {1927).

—~/(4 .) P (P„{(ex;)(kV&»)
j~1

+ (kx;)(eV& &) }f.) = (i/2)(pb, egkp. ), (2.11)

where a tensor Q of the second rank with its
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components

Q-= —Z xP Q*.= —K xe ~

el eg C. cEcp.

0 90 180

0 ()

q Q
is an electric quadrupole moment of the atom.

From (2.1), (2.3), (2.5), and (2.11) we have

W = (2s)'(~/c)'1(f&, 0'f, ) I

' (2.13a)

0'= eP+ [ke/lb l ]M+ (1/2i)eQk+ . . (2.13b)

This agrees, except for the second term, with an
expression derived by Bethe, "but his expression
is referred to special axes. The magnetic moment
included in the second term is given by (2.8).
This involves a spin term which is missing in
Bethe's. This term is due to the second term in

the brace of (2.2), and the latter follows from a
semirelativistic term" in an approximation of the
Dirac interaction between an atom and photons
(cf. $6 of II)) and it is omitted from the usual
expressions. The third term in (2.13b) is more
general than Wentzel's expression. "Energy radi-
3ted per second per solid angle from the atom is
given by 2mvtV. This intensity formula has a
complete analogy with a classical one. According
to the classical electrodynamics, a time average
of an energy of a monochromatic light radiated
from a point source with oscillating electric
dipole and quadrupole and magnetic dipole
moments per unit solid angle per second is
given by"

FK'. 4. Polarization states of dipole lines.

e&*——e, cosy —ie sin y,
e„*=—ie. siny+e. cosy. (3 1)

The electric quadrupole part of the operator 0'
takes then its explicit form as follows:

1/(2i) e g*Qk
= ( l

k
l /8) I Q++ sin8(cos8 sing —coss)

+Q- sin8(cos8 sing+cosy)
+2iQ*+[(2 cos'8 —1) sins —cos8 cosy]
—2iQ [(2 cos'8 —1) sins+cos8 cosy]
+QD sin28 sin@I, (3.2a)

vation be z' axis, an angle between z and z' axes
be 8(0~8~s), a plane determined by s and
z' axes be x-plane, and y axis be in m-plane.
The xz plane will be referred to as 0-plane. If we
assume eI to be parallel to x axis, e2 must then
be in m-plane and it makes an angle 8 with

y axis. We shall write e. and e, respectively,
instead of e~ and 62. Lines parallel to these
vectors will be referred to as o-axis and x-axis,
respectively (see Fig. 2).

Complex conjugates of the polarization vectors
given by (1.25) are then

I., = (1«)(2-/~) "Ie~.+ [k"/lkl]M
+(I/2) "Q.k», (2 «)

where 60 is an unit real vector parallel to an
electric held of' the emitted light, and Po, Mo,
and Qo are amplitudes of electric dipole, magnetic
dipole, and electric quadrupole moments of the
source.

1/(2')e, *Qk
= (l kl/8) IiQ + sin8(cos8 coss+siny)

+$Q sin8(cos8 cosy —sing)
—2Q~[(2 cos'8 —1) cossr+cos8 sing&]

+2Q [(2 cos'8 1) cos—rp —cos8 sing]
+iQ0 sin28 coss },

where

(3.2b)

3. POLARIZATION STATES OF
QUADRUPOLE LINES

We shall consider polarization states of electric
quadrupole spectral lines emitted from an atom
placed in a magnetic held. Let a direction of the
magnetic held be z axis, a direction of an obser-

Q'+= —E (x')'

N
Q*+= —P s;x,+,

N

Q'= —Q (2s,' —x;+x; ),

Q = —Q zgx;, (3.3a)

H. Bethe, see reference 11, p. 473."This also follows from a correspondence to the classical
electrodynamics. See reference 1, p. 460.

'~ G. Wentzel, reference 11, p. 783.
' A. Rubinovricz and J. Blaton, Ergeb. d. exakt.

Naturmiss. 11, 176 (1932).

Xp XJ+Zp $ f
x' =x' iy (3.3b)

From these expressions we shall now be able
to determine a polarization state of the eraitted
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light. For example, a probability for an emission
of the quadrupole Zeeman component corre-
sponding to hML, =+I is given by (2.13a) in

which 0' is replaced by the third term of (3.2a)
or (3.2b), according to whether the emitted light
is left elliptically or right elliptically polarized.
Matrix elements of other terms vanish because
selection rules for inner and azimuthal quantum
numbers of a matrix of Q'+ are different from
dipole terms and that for an orbital magnetic
quantum number is also difkrent from other
quadrupole terms If .the coefficient of Q'+ in

(3.2a) vanishes for a value of 8 and that in

(3.2b) does not for the same value of 8, there is
no probability for an emission of a left elliptically
polarized light, and the emitted light in this
direction must be right elliptically polarized.
The other cases can be examined in the same way.

Non-vanishing matrix elements of Q +, Q
Q'+, Q, and Q' are given, " respectively, by
63fl.=+2, —2, +1, —j., and 0, where 63EII. is
an increment (not a difference!) of an orbital
magnetic quantum number of the atom. Changes
of polarization states, with e, of the Zeeman com-
ponents of electric quadrupole. lines correspond-
ing to these DMI. can conveniently be deter-
mined according to the following procedure. For
this purpose we use the following two conditions
for a coefFicient of Q++, Q, Q*+, Q', or Q' in

(3.2): condition I.—the coeKcient in (3.2b)
vanishes and that in (3.2a) does not; condition R—the coeflicient in (3.2a) vanishes and that in
(3.2b) does not.

Using these conditions we can proceed as
folio~ s:

I . For q =0 condition I gives directions in
which O.-component is emitted, and condition R
gives directions in which x-component is emitted.

O'. For q = s/4 condition I gives directions in
which a left circularly polarized component is
emitted, and condition R gives directions in
which a right circularly polarized component is
emitted.

3'. For 0(sr&mr/4 or w/4(q (ir/2 condition
I. gives directions in which a left elliptically
polarized component is emitted, and condition R
gives directions in which a right elliptically
polarized component is emitted. Eccentricities

'~ E. U. Condon and G. H. Shortley, rkeory of Atomic
Spectra {University Press, Cambridge, 1935), p. 59.

Condition I:
(2 cos'8 —1) cosy +cos8 sins =0

(3.4a)
(2 cos'8 —1) sins —cos8 coss 40 '

Condition R:

(2 cos'8 —1) sins —cos8 cosy'=0
(2 cos'8 —1) cosqr+cos8 sing &0 (3.4b)

For q =0 they give

Condition I.: 8=m/4, 3'/4; (3.5a)

Condition R: 8 = s./2. (3.5b)

The quadrupole Zeeman component correspond-
ing to 5&~=+1 is, therefore, r-component for
8=s/4, 3ir/4, and ir-component for 8=s/2. In
the other directions of an observation the emitted
light is not linearly polarized.

For y=~/4 the conditions (3.4) give

Condition I.: 8=m j3, x;

Condition R: 8=0, 2x,/3.

(3.6a)

(3.6b)

The emitted light is therefore left circularly
polarized for 8 = s /3, ir, and right circularly
polarized for 8=0, 2s./3. Thus when 8 is not
equal to 0, s./4, n/3, w/2, 2s/3, 3s/4, and ir,

the emitted light is elliptically polarized. It is
not in agreement with the result by Rubinowicz
and Blaton" that the emitted light is circularly
polarized for 8=m/3, 2s/3.

For 0 & y&s/4 the conditions (3.4) give

Condition I:
ir/4 (8(s/3 and 3~/4 (8&s; (3.7a)

Condition R:

~/2 &8&2~/3. (3.7b)

"A. Rubinowicz und J. Blaton, Ergeb. d. exakt.
Xaturmiss. 11, 176 {1932),Tables I and III.

of polarization ellipses of these components are
(1—tan'y)& for 0&s (ir/4 and (1—cot'y)& for
ir/4 & y&s/2. The major axis in the left ellipti-
cally polarized case is o-axis for 0 &y(s./4 and
~-axis for s/4&s &w/2. In the right elliptically
polarized case it is s-axis for 0&y&ir/4 and
ir-axis for s./4 & s &s /2.

For example, conditions L,and R for 63fy. = +1
are as follows.
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For s/4&rp&s/2 they give

Condition I.:
~/3 &8«/2;

Condition 8:
0 &8 &~/4 and 2~/3 &8&3~/4. (3.8b)

The emitted light is left elliptically polarized in

the range given by (3.7a) and (3.8a), and right
elliptically polarized in the range given by
(3.7b) and (3.8b). Their polarization ellipses are
characterized by the values of q which are
determined as functions of 8 by Eq. (3.4).

Polarization states of the other components,

corresponding to the other selection rules, can
be determined in the same way. The result is
represented in Fig. 3 (against light). In this
6gure a point means that the intensity vanishes.

4. ELECTRIC AND MAGNETIC DIPOLE LINES'

Polarization states of the Zeeman components
of electric and magnetic dipole lines can also be
determined in the same way. The result is
represented in Fig. 4 (against light). In the case
of the magnetic dipole lines 6gures are arranged
according to selection rules of a magnetic quan-
tum number M of the atom, instead of an orbital
magnetic quantum number ML, .
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Measurements of Thomson CoeRcients for Metals at High Temperatures and of
Peltier Coefficients for Solid-Liquid Interfaces of Metals

J. J. LaNnER
Bell Telephone Laboratories, Mgrrey Hill, Nne Jersey

(Received April 30, 1948)

Apparatus has been devised for measuring and measurements made of Thomson coeScients
of metals at high temperatures. It is found that in the range from 400oC to the melting point
the approximation 0 =PT is adequate for platinum, palladium, copper, and silver but not
for gold, molybdenum, and tungsten.

Experimental results for the Peltier coeScients for solid-liquid interfaces of gold, silver,
and copper are also reported. An experimental sensitivity of 0.1 millivolt revealed no effect
in goM and silver, but +10.2 millivolts vrere obtained for copper.

L INTRODUCTION

LTHOUGH the thermoelectric Peltier and
Thomson e8'ects are usually of secondary

importance in practical electrothermal phe-
nomena they may become of immediate impor-
tance when thermal or electrical symmetry is a
primary consideration. Thus such eBects may
play signi6cant parts in contact phenomena; for
example, in contact erosion and in the low fre-
quency behavior of a circuit containing metal-
semiconductor junctions. These thermoelectric
e6ects are also of theoretical interest since they
provide important clues to the electronic struc-
ture of conductors.

This article describes apparatus devised for
measuring and measurements made of: (a) the
liquid-solid Peltier coefficients of Au, Ag, and
Cu; and (b) the Thomson. coefficients for solid

Pt, Pd, Ag, Au, Cu, W, and Mo at high temper-
atures.

II. THE LIQUID-SOLID PELTIER EFFECT OF
Au, AI„AND Cu

A. Theory

An electric current flowing through the bound-

ary between two materials not having the same
composition or structure produces heat in pro-
portion to the current flowing. The Peltier
coefficient between materials A and 8 at temper-
ature T may be dehned by

~&a(&) =~Q/~x&,

where AQ is the heat evolved at the junction
when current i flows for time t across the junc-
tion. Here a positive sign is taken to mean that
heat is absorbed by the junction when electrons
flow from 8 to A. This is the usual convention.


