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On the Classical Equations of Motion of Point Charges
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Recent attempts to obtain the force of radiative reaction
in the classical equations of motion of point charges have
proceeded from two diferent viewpoints. Each of these
has to introduce one basic assumption in addition to
Maxwell's equations, namely the conservation law for the
electromagnetic energy-momentum tensor in field theory
and the relation between the Lorentz force and the
momentum of the particle in action-at-a-distance theory.
In previous field-theoretical derivations the Lorentz-Dirac
equations including radiation damping are obtained only
if one takes the field produced by the particle to be the re-
tarded field; but equations of motion without the damping
term are obtained if one uses half the sum of retarded and

advanced fields. On the other hand, the theory of action
at a distance as developed by Wheeler and Feynman was
able to obtain. the radiation damping using fields sym-
metric in time. It is noted that the need for the exclusive
use of retarded fields arose only in the field-theoretical
derivations for the one-particle problem. The considera-
tions of Wheeler and Feyn. man on the total field due to all
particles of the universe are, however, applicable to field
theory in the symmetric form as well as to action-at-a-
distance theory. The acceptance of their condition of
"complete absorption" again leads to the radiation
damping term in the equations of motion of the many-body
problem. Some implications of this result are discussed.

I. INTRODUCTION

~ NE of the major problems of classical
electrodynamics has been to account for

the force experienced by a charge as a result of
its motion. The first attempt at a solution due
to Lorentz' was based on a model of an extended
charge and attributed the force of radiative
reaction to the action of one part of the particle
on another. It appeared as the 6rst term in a
series in powers of the radius of the particle, and
all higher terms depended upon the charge
distribution assumed. This, and the fact that it
appears to be verv difficult to 6t finite-sized
elementary particles into the schemes of rela-
tivity and of quantum mechanics makes it
desirable to treat these particles as mathematical
points. ' In Lorentz' theory, however, infinities
appear in the equations if the radius goes to zero.

Recent attempts to obtain the force of radia-
tive reaction have proceeded from two difFerent
viewpoints. One is that of field theory, which
considers the IoIaI, field at all points in space to
be the fundamental physical quantity and the
point charges as singularities of the held. The
other is that of action at a distance, which
considers only the forces exerted on a charge by
other charges to be physically meaningful.

The 6eld theoretical point of view was first
' H. A. Lorentz, Coljected I'upers (M. NijhoE, The Hague,

1936),Vol. II, pp. 281 and 343. Also The Theory of E/~trons
(Teubner, Leipzig, 1909), pp. 49 and 253.'-Cf. J. Frenkel, Zeits. f, Physik 32, 518 (1925).

applied successfully to this problem by Dirac, '
who showed that the equations of motion are
suggested by the conservation law for the electro-
magnetic energy-momentum tensor. He clearly
stated it as follows: "The usual derivation of
the stress-tensor is valid only for continuous
charge distributions and we are here using it for
point charges. This involves adopting as a
fundamental assumption the point of view that
energy and momentum are localized in the 6eld
in accordance with Maxwell's and Poynting's
ideas. " Using this conservation law and Max-
well's equations he obtained Lorentz' equations
of motion, but whereas these equations were
considered by Lorentz to be only approximate,
Dirac concluded that "there is good reason for
believing them exact, within the limits of the
classical theory. "

Another field theoretical derivation of these
equations was given by Infeld and Wallace, ' who
succeeded in linking it with the general method
of obtaining equations of motion in general
relativity of Einstein, Infeld and HofFmann. ~

The main interest of their paper for the present
purpose is that they showed explicitly that, for
the case of a single particle, the Lorentz-Dirac
equations including radiation damping are ob-

3 P. A. M. Dirac, Proc. Roy. Soc. A167, 148 (1938). In
the following quoted as D.

~ L. Infeld and P. H. Wallace, Phys. Rev. 57, 797 (1940).
In the following quoted as IW.

s A. Einstein, I.. Infeld and B. Hoffmann, Ann. Math.
39, 65 (1938),
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tained only if one takes the fie11 produced by
the particie to be the reawded field; but equations
of motion without the damping term are obtained
if one uses half the sum of retarded and advanced
6elds.

The first derivation of the force of radiative
reaction on the basis of action at a distance is
due to Wheeler and Feynman. ' As it is necessary
in any action-at-a-distance theory to introduce
an assumption on the basic equations of motion,
they had to assume that the Lorentz force acting
on a particle equals its rate of change of momen-.
tum. On the other hand, they were able to obtain
the Lorentz-Dirac equations taking the forces
on the charges as determined by half the sum
of the retarded and the advanced figld.

It was of considerable importance to shaw
that the fundamental law of force is symmetric
with respect to past and future, and to settle
the question 6rst raised in 1909, in which "Ritz
considers the limitation to retarded potentials
as one of the foundations of the second law of
thermodynamics, while Einstein believes that
the irreversibility of radiation depends exclu-
sively on considerations of probability. " It
appeared that the theory of action at a distance
was preferable to the point of view of 6eld
theory, which seemed incapable of explaining
the radiation reaction using 6elds symmetric in

time.
However, we shall show that this is actually

not the case. The need for the exclusive use of
retarded 6elds for the explanation of the radia-
tive reaction arose only in the field-theoretical
derivations for the one particle pro-blem. The
considerations of WF on the total field due to all
particles are, however, applicable to field theory
as well as to the theory of action at a distance.
The acceptance of their condition of "complete
absorption" does not yield any new results in

6eld theory if the retarded held alone is used,
but in the case of half-advanced, half-retarded
fields it does provide the radiation-damping term
in the equations of motion. Therefore, subject
to this condition, one can Oh@un the I.orenls-Dirac
equations im boih theories starting arith fields

' J.A. Wheeler and R. P. Feynman, Rev. Mod. Phys. IV,
157 (1945). In the following quoted as %F.

'W. Ritz and A. Einstein, Phys. Zeits. 10, 323 (1909).

T.„=Poynting vector = Ii „I',„ (IW 2.4)

T„=Energy density = 1/2F„F„
+1/2F„F„(IW2.5)

F„=B,and F „=e „,II, where B, and H, are
the electric and magnetic field respectively,
8 „ is the Kronecker symbol, and e „, is the
permutation symbol (Levi-Civita tensor dens-
ity). Latin letters run from 1 to 3 and repetition
of an index implies summation over this range.
",n" and ",0" denote partial derivatives with
respect to the coordinates x" and time, respec-
tively. The velocity of light is taken as unity.

The conservation laws break down only at
points occupied by a singularity. %'e shall choose
a Lorentz frame of reference in which the point
charge is instantaneously at rest at the origin
at some moment t. Then if we take any surface
enclosing the singularity it can be shown that
the four surface integrals

) (T „+P,.)X"dS (IW 2.10)

(T.„+rP,, „)X"dS

' In talking of the "equivalence" of the theory of action
at a distance and field theory, %F refer only to the formal
equivalence of the final equations of motion obtained in
the two theories. However, the derivation of the Lorentz-
Dirac equations requires, as noted above, in addition to
Maxwell's equations common to both theories, assump-
tions which are fundamentally different for these theories,
and which di&erentiate them by more than just" language".
By treating Dirac's results as a "prescription", %'F do not
enter into an examination of these assumptions at all.
This is the object of the present paper, which will show
that the equivalence extends to the use of fields symmetric
in time.

symmetric il time, ie spite of the fundamentally
digerse$ underlying physs'cal ideas. '
II. FIELD THEORY: THE FORMULATION OF

INFELD AND WALLACE

We shall first outline the field theoretical
derivation of the equations of motion due to
Infeld and Wallace. 4 We write down the con-
servation laws for the electromagnetic energy-
momentum tensor:

(IW 2.1)

(IW 2.2)
where

T = Maxwell stress tensor =Ii,Ii„,—F,F„,
—1/48 „F„F„+1/2h„„F„F,. (IW 2.3)
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are independent of the shape and size of the
surface chosen„and hence can depend only on
quantities characterizing the singularity, in par-
ticular the coordinates of the singularity and
their time derivatives. Here )"are the direction
cosines of the normal to the surface of integra-
tion,

(IW 2.14)

(IW 2.15)

where P.„, P, are arbitrary ha.rmonic functions
and 0', 0', are solutions of the Poisson equation
which do not contain in their development with
respect to r an harmonic function of the type 1/r.

The motion of the singularity is determined by
the assignment of consistent values to the four
surface integrals. We can assume that they are
equal to zero and shift the task of determining
the motion to the choice of the arbitrary har-
monic functions. Calling the coordinates of the
singularity q'(I), and indicating derivatives with
respect to time by dots, we have as the simplest
non-trivial choice'

p„=m, (ij"'/r)

and obtain then for the equations of motion

We note that up to this stage it did not
matter if retarded or advanced fields were used.
We are only concerned with this problem when
we evaluate the integral over T, „.

The integrals over 0', can be shown to be
zero. For the fields determining T „we have to
take the total fields

where y. is the electromagnetic scalar potential,

" It has been shown in IW that this choice corresponds
to the choice of an energy-momentum tensor for matter
and that the arbitrariness can be removed by an appeal to
the general relativity theory. The same argument holds
also for the choice necessary at the corresponding stage
of the derivation in D. Equations of motion based on the
derivation of D, but using a diferent choice of the "arbi-
trary" functions, have been suggested by C. J. Eliezer,
Proc. Camb. Phil. Soc. 42, 278 (1946). It appears from the
above that while these equations are perfectly consistent
with the special theory of relativity, they are in conflict
with the general theory.

and y the vector potential of the 6eld of the
point charge itself, and, &F„„ is the external
field (including the fields of other point charges).

If we take for y„half the sum of the retarded
and advanced potentials, we obtain for the
equations of motion

m,ij"= e.„,E„(IW2.17)

where, „&E„ is the external electric field (the
6elds of the other point charges also being taken
as 1/2 (retarded+advanced) field) evaluated at
the position of the singularity at the moment t.
These are just the usual equations of motion
without radiation reaction, except for the special
form of the fields of the other charges

If we choose for y„retarded potentials only,
we obtain

m,j =e„+ +2/3esij (IW2. 18)

where we have to take in . tE the contribution
due to other charges as retarded fields only.
These equations do contain the radiation rear. -

tion.
The above equations held in a special coordi-

nate system only. We consider a four-space with
coordinates x& and signature + ———,Greek
letters taking the values 0, 1, 2, 3 where x is the
time coordinate and x', x', x' are the space
coordinates. The vector v& is defined as the
four-dimensional velocity vector of the point
charge. Accents indicate differentiation with
respect to arc length in space-time. Then it may
be shown that in the first case (from now on
referred to as the symmetric case) the equations
of motion become

m.v'~ = eF„w~" (IW 2.19)

and in the second case (from now on referred to
as the retarded case)

m,v'~ =e.„, Fw' +23/e'"v
+2/3e'v"v' (IW 2.20)

where, &F„I' is evaluated at the world point of
the singularity and contains symmetric contri-
butions from the other charges in the symmetric
case and retarded contributions only in the
retarded case." Equations (IW 2.20) are just
the Lorentz-Dirac equations.

' This distinction in the meaning of, qF„ in the two sets
of equations has not been made explicit in IW, as that
paper was not concerned with any application of those
equations, but it is obvious from their derivation.
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P 1/2(„,p(()+ F() &)

For future reference we shall make the dis- where the right-hand side is the Lorentz force
tinction between the meaning of tF„& in Eqs. acting on the particle, and F is the field
(1W 2.19) and (IW 2.20) explicit by writing it as

(Wf 38)

F v —P F„v(&)+ F„u
k&a

(2)

in the retarded ease. Here „tF„'"and, q F„' '

are the retarded and advanced fields of the 4-th
charge, and, F„& is a solution of Maxwell's
equations for empty space, which of course is not
necessarily the same in the retarded and in the
symmetric case.

We obtain, therefore, for the equations of
ITlotion

m.v."= s. g 1/2(...p."'"&+...F."'"')v."
4+0

F s —g 1/2(«p„v((') + & P s(&)) + F„v (1)
k&a

in the symmetric case and
Therefore, we have

))( v 0 =s p 1/2( p y(&)+ p y(k))v (6)
k&e

The expression (WF 38) can be broken down into
three parts

2 «(F"'+(1/2 -),F"—1/2 .g F('&)
k~a

—Q 1/2(„(F( & —,g F("&). (WF 39)
all k

The second term of this will contribute to the
force an expression

e,(1/2„&F„"(')—1/2, q F,I'('&)v, ".

This reduces, according to Dirac, to the form

for the symmetric case, and

+e. ,ppv. " (3) 2/Be, '(v w, „"—v "w „)v " (WF 41)
which can also be written

v(ave "=~a Z «(;Fi" va"+~a epv"vu"
&+6

+2/Be. 'v.")'+2/Be.'v."v." (4)

f'or the retarded case. All F's are evaluated at
the world point of the a-th singularity, whose
rest mass we have denoted by m, now instead of
m„ its velocity vector by v,~, and its charge by e,.

Dirac's results are entirely equivalent to those
of Infeld and Wallace. As Dirac states, however,
of Eq. (4) that it has been "obtained in a theory
which is fundamentally symmetrical between
retarded and advanced potentials", we shall show
in the Appendix that actually he did not use any
symmetry relations in his derivation of the above
equations, but retarded fieMs only.

III. ACTION AT A DISTANCE: THE WHEELER-
FEYNMAN THEORY

In the theory of action at a distance as
developed by Fokker" and Wheeler and Feyn-
mane the equations of motion of the a-th charge
are assumed to be"

I II,M~5~ "=e~FI "8~"

"A. D. Fokker, Zeits. f. Physik SS, 386 (1929).We are
not concerned here with other formulations of action at a
distance using retarded interactions only."Here and in the following we shall change the notation
of %F slightly to conform to the one employed above.

2/38, 2(v "~+v,'2v, t').

The third term has no singularities anywhere and
is, therefore, a solution of Maxwell's equations
for empty space, which we shall call ~F to
distinguish it from the empty-space solutions
introduced in (1) and (2), or

fp —Q 1/2( F(&) F(k))
all k

Then we obtain for the final equations of motion

~a&a —e@ ~ ret, F'v ~afp, ~ 5' y(k)

kgo

+2/Be, '(v, "&+v,"v,&) +e,fF„+." (WF 44)

for the case which WF call "incomplete absorp-
tion". The case which they eall "complete
absorption" is characterized by

P («,F ' —.„a~p(")=0 (everywhere). (WF 37)
all k

Using this relation, "we obtain for the equations
13%'hile (WF 37) was obtained in WF from the relation

&' (1/2, F&~)+1/2,d F&~)) =0 (outside the absorber)
all k

(WF 33),
it is onl~ (WF 37) which is used in the equations of motion.
As (%'F 33) necessitates a division of the universe into a
part "inside" the absorber and a part "outside" it, it
appears irreconcilable with any current cosmological
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of motion

Wana 8o ~ ret~'a' Vo
V y(k)

kpa

+2/3e, '(v " +v "v."). (WF 42)

IV. FIELD THEORY AND THE CONSIDERATIONS
OF VfHEELER AND FEYNMAN

Following Inf'eld and Wallace we obtained two
diferent sets of equations of motion for the
retarded and the symmetric case (Eqs. (3) and

(4)) respectively. If we considered the equations
significant for the case of a single particle, we
would obtain a force of radiative reaction in the
retarded case only. However, it is clear that we
can only compare those equations with experi-
ment which take account of the existence of a
large number of particles in the universe (which
may or may not lead to the same conclusions
as the simpler equations for the one-particle
case). We shall show that we can take over the
considerations of Wheeler and Feynman on the
6eM of all particles in the universe into 6eld
theory and we shall then obtain the radiative
reaction also in the symmetric case just as in the
theory of action at a distance.

Except for its last term, Eq. (3) of field theory
is of the same form a,s Eq. (6), the starting point
of the theory of action at a distance. Its first
term on the right-hand side is just the expression
(WF 38) and we can break it down into three
diferent 6elds exactly as KF have done, for
none of their arguments (once Eq. WF 38 is

accepted) involves any distinction between field

theory and action at a distance. Therefore, we

we obtain finally, corresponding to (WF 44),

m.v, '"=e. Q,.iP.('"&v."+2/3e. '(v.""+vo"v.&)

k~o

where the sum in the last term is due to two
fields each of which is a solution of Maxwell's
equations for empty space and, therefore, still a
solution for empty space.

If we accept (WF 37), we obtain corresponding

theory, while (KF 37) holds everywhere and is therefore
consistent with, and might even be a consequence of cosmo-
logical considerations. Also (NF 33) does not have to hold
for (NF 37) to be true. This makes it more plausible at
present simply to take {%'F37) as an additional assumption
of the WF-theory.

to (WF 42)

~e@o =&a ~ ree~ v &n
Ip ~ K' y(k)

k~a

+2/3e '(vo""+v,"vo")+e, ,P.a,". (9)

Equation (4) (the retarded case) is already of
the form of Eq. (8) (except that the term
involving fP if absent), and nothing new is
obtained if one takes into account all particles
in the universe.

We have considered in outline the derivation
of the equations of motion from the point of
view of 6eld theory 6rst in order to show that,
starting from the total 6eld, one may obtain the
Eqs. (3) or (4) which apparently do not involve
the total field, but only the "external" one, and
are therefore of the same form as in action at a
distance. This, then, enabled us to show that the
application of the WF considerations to the
symmetric case yields the radiation damping
term which appears in the retarded case already
without these considerations.

However, we could have seen without any
calculation that under the so-called "complete
absorption" conditions any results of 6eld theory
must be the same in the symmetric and in the
retarded (and also the advanced) case. For the
condition (WF 37) can also be written

Q, p(&& —Q p(i)
all k all k

= P (I/2, P(~)+I/2 P(&:&)

and these are the fields (due to sources) which
have to be inserted into the energy-momentum
tensor at the start of any field-theoretical calcu-
lation in the retarded, advanced and symmetric
cases, respectively. As these are equal, it is
obvious that the equations of motion must also
be the same in all cases. '4

While this demonstrates the equality of the
equations of motion arrived at in the various
cases, the explicit form of the equations must be
obtained by a calculation such as those of Dirac
or Infeld and Wallace.

It should be noted that in the theory of action
at a distance, contrary to field theory, Eqs. (10)
or (WF 37) do n()t lead to the same equations of

'4 The relation (10) w'as suggested by A. Einstein, Phys.
Zeits. 10, 18S (1909). Cf. also reference 7.
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I ABLE

Field theory Action at a distance

Basic assumptions
Lorentz Eq. (5)

Maxwell's equations

Conservation laws for the electro-
magnetic energy-momentum tensor

{IAV 2.1, 2.2)

Fields used

Equations obtained

Additional assumption

Final equations

Terms common to all 6nal equations

Retarded

None

Symmetric

(3)

Symmetric

(WF 37}

(KF 42)

None (MlF 37} None

(8) (9) {WF44)

Additional terms (to be multiplied by e,v,"} F 8+]F 8 .F„" None

all k all k

P(i&+2 P (11)

Therefore, the total fields in the three cases
differ only by solutions of Maxwell's equations
for empty space, and the equations of motion
will only diR'er in the terms involving such
solutions (cf. Eqs. 4 and 8).

In short, the mathematical reason for the
similarity of (4) and (8) is simply that two
solutions of the inhomogeneous wave equation
can a,t most diRer by a solution of the homo-

geneous one.

V. DISCUSSION

We shall now inquire into the relationship
between the five different sets of equations of
motion: Eqs. (4), (8) and (9) from field theory
and (WF 42) and (WF 44) from action at a
dista, nce.

To facilitate the comparison we summarize
the assumptions and results in Table I. The
last rom shows that these equations differ
mathematically only in fields which represent
empty-space solutions. However, physically the
fields, F and yF do not have the same significance.

motion in all cases. As it is not the total field

which enters the starting equations (5), the final

equations (WF 42) can be obtained in the sym-
metric case only.

If one does not assume condition (WF B7), we

have from (7)

Q „,F&'& = P (1/2 „,F&"&+1/2,g„F& ')+yF

,F is a solution of the homogeneous wave equa-
tion, which arises only in field theory and may be
due wholly, partly, or not at all to sources; but
at present field theory is unable to analyze it
any further. ~F on the other hand is uniquely
determined by the sources according to relation
(7), which states that it is ha, lf the difference of
the retarded and advanced fields of all particles.
As shown in section III, the term e,e "yF„I' con-
tains a part which just cancels the radiation
damping term 2/Be, '(s,"&+i&,"s,"). Therefore,
the similarity of Eqs. (8) and (WF 44) to (4), (9)
and (WF 42) is purely formal and (8) and
(WF 44) actually do not describe radiating
particles (cf. the discussion of "incomplete ab-
sorption" in WF).

If we adopt the assumption frequently used in
field theory that, F=0, Eqs. (4) and (9) reduce
to (WF 42). However, it should be kept in mind
that while the solutions of the equations of the
symmetric case (9) and (WF 42) are subject to
the restriction (WF B7), those of the retarded
case (4) are not. Therefore, we (and also WF)
have not shown the complete equivalence of the
retarded and symmetric cases.

Keeping the assumption, F=0, we have, on
the other hand, complete equivalence of Eq. (9)
and (WF 42) of field theory and action-at-a-
distance theory, respectively, describing the mo-
tion of radiating charges. These identical equa-
tions have been obtained from two basically
diferent starting points, while using in common
Maxwell's equations, fields symmetric in time,
and the condition (WF B7).
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In both theories we have to introduce one
additional assumption, namely, either the con-
servation 1aw for the electromagnetic energy-
momentum tensor, or the relation between
Lorentz force and momentum. The advantage
of action at a distance is the plausibility of the
physical idea of reducing everything to the
interaction of particles. But this is balanced by
the dif6culties connected with the conservation"
and transmission of energy and momentum.
Therefore, none of the viewpoints appears to be
preferable to the other from considerations of
simplicity.

Clearly a direct verification of the fundamental
assuniptions of the two viewpoints is impossible,
as one cannot observe a field without a test
charge, the effect of which, however, mould have
to be included in the total field. The only
experimentally verifiable conclusions are pre-
cisely the equations of motion.

Comparing these equations, we see that there
is no eAect which would require the point of view
of action at a distance. On the other hand, the
demonstration of a non-vanishing, F would show
an effect which can only be explained by field
theory.

Such a demonstration, while possible in princi-
ple, appears to be impossible in practice, as it
would amount to finding whether the observed
field is "only" due to the retarded fields of all
the charges in the universe, or whether there is
still another part.

Therefore, as far as the symmetric case is
concerned, there do not seem to be any com-
pelling reasons at present to prefer either of the
two points of view. It appears possible, however,
that the application of these viewpoints to
general relativity or to quantum mechanics will

provide such reasons.
The author wishes to thank Professors J. A.

Wheeler and R. P. Feynman for a stimulating
discussion, and Professor R. J. Emrich for his
valuable criticism of the manuscript.

APPENDIX

We want to show that Dirac's formulation of
the field theory for the one-particle problem
leads to the same conclusions as that of Infeld
and Wallace, namely that one does obtain the
term of radiative reaction only in the retarded,

but not in the symmetric case. Dirac takes the
actual field as"

actF retF+ inF

where;„F is the incident field, a solution of the
homogeneous wave equation, as is,„tF, which is
defined by

The dift'erence
F— F+ F

„dF=,„tF—;„F

(D 9)

(D10)

radF = retF advF (D 11)

is called the field of radiation in D. The equations
of motion are obtained by substituting the actual
field (D 8) into the energy-momentum tensor.
After a rather long calculation, which, however,
involves only the use of Maxwell's equations,
his stress-tensor and (D 8), Dirac obtains the
result

where

mv'" = ev "f„"

f= ciF 1/2(. iF+—a F)

f=1/2(„,F—,g F)+;„F

(D 22)

and, therefore, we would have obtained as our
equations of motion

mv'~=ev" F ~

which do not include the term of radiative
reaction. "

'~ Here, and in the following, we shall change the nota-
tion of D slightly to conform to the one employed above.
Also, as we shall only have to follow the argument of D
without any detailed calculations, we shall omit sub- and
superscripts for convenience wherever there is no danger
of confusion.

'~ This result has also been obtained by C. J. Eliezer,
Rev. Mod. Phys. 19, 147 (1947) (case k= —$), in a dif-
ferent connection,

from which we get (see (WF 41) abo~e)

mv'" 2/3e'—(v""+v"v")= ev" F & (D 24)

If we had used the field of what we called above
symmetric case, we would have had

..iF = 1/2(...F+.,„F)+;.F.

It can be easily seen, following Dirac's calcula-
tions, that the introduction of this expression
would still have led to (D 22) with the definition
(D 13) or with
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For the case of several particles, analogous
considerations would lead to our Eqs. (4) and

(3) respectively.
Therefore Dirac's derivation is in accord with

the one of Infeld and Wallace outlined previ-
ously. However, we noted that Dirac himself
calls his theory fundamentally symmetrical be-
tween retarded and advanced potentials. The
contradiction seems to come from the fact that
Dirac considers his theory symmetrical due to
the apparent symmetry of the use of retarded
and advanced fields in definitions (D 8) and

(D 9) (and the analogous definitions (D 38) and
(D 39) for the many-body problem).

However, it should be noted that in the
derivation by Dirac outlined above, he is only
using (D 8) (respectively D 38). The definition
(D 9) never enters into any of his calculations
which lead to his equations of motion. It is only
used in a purely formal manner to introduce
the notion of „qF (see (D 10)) into some of the
equations;" but the results themselves are inde-
pendent of it.

'~ The purely formal character of any definition of the
radiation field can be seen also from the fact that in %'F
the term "radiation field" is used for just 1/2,~F of D,
without in any way leading to contradictions, as the only
physically significant equations are the equations of
motion of the point charges.
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The Photo-Voltaic Effect

K. LEHOVEc

Signal Corps Engineering Laboratories, Fort Monmouth, &Yern Jersey

(Received March 19, 1948)

The Sekottky-Mott theory of the barrier layer rectification is extended with respect to the
action of light absorbed in the barrier layer. The essential physical assumptions to be used
are as follows: {a) The barrier layer is a boundary layer of a semiconductor with a reduced
density of mobile charges (either electrons or "holes" ); (b) both positive and negative mobile
charges are released by light; (c) the recombination within the barrier layer is negligible;
and, (d) the electrons and "holes" have the same properties whether released by light or by
thermal agitation. Thus an "equation of state" connecting photo-voltage, photo-current,
light intensity, wave-length, external resistance, etc. , is derived. Among others the regularities
of short circuit current, open circuit voltage, photo-characteristic, dark characteristic (barrier
layer rectification), power output, and spectral distribution of the quantum yield are involved.

I. INTRODUCTION

HE most successful theory in the explana-
tion of the barrier rectihcation is the theory

of W. Schottky' and N. F. Mott. ' In his discus-
sion of the action of light in a barrier layer of the
nature described by the above theory, N. F.
Mott has already succeeded in explaining the
sign of the photo-voltage. ~ In this paper we
generalize the fundamental assumptions of

Schottky and N. F. Mott and derive a
comprehensive formula for the barrier layer
photo-efkct. 4 The establishment of one formula

'%. Schottky, Zeits. f. Physik 113, 367 (1939);Zeits. f.
Physik 118, 539 (1942), and other publications.

~ N. F. Mott, Proc. Roy. Soc. London A1T1, 27 (1939).' N. F. Mott, Proc. Roy. Soc. London Alt 1, 281 (1939).
'This formula has been communicated in a previous

nnte by the author in Optik 1, issue 3 (1946}.

for the manifold of barrier layer photo-cells
varying in peculiarities is possible since the
peculiarities of minor importance enter only into
the parameters of the formula, which remain
open to a further discussion in special cases.

We shall treat explicitly the photo-eAect in
semiconductors only for the case where the
mobile carriers of charge are electrons (n-type
semiconductors) and shall state the corre-
sponding results for semiconductors with "hole"
conductance (p-type semiconductors). '

II. BASIC CONCEPTS ABOUT THE BARRIER LAYER

In principle both barrier layer rectifiers and
barrier layer photo-cells consists of a semicon-

~ K. Lehovec, Zeits. f. Naturforsch. 2, 398 (1947).


