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On the assumption that the interaction between nuclear
particles involves a space exchange operator, it is shown
that an addition must be made to the conventional current
density for the nucleons in order to establish the equation
of continuity within the nucleus. A general expression is
found for this exchange current and the corresponding
exchange magnetic moment. This phenomenological theory
has application to the calculation of magnetic moments of
nuclei and to the calculation of transition probabilities for
the absorption and emission of radiation by nuclei. In

this paper, application is limited to the exchange moments
of H' and He'. It is found that the exchange moments are
six or seven. times too small to account for the observed
moments. In view of results obtained by Uillars, it is
concluded that the important contributions to the magnetic
moment are directly related to the properties of the field

(meson field) which describes the nuclear interaction, so
the exchange moment may be of use for obtaining direct
information concerning the nature of this field.

L INTRODUCTION

S a result of recent measurements' of the
magnetic moments of the nuclear three-

body systems H' and He', consideration has been
given to the possibility that there exist exchange
currents in nuclei. ' The term exchange current
is used here to denote the net flow of charge
between nucleons which may be considered to
be a consequence of the charge exchange nature
of their interaction potentials. A current of this
type is expected to introduce a contribution to
the magnetic moment with the result that the
magnetic moments of nuclear systems could not,
in general, be obtained by simply adding the
spin and orbital contributions of the nucleons.

It was first suggested by Siegert'4 that the
existence of exchange forces in nuclei implies the
existence of an exchange current. He showed
that under certain circumstances, one would

expect the exchange current to be proportional
to the exchange potential. The arguments pre-
sented by Siegert were based on a field theoretical
description of the nuclear interaction, although
his final result is independent of the properties
of the nuclear field other than the interaction
potential it produces. This suggests strongly
that Siegert's exchange current is a property
associated with the exchange potential which is

quite independent of the nature of the field

producing the potential. It will be shown below
that this is indeed the case.

It is not to be assumed that this is the only
contribution to the exchange current. For ex-
ample, the anomalous contributions to the mag-
netic moments of the neutron and proton may
be due to a charge bearing field, and the corre-
sponding currents may be to some extent inde-
pendent of the neutron-proton interaction poten-
tial. In general, then, one expects the exchange
current to contain two terms, one depending in
some way on the details of the field describing
the interactions between nucleons.

Villars' has shown that for a specific type of
nuclear field (pseudoscalar symmetric) one can
account for the observed exchange moment of
H' and He'. It is to be expected that other types
of field could also account for the observations. '
In spite of the apparent agreement, the situation
cannot be considered to be completely satis-
factory because the field theories lead to unsatis-
factory interaction potentials. An explanation
of the exchange moments based on the "field
independent" exchange current described above
would not labor under this difficulty since it can
be directly expressed in terms of the phenomeno-
logical potentials. Therefore, the contribution of
this exchange current to the magnetic moments

'H. L. Anderson and A. Novick, Phys. Rev. Vl, 372 of H3 and He3 is estimated below. It is found
(1947); ibkf. 'D, 919 {1948);F. Bloch, A. C. Graves, M.
packard, and R. W. Spence, i'. Vl, 373, 551 (1947).

' that the result is not in agreement with observa-
'F. Villars, Phys. Rev. '72, 256 (1947); Helv. Phys.

Acta 20, 476 (1947). ~ A. Thellung and F. Villars, Phys. Rev. VB, 924 (1948),' A. F. Siegert, Phys. Rev. 52, 787 (1937). have considered vector fields and a Mufller-Rosenfeld' W. E.Lamb and L. I. SchifF, Phys. Rev. 5$, 651 (1938). mixture with negative results.
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tions, so one may conclude that the exchange
currents do depend in a detailed way on the
nature of the nuclear fields. This would seem to
indicate that the exchange moments may be a
means for determining experimentally the trans-
formation properties of the nuclear fields. How-
ever, a satisfactory comparison of this nature
does not seem feasible until there is developed a
held theory that leads to reasonable interaction
potentials which may then be used to fix the
constants in the theory.

In order to establish the relationship between
exchange current and exchange potential, use
will be made of Wheeler's velocity dependent
formulation of the exchange potential. ' The
resulting theory of the interaction between the
nuclear system and the electromagnetic field is

applicable to radiation problems as well as to
the magnetic moment problem. The conse-
quences of the theory with respect to the emission
and absorption of radiation by nuclei have not
been investigated but it is hoped that that
investigation will be carried out in time.

II. FORMULATION OF THE PROBLEM

Ke consider only the Majorana type of ex-
change interaction since it can be shown that a
spin exchange operator in the interaction does
not introduce any additional contributions to the
exchange current. The exchange operator will be
denoted by I';I, , this operator exchanges the
position coordinates of the jth and kth particles.

If the usual expression of the equation of
continuity which arises from the Schroedinger
equation is considered, it becomes immediately
obvious that an exchange potential requires the
addition of a term in the exchange current. In
the usual way we find

8—
~ P ~'+ (ih/2M) Q; div, Q grad, &*—P" grad;P)

8$
=(~/&)(0l P k*l/4) (&)-

For ordinary potentials the expression on the
right vanishes, but for exchange potentials of
the form V=QJ;,P;„with Ja= J(rg —r,), it
will not vanish except for very special types of
wave function. However, in the special case of
the deuteron, it will always vanish since the

wave functions are necessarily either symmetric
or antisymmetric for interchange of the two
nucleons. The wave functions of other nuclei will

usually contain both symmetric and antisym-
metric terms.

Although Eq. (1) shows clearly that the
exchange current can be expected to depend
directly on the exchange potential, it is not the
most convenient form for establishing the exact
relationship. For that purpose we look into the
question of the gauge invariance of the Schroed-
inger equation involving exchange potentials.

It is well known that gauge invariance usually
implies charge conservation. Stated more pre-
cisely, if it is possible to obtain the field equations
(Schroedinger equation) from a gauge invariant
Lagrangian, then a "natural" expression for the
current density can usually be obtained by
applying an infinitesimal gauge transformation
to the Lagrangian and identifying the equation
resulting from invariance under this transfor-
mation with the equation of continuity for
charge and current.

If, then, the Schroedinger equation involving
an exchange potential can be obtained from a
Lagrangian formalism, the requirement of gauge
invariance wili lead directly to an expression for
the exchange current. The problem is, therefore,
reduced to that of obtaining the Lagrangian
which will properly describe the exchange inter-
actions between nucleons in the presence of an
external electromagnetic field.

IIL THE LAGRANGIAN DENSITY

In the absence of external fields, the I a-
grangian density, L, , may be taken to be

I, = ih(P, 8—$/Bt)

+P, (It'/2m~) (grad~/, gradqP)

+Ra Z,(.(0 ~re'~~0), (2)

where the labels j and k denote particular
nucleons and J; is the potential function which
depends on the distance between the particles j
and k and may be an operator involving the spins
of those particles. The scalar product notation
includes only the sum over spin coordinates;
thus (tt, 8$/Bt) =P,P, Bg /Bt, etc. The condition

' J. A. %'heeler, Phys. Rev. 50, 643 (1936).
LdASrgdv p

.d~~ =0 (3)
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in which P" is varied but P is kept constant,
clearly leads to the Schroedinger equation

ihB&/Bt = —Q, (h'/2m„) &p'f

differential operator as proposed by Wheeler. '
Wheeler called attention to the fact that the
function P,,g(r;, r„) may be expanded in Taylor
series about the point (r;, r,) with the result:

+pa &~a J;aP~~4 (4) P, P P, , ( 1).4+.I+ 6

which is the required form. The conjugate com-

plex of Eq. (4) is obtained if f is varied and P*
is held fixed in Eq. (3). To show this it is neces-

sary to note that

t(4', ~~aPsaW)drgr~

(Ja»A' ~4)drAr, (5)

in virtue of the symmetry of the integration
with respect to the variables r; and r&. It is
assumed, of course, that J; is symmetric in the
coordinates of the two particles and Hermitian.

In the presence of an external electromagnetic
field described by a vector potential A and a
scalar potential q, the first two terms in the
Lagrangian density given by Eq. (2) are to be
modified by the substitution

grad~/-+grad, f—(ie„/hc) Al,g,

+ (i/h) Z. car A,
8$ Bt

(xa —x~) """'(y~—y~) """'(s~—s~)"' "'
X

n I!n2!ns!4!ng!n6 1

( Q ) $$ f Q ) SQ ( g ) Sg

&ax;J (Py;) i iis, )

f' ~ 'i"'( ~ 'i"'f ~ l"'
EBx&) E By&) E Bs,)

It is to be voted that this equation may be put
into simpler form by treating r&, and r;& as
constant vectors in the equation

1
P;,P= Q„—(r»".grad;+ r,, grad&)'f, (8)

nt
and setting

after each term in the series has been expanded.
If we now denote by D» the diiferential operator
(r»" grad;), Eq. (8) takes the simple operational
form

P~A =&{Dk;+D,~ j-4 (10)
where c, is the charge of the hth particle (e for
protons, 0 for neutrons) and A&=A(r&), q»= y(r, ).
Then these two terms are invariant under the
gauge transformation

A—+A+ gradG, q ~y BG/8(ct), —

P~ye {iP„e.G„/hc j,

where G&=G(r&) and e{xj is used to denote e*.
The third term in the Lagrangian Eq. (2) is

certainly not gauge invariant as it stands since

The gauge-invariant modification which takes
into account the effect of external electromag-
netic fields is now obvious. According to Eq. (6),
the required substitution is

D, ,~D,; (ie,/hc) (r„,"A;). . — (12)

Using this operator, the last term in the
Lagrangian is given by

I-~=&, P,&,(4, J,,e{D„+D,„}4). (11)

Page{i Q s„G /hcj

=c{(i/hc)(Q ~;,e G +c,,G,+c,G~) }P,gf.

Setting
f,, = —(e,/hc) (r„"A, ), (13)

Only those terms for which e;= e„(i.e. , involving
exchange of two protons or two neutrons) behave
in such a way as to leave (P, J;&P;&P) unchanged.
In order to obtain the appropriate gauge-
invariant modification of this term it is con-
venient to express the exchange operator as a

the potential term in the Lagrangian becomes in

place of Eq. (11)

I.~(f) = 2*E~~(f, ~;.
Xs {D„;+D,,+if,;+if; }y). (14)

This expression is clearly gauge invariant. Thus
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the complete gauge-invariant Lagrangian density
1s

A further result which will prove to be useful
is that for any two functions q and g

I = ih—(y, ay/at)+(y, Pa e.e.y) e'(e x) =e'e e'x. (21)

+Qa(1/2™kc')([hc grade& ie&—A&fj,
.[hc grad~/ i—e,A„Q])

+Ra Zw. Q, ~)a

Xe {D„,+D,,+if„+if~ }4) (1.5)

IV. PROPERTIES OF THE EXCHANGE OPERATOR

In order that the Schroedinger equations for

P and f" which are produced by the Lagrangian
Eq. (15) be consistent with each other, it is
necessary that the operator e {D»+D;,+if„
+if;~} be Hermitian. To establish this property
it will be convenient to consider some of the
properties of the operator exp(D+g), where

Proof: eD is a displacement operator such that
e~e(r) =e~e(r+e) if r is a point on the path
along which the operator D is defined. Thus

e ex=a(r+~)x(r+~) =e'ee'x.

lf we now apply Eq. (21) to Eq. (20) with
F(D) replaced by the special function e~, we find

eD+~P=e e (e"P)=(e "eDe )e P . (22)

It is to be noted that the factor (e re~er) is just
a multiplicative factor consisting of a series of
derivatives of g.

Now to return to the physical problem. The
operator appearing in Eq. (14) can clearly be
written as

D = (e grad), (16)
e {D»+D,,+if»+if i } =e {D»+if„}e {DI+if,, }

with I a constant vector, and g a function of
the point r.

Ke first note that if ds is the element of
length along a path parallel to e, then

since the two differential operators affect differ-
ent coordinates. Then, from Eq. (22) it is found
that

D =a(d/ds). (») e{D.+»'+if. +if }4

If we define a function I'(r) to be the line integral

~r
r= —

)~ gds

along a straight line path parallel to I and
passing through the point r, we find that

(19)

= [e {—iC „—iC;, }e {D„,+D,„}
&& { 4" + @'}l {D +»'}0 (23)

or, according to Eq. (10),

= [e { ie„iC;„}—F,ie {i—e „+iC,, }jP,„y,

Now any function Fwhich defines a differentia
operator F(D) through a power series will have
the property

F(D+g)0=e 'F(D)eV-

C„;=— f„,ds;= —(e;/hc) {
—

~~ Ags; },

(24)Proof: From Eq. (19) it follows that

according to the definition of f» Thus.
(20)

4„;=—(e,/hc) A ds;,

Der&=/(Der)+er(DP) =e (rD+g)4.

Iterating this result, we find

D"e 4'=e (D+g)V
e rD"erg (D+g) ~if

The validity of this equation for each term in
he series F(D) leads immediately to the result
Etq. (20).

where A' is the component of A along the path
of integration, which is parallel to r». Similarly,

C';„= —(e„/hc) A~'dsI, .

Since ds~ is parallel to r;k ———r&~ it is antiparallel
to ds; and both integrals can be expressed in
terms of the same path which we choose to be
parallel to ds;. It is to be noted that the sign of
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the component A' of the vector is changed b~.

this transformation of paths so

4~,+4;,= —(e;/kc)
zest

This establishes the desired result since integra-
tion over the variables referring to other particles
will not alter the essential relationship.

V. THE EQUATIONS OF MOTION AND THE
EXCHANGE CURRENT

Now

+ (eg/hc) )t A'ds . (25) Making use of Eq. (26), the Lagrangian
density Eq. (15) may now be expressed in the
form

P;g(4»+4, g) = — (e;/hc)
J

A ds I-= ih(4—, a4/at)+(y, g„e„z„y)

So Eq. (23) becomes

e ID„+D;,+zf„,+zf;, I f

rj

+(e,/hc) A'ds . +P„(1 /2m, c') ([hc grad, P ie,—A,Q5,

[hc grad, P ie,A—,Q5)

since

&rk

=e [i(e, e;)/—hc5 I A'ds P,,P, (26)
"rJ

~k rj yak

A'ds — A'ds = I A'ds.
J The corresponding Euler-Lagrange differential

equation is

Since

X I A'ds fgfr~dr,
r&.

p J'k pzk

Ads= —
I

Ads,
~ rJ.

as can be seen from Eq. (27),

rk

I~ =
Jj~fPse —[z(e& e;)/hc5)—t A'ds

ri

XP,„P ~drtdrI, =Ip *. (28)

To establish the hermiticity of the operator we
observe that the quadratic form (P„e ID„,+D;,
+if»+if;„IP&) involves integrals of the type

rk

I.~ ——J"~~/. 'e [z(e„e,)/kc5—I A'ds
Jgj

XP,pffft rP rr,

In the integration, the variables r; and r& may be
interchanged without altering the value of the
integral. Thus

+P„e,e,y+P, Z,„e [i(e, e~)/h—c5

X A'ds P;„P. (30)

This is the required, gauge-invariant modifica-
tion of the Schroedinger equation. From Eq.
(28) it follows that the equation for P* may be
obtained by taking the conjugate complex of
Eq (30)

The complete expression for the current
density may now be obtained in the usual
manner from consideration of an infinitesimal
gauge transformation. Since I given by Eq. (29)
is invariant under the gauge transformation Eq.
(4), it will in particular be invariant if G is an
infinitesimal. That is, for the variation

ItA = —gradG,

be =BG/8(ct),

(i/hc) P; e,6;P, —

kg~ = (i/hc) P, e,G,Q*,



R. G. SACHS

a more useful form by noting that

Ldkfv'jdTg ' 'd7N —0.
S~OO

G;=I'„G,=e{D;.{G,= P —(r;„grad, ) G„. (38)
n-0 n!

8
dsd r, dr„G„el—, h—f, p)

~J as
s ~bJ bL

Jl { bA+ —bq {dsd7, dr~ =0. (32)) + (ie&h/2m, ) div„[(f, grad&/) —(grad„f, P)]

The variation in the integral produced by bP introducing Eqs. (36)—(38) into Eq. (32) and

and bp~ vanishes in virtue of the equations of integrating by parts, we find

motion, Eq. (30) or Eq. (3). Thus we are left
with

Now, from Eq. (29)

(bL/be)be =(y, P, e,b «P), (33)

n-w (—$)"
+ (i/h) P~,(e„e,)—Q (div, r,,)"

n!

(bl /bA) .bA = —gz(heI, /2m&c) [(ibA~Q, grad&P)

+( rg da, f, ibAgg) —(2e,/hc)A„bA, Q, P)]
&ra

+P, g,&,[i (e, e;)/hc] —bA'ds

{ 0 J~~e' ['(e~ e~)/hc] ' ~'d'&"e { (34)
p&k

%'e consider the limit of these expressions as
A~O, y—+0 since we are not interested in the
small currents produced by the external 6elds.
Then

(bl./bA) bA = Qg(ikey, /2m, c) bA,

[(0, grad@) —(g«dA, 0)]+(i/hc)&.

where the operator

X (4, J;,P;A) =0, (39)

8p/bs+div(SO+S. ) =0, (40)

p(r) = P, e, t(P, P)„=,

Xdri dry idly+i dry, (4l)

S,(r) =g, (e,h/2im, )J
t [(p, grad, f)

(div, rsk) = —3+r,, grad, .

liow by making use of the fact that 6& has an
arbitrary functional form, Eq. (39) may be
written as the conventional equation of con-
tinuity

—(grad, P, P)]ri, rdr& dpi, idr~+i dr~, (42)

FJ and

Inserting the expressions for bA and by fmm

Eq. (31), we find

(bL/be)be = (0, Z. e*bG./b(«)), (36)

S.(r) = —(i/h) P, P,„(e„.—e;)

- ( —l)"
XJ|

n!

(bI-/bA) .bA = —g„(ihe~/2m, c)

X[(4' grad@') (grading', 4')] grad@Go

—(i/hc) Za Zs&.(ea —e )

X(Ga —Gs)($ J;aP~xg), (37)

where G, =G(r,). The last term can be put into

X(d'v r;„)" '(O', J, Pi@')

Xdr, dr, idr, ~i dr~. (43)

The expressions for p and 80 are the conven-
tional charge and current densities and S, may
clearly be interpreted as the exchange current
density. .
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ln order to complete the description of the
exchange current, it will be shown that the
energy of interaction between a weak external
field and the exchange current has the conven-
tional form

grating by parts m times, we obtain

U = —(i/kc) Qa Pwa(ea —e;)

U= —(1/c) jI A Sgr. (44) X(f, J;i-P,,) dri dr. ~.

Zi I (P, J;„P,,!P)e (i/&c)(e —e;)

7k

Xj A'ds d7'i dr~
VI. THE EXCHANGE MOMENT

For weak external fields the exponential may In a uniform magnetic field the interaction

be expanded. The linear term then yields the energy with the exchange current can also be

interaction Uin thedesired approximation. Thus expressed»
U= —(M, H),

From the Schroedinger equation, Eq. (30), the The introduction of S, from Eq. (43) leads
average value of the exchange energy is found immediately to the desired result, Eq. (44).
to be This result indicates that variation with re-

spect to the potentials of the total Lagrangian
describing both the particles and the electro-

J magnetic field will lead to Maxwell's equations
involving the total current So+8, in the usual
way.

hark

X ~dS dT]''

where M is the exchange magnetic moment.
Since the vector potential for such a field is
A= —(1/2)[rXH], we find from Eq. (44) the
usual expression

The line integral in Eq. (45) can be re-
expressed by making use of the expansion of
A'(r) about the point r„: However, because of the complicated form of 8„

it is somewhat simpler to deal directly with the
expression, Eq. (45). Inserting the value of A in

Eq. (45) we find that the line integral can be
immediately evaluated since [rXH]' is constant
along the path of integration:1 (d"

0 ii! Eds ) r~

ric

j A 'ds = ——', ([r,X r;] H).
1 J

(4:9)

U= —(i/2hc) P, P „(e,—e,)
1 (ds

j A'is= —P —
)

A'
[ !

s"ds
r& 0 ss. (ds ) r& ~rg

or, comparing Eq. (47)

where hr~=r —r„so ~hr&~ =s, the length of the Thus
path measured from the point r&. Thus

(r;, grad, )"(r;, A, ).
~-0 (ss+ 1)!

Inserting this expression in Eq. (45) and inte-

M. = (i/2hc) g„Q~,(e,—e;)

X I (P, JqP;,f)[r„Xr;]dr& d7&. (50)
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It is to be noted that in the double sum
defining M, those terms vanish for which both j
and k refer to neutrons or those for which both j
and k refer to protons, since in such cases
e& —e;=0.

Equation (50) may therefore be replaced by

M. =(ie/2hc)Q, Q. ' [r.Xr„]

X(0, ~-P-4)dry dr~, (51)

where the indices x refer only to protons and the
indices v to neutrons. This expression is anti-
symmetric for interchange of neutrons and
protons, therefore the exchange moments of conju
gate pai rs of nuclei (i.e., those that can be
obtained from one another by interchange of
neutrons and protons) are equal in magnitude
and opposite in sign. It also follows that the

exchange moments of self conjugate -nuclei vanish

Thus one cannot expect to explain the anomalies'
in the moments of O', Li' 8" N" by the
introduction of an exchange current.

the form of the wave functions. It will be
assumed that the potential is the sum of a spin-
independent and a tensor interaction. The func-
tional f'orm of the potential will be taken to be
Gaussian with the constants determined from
the properties of the deuteron. ' The wave func-
tion which has been found" using this potential
will be used here. No serious diR'erence would be
expected if the Gerjuoy-Schwinger" functions
were used. This wave function contains four
percent 'D function and no 'P or 4P function.
In the calculation which produced this function
the tensor interaction was treated as an ordinary
potential rather than an exchange potential, but
either of these potentials will give about the
same result for the D state probability. The
present considerations are based on the assump-
tion that the tensor interaction involves a
Majorana exchange operator.

If the positions of the neutrons in H' are ri
and r2, and the position vector of the proton is
r3, Eq. (51) gives for the exchange moment

VQ. APPLICATION TO H' AND He'

The exchange moments of the nuclei H' and
He' may now be obtained from Eq. (51). As an
immediate consequence of the theorem stated at
the end of the foregoing paragraph we find that
the exchange moments of H' and He' are equal
in magnitude and opposite in sign. Villars'
obtained the same result in his field theoretical
treatment of the moments. One can conclude
that the sum of the moments of the two nuclei
does not involve the exchange moments so the
validity of the general theorem' concerning the
sum of the moments is not affected:

u(H')+u(He') =p„+u„
—2(u, +u„—-', ) (3D' —'P'+ 2 'P')/3. (52)

Thus, for a given nuclear wave function it is
necessary to calculate the exchange moment for
only one of the two nuclei. The calculation will

be carried through for H'.
In order to evaluate the integral in Eq. (51)

it will be necessary to make some assumption
concerning the nature of the potential, J „, and

~ R. G. Sachs, Phys. Rev. 69, 611 (1946).' R. G. Sachs and J.Schwinger, Phys. Rev. 70, 41 (1946).

M, =(ie/2hc)~ I{rgXr&](f, J~sP&sf)

+Lr3Xr2](4', J23P2$lp) }drldr2drS. (53)

Now the wave function P is the sum of a,n S
function and a D function. The integrand will

involve a product of two S functions, a product
of an S and D function, and the product of two
D functions. Since (rqXr~) and (r3Xr~) have the
transformation properties of a P function under
space rotations, the only contribution to the
integral from the spin independent term in J
arises from the product of the two D functions.
'I he tensor interaction term in J has the trans-
formation properties of a D function so this term
will make a contribution for the product of S
and D functions as well as the product of the
two D functions. Jf we denote by S and D the
amplitudes of the S and D wave functions, then
S2=0.96, D'=0.04. A direct calculation of the
average exchange movement based on Eq. (53),
using the above-mentioned wave functions, "

' S. Moszkowski and R. G. Sachs, Phys. Rev. 73, 184
(1948).

"M. Goeppert-Mayer and R. G. Sachs, Phys. Rev. 73,
185 (1948).' E. Gerjuoy and J. Schwinger, Phys. Rev. 61, 138
(1942).
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if the magnetic moment is measured in units of
nuclear magnetons. Here, Jo is the strength of
the Gaussian neutron-proton interaction, ao is
the range of the interaction, M is the mass of the
proton, and y is the strength of the tensor
interaction in the notation of Rarita and
Schwinger. " The numerical coefhcients depend
explicitly on the H' wave functions, but in such
an insensitive manner that Eq. (54) should yield
a fair estimate of the exchange moment for
values of Jo and y different from those used to
determine the wave functions. It seems likely
that Eq. (54) can also be used to estimate the
moment for a square well potential. For the
Gauss potential we take' y=0.53, Jpnp'M/h'
=4.29 and find

3f,=0.035 n.m. (55)

If we assume that Eq. (54) is adequate to
represent the exchange moment for a square
well potential, the Rarita-Schwinger" values

p =0.775, Jpap'M/h'=2. 80 lead to the estimate

3f,=0.04i n.m.

VIIL CONCLUSION

The exchange moments given by Eq. (55) or
Eq. (56) are much too small to account for the
difference of 0.27 n.m. between the observed
moment and that to be expected, ' neglecting
exchange, on the basis of a four percent D state
probability. This result is to be contrasted to
that obtained by Villars, ' using the pseudoscalar
symmetric meson theory. The principal differ-
ence between the two theories arises from the
fact that Villars' exchange current has a non-
vanishing average value in the S state, while the
phenomenological theory leads only to contribu-
tions which are proportional to the small ampli-
tude of the D function. This is a consequence of

'~ %'. Rarita and J, Schwinger, Phys. Rev. 59, 436 (1941).

leads to the result

M. = [0.080ySD+0.038D' —0.073yD']

X (Jalap'M/k') (54)

the dependence of one term in the Uillars
exchange moment operator on the spins of the
nucleons. Uillars also finds an orbital contribu-
tion to the exchange moment which is very
similar in form to that obtained here. He ignores
the latter contribution, since he treats the wave
function of the nucleus as an 5 function.

This situation is analogous to that which
obtains in the theory of the magnetic moment
of the electron. If one bases the theory of the
interaction of the electron with the electromag-
netic field on the non-relativistic Schroedinger
equation, no information is obtained concerning
the intrinsic magnetic moment of the electron
which is associated with the spin. On the other
hand, the Dirac theory in the non-relativistic
limit leads directly to an expression for the
intrinsic moment. Similarly, a relativistic formu-
lation of the theory of interacting nucleons is
required to give, even in the non-relativistic
limit, an expression for the spin dependent part
of the exchange moment. The meson field
theories provide a possible formulation of the
theory. Unfortunately, the pseudoscalar sym-
metric theory which accounts for the observed
exchange moment does not give a reasonable
account of nuclear forces since it leads to the
undesirable r ' potential. On the other hand,
work which has been carried out by Villars and
Thellung, ' indicates that modifications of the
meson theories which eliminate the undesirable
potential do not lead to the correct exchange
moment.

It can be concluded that the orbital exchange
moment which is obtained here on phenomeno-
logical grounds is well founded, but not adequate
to account for the observations. The principal
contribution to the exchange moment would
appear to depend in a detailed way on the
nature of the field describing the interaction
between nucleons. Therefore, the magnetic mo-
ments of H' and He' may prove to be a means
for obtaining direct information concerning the
nature of the field.

This investigation was carried out as a direct
consequence of a very interesting discussion with
Professor Fermi.


