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where E is as given in the text, Eqs. (24) and
(25). Here

Case Z: 2x~~2&&i

t/'„2= V„P2+X.2eiVV2, (35)
Case 1:2~~72&& j.

V '= V o'+E+iA/2orv. ro,

so that at in6nite frequency

V„„'=V„p2+A. .

(C32)

and at zero frequency
2 P' 2 (C36)

while the attenuation coe%cient for this fre-
quency range is

a= 2or' v'r oE/V„p'. (C37)

The attenuation coefficient arising from (C32),
and entering the solution of the wave equation
in the f'orm

V= Yos exp2oriv(t r/ V„), —

The peak attenuation occurs at the frequenc~
given by

2orv ro = ( V„p'/( V„o'+E))~,

which is practically unity. The peak attenuation
coefficient is then

where r is position, is

a =E/2 ro V p'.

a, = -', or vE/ V„p',

(C34) as stated in the text.

(C38)
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The equation for thermal diffusion derived in the foregoing paper agrees with the relaxation
equation for second sound used previously (see reference 3), if the second sound velocity is
corrected to zero frequency. The relaxation time ~ is calculated to a higher accuracy. The
peculiar property of the heat current in being proportional to the cube root of the temperature
gradient can be phenomenologically reduced to the relation

Ss Ts Jo

where u, is the velocity of the superfluid balancing the mass flow of normal particles trans-
porting the energy. r, is a relaxation time derived from v, the relaxation time responsible for
the damping of second sound, by the conditions for frequency balance. J appears to be a
simple function of temperature only, approaching h/mx at temperatures below 1'K. The
equations lead to a qualitative understanding of the reduction of thermal conductivity by
mass flow found by Kapitza.

' 'N the previous paper' it has been shown that
the wave equation for second sound degen-

erates into a diffusion equation approaching
zero f'requency and becomes

(~)/ri= V,op&&. &' V o'=x'(1 —x)SP/x'C-' (1)
where x is the fraction of the liquid in the normal
(excited) states, Z is the relative displacement
vector of the normal Quid, v1 is the relaxation

' W. Band and L. Meyer, Phys. Rev. 74, 386 (1948).

time for momentum exchanges between the two
component streams. Take the divergence of this
equation: assume very small amplitude and
absence of ordinary sound, then we sha11 have,
by (C6) of the previous paper,

V.Z ~ hx//x.

Thus:
(1/ri)(8/Bt)(hx) = V,p'VV. (hx). (2)

Here there is full relaxation so we have b x =x'6 1,
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where IT=T T—o, To being constant. Thus (2)
can be written

TABLE I.

(1/ ri) (aT/at) = V,gV'T. (3)
W

cal. /cm~ sec. us
at 10~ deg. /cm cm/sec.

u~r~
gdTs

10 4cm
Vsa

m/sec.

If this is compared with the equation for con-
servation of heat How,

pC(aT/at) = —7 W

W being the heat current density, Eq. (3) yields"

V tV= —pr, CV„'V'. V'T (4)

O'= —P7 IC V,o-'VT. (5)

Eq. (5) means that

ri ~1/W'

because ri is the only quantity in (5) which can
depend on W in order to fulfill (6). As the heat
Row is due to the diffusion of the normal particles
(velocity u,) with a density p, and energy
content e, we can also write'

From the experimental fact' that a heat
current S' in hehum II is proportional to the
cube root of the temperature gradient
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into the normal state with a time v, and the
inverse process with a time 7 . As both processes
contribute to the disturbance of the opposing
streams, the total disturbance is obtained by
adding the two frequencies:

1/7 i = 1/r, +1/r. (10)

In the steady state the number of particles
passing from one state to the other must be

l
Drawn line ~&e ' with e, l5 cal/g

TV= p, eu, . (8) 7X IO

Under the assumption that the energy content
of the normal particles is the heat content of
helium II, we get

p e= pQ=pJt CdT.

exlo'

5xlD

This permits us to calculate u, from measure-
ments on 8'and C.

Using (8) in (7) we find

r i ~ 1/W' ~ 1/u, ',
OI

i.iu, ' = constant for constant temperature. (9)

The relaxation time 71 in itself is due to two
processes: transitions from the superfluid state

~ If, as is later found to be the case, 1/rg Oc Z» or WV', a
factor 3 must be inserted on the left side of {2) on taking
the divergence of {1).Similarly, a factor 3 must be inserted
on the right side of (5) on integrating (4). These two
factors cancel each other, so the result (5) is correct in
any case.

'%'. H. Keesom, B. F. Saris, and L. Meyer, Physica 7,
870 {1940).' 9/. Band and L. Meyer, Phys. Rev. 'D, 229 (1948).
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equal in both directions:*

n./r*= u./~'

but (12) must be replaced by

p8Qg+ p~N~ =pQ, (12a)

The condition that the center of mass stays at
rest is

pgN~+ pgN g
=0. (12)

Equations (10)—(12) enable us to replace r& and

u, in (8) by r, and u, leading to

where pu is the net mass flow. Express u, in

terms of I, and u by means of (12a) and use the
result in (13), then because of (8) and the
equation derived from (10) and (11),namely,

1/« = I /~. r.,

v,uP =J(T). (13) it is found that (13) is equivalent to

The evaluation of this function is given in

Table l and Fig. 1.
The somewhat surprising result is that the

values of J(T) tend to approach h/ms at
temperatures below 1'K. However, as the ve-
locities u, and I, in (12) are only drift velocities,
this result cannot be related to the uncertainty
principle, but must be considered as a transition
probability relation. The whole J(T) curve can
be represented, purely empirically, by the equa-
tion

r,e,'= (h/ms) exp&/op, (13a)

where e is the energy per excited particle (see
reference 1) and eo is a constant having the
value 0.13 cal./g; m is the mass of the helium

atom.
Equation (13) leads also to a simple under-

standing of the peculiar behavior of the heat
current observed by Kapitza' in the presence of
mass flow. In this case Eq. (11) remains valid,

**This equation is strictly true only at zero temperature
gradient. If account is taken of the fact that the normal
particles are moving towards lower temperature where
their number is less, it is easy to calculate from (i3} the
departure from the cube root law at higher heat currents.
It is found that signi6cant increases in thermal resistance
are to be expected if the temperature gradients are higher
than O,oi '/cm.' P. L. Kapitza, J. Phys. U.S.S.R. 5, 58 (1941).

I/r~ = (~/p*) I (p~/I .)'+(p*W/~. pQ)'
+2(p.p/p')(I W/pQ) I (13b)

Use this in (12a) in the form*

', pCV, p'—dVT= (1/rg)d W

and integrate the result; we obtain

(14)

E'V T = (p/p, )'(pQu)'W
+ (p/p, ) (pQu) W'+ W', (15)

where E is the normal coefficient under zero
mass flow.

It is clear from (15) that if pQu is the same
order of magnitude as 5'—as it was in the
measurements reported by Kapitza —and if the
tempera, ture is low enough to make p,/p con-
siderably less than unity, there should be a great
increase in thermal resistance due to the mass
flow, qualitatively independent of the direction
of N. At temperatures sufFiciently near 1& the
effect should change sign with the direction of
mass flow. For very large heat currents (W» pQN)

the effect should become very small. The con-
clusions are all in agreement with Kapitza's
observations.

Ke hope to be able to discuss the meaning of
Eq. (13) in a later paper. We want to thank
Professor E. A. Long for valuable discussions.


