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In a previous paper (see reference 1)we have introduced
the concept of a time of relaxation in discussing disturb-
ances of thermal equilibrium between the populations of
the "superRuid" state and the normal states in helium II,
in order to relate second sound with heat conductivity.

For a complete discussion of the unrelaxed, the fully
relaxed, and the transition region, we need at least one
more independent variable than the two which specify
the thermodynamic state of a system of one component
in internal equihbrium. In a Taylor expansion of the
energy as a function of such a set of three variables the
coeScients at partial or zero relaxation will differ from
the ordinary values calculated from equilibrium thermo-

dynamics. The wave equations ordinarily deduced are
therefore modified.

Expressions are obtained for the velocities of propagation
of both sounds at infinite frequency {zero relaxation) and
at zero frequency (fu11 relaxation). At zero frequency,
second sound reduces to thermal diffusion. Normal sound
undergoes a sharp Einstein dispersion-and-attenuation at
the lambda temperature where the relaxation time passes
abruptly through the critical value for all generally used
frequencies. The theory is used to compute x, the fraction
of normal particles, from thermodynamic data and second
sound velocity. The energy per normal particle is obtained
as a function of temperature from x and the thermodynamic
data on total heat content.

' 'N a previous paper' we have introduced the
~ ~ concept of a time of relaxation in discussing
disturbances of thermal equilibrium between the
populations of the "superfIuid" state and the
normal states in helium II, in order to relate
second sound with the heat conductivity. For a
complete discussion of the unrelaxed state
(infinite frequency), the fully relaxed state
(thermal equihbrium at zero frequency) and the
transition region (partially relaxed states), we
need at least one more independent variable than
the two which specify the thermodynamical state
of a system of one component when it is in

internal equilibrium. Appropriate variables seem
to be p, the density of the whole liquid, x, the
fraction of the liquid in the normal states

where p, is the density of the normal component,
and 0 the entropy per unit mass of normal com-
ponent:

(r = S/x, (2)

W. Band and I.. Meyer, Phys. Rev. V3, 226 (1948).' L. Tisza, Phys. Rev. "/2, 838 {1947).' L. Landau, J. Phys. U.S.S.R. 5, 711 (1941}.

where 5 is the entropy per unit mass of the
liquid, contributed by the normal component. It
will be assumed with Tisza' and Landau' that S
is the whole entropy of the mixture. In this case
the above three independent variables, p, x, a,

are sufFicient to define the state of the system
when it is not in a state of internal (thermal)
equilibrium. In the case of full internal equi-
librium p and x become equivalent to V and T,
respectively, while a ceases to be independent
because in (2) both x and S are now definite
functions of l. At the other extreme, in the entire
absence of relaxation (infinite frequency) the
entropy per normal particle remains constant as
there is no time for interaction:

(3)

In a Taylor expansion of the variation of any
function of the three variables, p, x and 0, only
two variables will again appear explicitly; how-

ever, the coefficients at zero relaxation will diRer
from the ordinary equilibrium coefFicients that
apply to full relaxation. For a fully relaxed
system, the variation of the energy may be
written:

A,E= (8E/8 p).h p+ (8E/8x), hx
+second-order terms. (4)

As long as we consider only variations around an

energy minimum, i.e., a state of equilibrium, the
first-order terms vanish identically, and only
second-order derivatives remain. For the com-
pletely unrelaxed case where (3) applies the
variations of energy become, therefore,

5 E =-', (O'E/Bp'), .6p'+(O'E/8x8p) hxD p
+-,'(O'E/Bx'), .b,x'. (5)
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The second derivatives here have two suffixes to
show that they are not the ordinary equilibrium
partial derivatives for which 0- would not be
constant. These unrelaxed derivatives are evalu-
ated in Appendix A.

To study the partially relaxed system in the
intermediate region between the above two
extremes we introduce a generalized temperature,
T„defined by

T = (BE/BS),n
——(1/x) (BE/Bo),n (6)

(in any degree of relaxation). In Appendix A, it
is shown that the 6rst variation of energy can be
expressed in the form

and
„(BT,/BT) ..= I/LI —(x Q/xc) j. (16)

Consider two local adiabatic compressions, one
ideal with full relaxation, the other actual with
incomplete relaxation; they are accompanied by
temperature increase T and T„respectively. The
quantity

Comparing (12) and (13) we find, writing a
sufFix "u" again to indicate the completely
unrelaxed values:

„(BT,/BT)„= C/x'e, „(BT,/BT),.= C/e'x, (14)

or by (10)

(BT /BT)„=xC/x'Q,

where

P.= p'(BE/B—p),.=P+ (T, T) (BP/—BT). (8)

ii, = (C/x') (1—T,/T).

Here I', is a generalized pressure, p, plays the
part of a chemical potential for the mixture, C
is the specific heat, and x' is Bx/BT. In the fully
relaxed limit 1,—+T, I' ~I', and p,,~o.

The quantities (BT,/BT),.and (BT /BT),.are
related to each other. As already assumed, the
heat content per gram, Q, of helium II is due to
the normal particles only, so

Q=xe,

where ~ is the mean energy per gran& of normal
particles. The specific heat per gram is then

C=dQ/dT (dx/dT)c+(d~/dT) x. (11)*

In the completely unrelaxed case, variations of
x at constant p and 0. are not capable of altering ~

because of absence of interaction with the super-
fIuid. This means that, comparing equal varia-
tions in energy, relaxed and unrelaxed:

a„E=CaT=x'~ ZT.),. (1.2)

On the other hand, in an unrelaxed variation of
p, keeping x constant, only ~ can vary, so that

6 E=a'.x hT,), . (13)**
~ We neglect the small di6'erence between C„and C, in

helium II.
In writing e' here, it is assumed that the increase of ~

resulting from the work performed on the system during
increase in density is distributed over the di8erent excited
states of the normal component with su%cient rapidity:

which, with Frenkel's operator

A i =—1+r2d/dt, (19)

leads after some algebraic work (given in Ap-
pendix B) to the following result: The effective
value (BT,/BT)* under partial relaxation is given
by

(BT,/BT)* 1=[(BT,/BT—)„1](1—A ')—, (20)

where the expression (BT,/B T)„appearing on the
right side represents its value under complete
absence of relaxation (infinite frequency).

This relation permits us to express the elastic
coefFicients of (5) for the partially relaxed case in
terms of the values they have in the completely
unrelaxed limit. ***The thermodynamic part of
the problem is then solved. The general results,
derived in Appendix 8, are expressible in terms

the term "unrelaxed" refers only to the equilibrium
between the superfluid and the excited states as a whole.
This assumption will have to be confirmed by measure-
ments on the dispersion of ordinary sound below the
lambda-point.

4 J. Frenkel, XAaetic Theory of L,iquids {Oxford Univer-
sity Press, Cambridge, 1946).

*~*These coefficients, which are physically real quan-
tities, appear in this operator-type relaxation theory as
complex quantities essentially because we have chosen to
ignore the fact that additional terms in ha' would appear
in (5) for the partially relaxed case.

is a measure of the lack of internal equilibrium
in the incompletely relaxed compression. Fol-
lowing Frenkel, 4 the tendency of the system to
return to internal equilibrium will be assumed
proportional to x and we write

dx/d~= —xl +(dx/d&)-
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of directly measurable (i.e., fully relaxed or
thermal equilibrium) quantities, as follows:

(O'P/Bx'), .' =5/xx'+ (C/Tx" 5/x—x')
)((1—xC/x'Q) (1—A 2-')

(O'P/~xi ii),*= (8P/BT), EST/xC+ (1/x')
X (1—xC/x'Q) (1—A a ')] (21)

u'(~'&/~Ii')*. *= p'(~'&/~ p') + (~P/~T).
X(~T/~u). («/x'Q —1) '(1 —~ ')

The Lagrangian method, first used in this con-
nection by Tisza, ' lends itself most naturally to
the derivation of wa.ve propagation in terms of
these "elastic" coefticients. The details of the
argument are given in Appendix C.

Instead of assuming that the x particles obey
a mass continuity law which would be the case
only in the completely unrelaxed limit, the fol-
lowing relation is obtained:

ax/x = (x'Q/xC) V ri,.(8T./BT),.*, (22)

which reduces, by (20) to the mass continuity

Psshkow H
ITLs

Andronigssgyilli 0 Drown linsey
This colculotion

at zero relaxation, but becomes the conservation
of heat at full relaxation.

To the ordinary Lagrangian is added a dissi-
pation function to take account of the rate at
which momentum is being lost by co1lisions
between opposing streams of superHuid and
normal part. This loss appears in terms of a
relaxation time rj not necessarily identical with
the equilibrium relaxation time introduced above
in (18). The normal viscosity of the x Quid can
also be included in this analysis, but it is found
that it contributes only terms which are entirely
negligible up to frequencies as high as 10"
cycles per sec.

Limiting the solutions of the wave equations
to steady oscillations depending on time only
through the factor exp(2n. ivy), the operator
(1—A 2 ') becomes equivalent finally to the
factor

(1—A2 ') =1/t 1+1/(2mii r2)]. (23)

This factor is directly responsible for a dispersion
and attenuation in both ordinary and second
sound. The relaxation time v~ enters only the
second sound propagation, and is identical with
the relaxation time previously introduced. '

The velocity of normal sound V„ is found to be:
Va'= V~0'+X/(1+1/2sivr2), (24)

where V„o is the ordinary (relaxed) velocity of
normal sound and

E= (T/p'C) (BP/BT),'/(xC/x'Q 1). (25)—
This is a typical Einstein' dispersion, with a peak
attenuation given by

0. , =-',s vZ/V„p'. (26)

The sharp peak in attenuation observed by
Pellam and Squire' in the neighborhood of the
lambda-temperature may be due to the circum-
stance that 72 suddenly rises from times much
smaller in order of magnitude than 1/2s v above
Tq to times considerably longer than this value
below T~. Pellam and Squire report a peak
attenuation "at least 3.5 per cm for 15 Mc,"
Equation (26) gives a, equal to 10 per cm. at
this frequency. f The wave equation obtained

I.O

FIG. l.

2.0

' A. Einstein, Sitz. Herl. Akad. 1920, p. 380.' J. R. Pellam and C. F. Squire, Phys. Rev. 72, 1245
(I947).

f The attenuation in the helium II region well below
the lambda-point may be due to the dispersion mentioned
in the footnote to Eq. (13).
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for second sound is TAB&.E I.

(O'Z/BP)+(1/ri)(aZ/at) = V'VV Z, (27)

Z being the relative displacement of the x-fluid
and V,' is in general complex, depending on
2x~vr2. At high frequencies, however,

(O'Z/Bt') = V, 'VV Z, (28)
where

V '= Ex(1—x)/(x')')(C/T)
XL~T/Q+(1 —x~/x'Q) 3 (29)

At very low frequencies 7-~ again drops out and
the second sound wave approaches a diR'usion

type equation as v—A,

(BZ/Bt)/ri = [x'(1—x)/x'j(5Q'/C') VV Z. (30)

This change-over is expected to set in as soon
as 2m ~7 & & 1, and occurs for all ordinary fre-
quencies at Ti,. The applications of (30) to
experimental evidence will be given in the fol-
lowing paper.

The expression (29) for the velocity of propa-
gation of second sound has been used to compute
x as a function of T from known data on C, S,
Q' t$ and the published measurements of V, by
Peshkov' and by Lane, Fairbank, and Fairbank. '
Equation (29) can be written in the form of a
di8'erential equation

(x'/x) ' —A (1/x —1)(x'/x) +B(1/x 1)=0, (31—)

where
A = C(1+ST/Q)/TV, 2

8= C'/QT V.2 (32)

are known functions of T between 1.1'K and T~.
It would be ideally possible to obtain a unique
solution for x(T) from this equation if A and 8
were known over the entire temperature range
from O'K to T~, and if it could be assumed that
x(T) varied continuously from zero at O'K to
unity at T~. Data actually available permit only
a selection of a family of curves which behave
reasonably near Tz and appear to go nicely
towards zero as temperature falls. Since only

7 W. H. Keesom, IIehum (Amsterdam, Near York, 1942)~

ft Q and Shave been calculated by numerical integration
of the Leyden measurements on C by A. P. Keesom and
W. K. Westmyze (see reference 7).' V. Peshkov, J. Phys. U.S.S.R. 10, 389 (1946).'C. T. Lane, H. A. Fairbank, and Vf. M. Fairbank,
Phys. Rev. Vl, 600 {1947).

C S
7 cal. /g Q cal. /g'K deg. cal. /g deg.

Vs
I/sec. cal. /g

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.05
2.10
2.15
2.18
2.186

0.023
0.0411
0.0705
0.116
0.176
0.269
0.391
0.525
0.691
0.918
1.218
1.41
1.66
2.0$
2.85

0.00329
0.00645
0.01194
0.02109
0.03560
0.05737
0.0902
0.1359
0.1964
0.2784
0.3745
0.4407
0.5162
0.6073
0.6776
0.71

0.00383
0.00684
0.01160
0,01892
0.02964
0.04477
0.06582
0.09324
0.1278
0.1714
0.2260
0.2583
0.2951
0.3383
0.3701
0.390

18.2+.3
18.7 %.1
18.95
19.82
20.09
20.33
20.35
19.90
18.68
16.69
14.94
12.2$
8.05+.3
4.25 ~.4
0

0.0143
0.025
0.042
0.067
0.104
0.157
0.222
0.307
0.420
0.552
0.641
0.738
0.860

0.451
0.478
0.502
0.531
0.$52
0.575
0.612
0.640
0.663
0.678
0.688
0.699
0.706

0.71

'o L. Landau, J. Phys. U,S.S.R. 10, 91 (1947)."E. Andronikashvilh, J. Phys. U.S.5.R. 10, 201 (1946).

half the temperature range is covered by the
data, this family of curves is not sufhcient to
force a unique selection of one curve, although
in fact the range of values of x is only a few
percent,

The final selection of the curve for x(T) was
made as follows. From some preliminary selection
of the x(T) curve, and the data on Q, we derive
the curve for «(T) by Eq. (10). From the two
curves x(T) and e(T) we obtain graphically the
sum e'/e+x'/x. By Eq. (11)we then have

C/Q =e'/e+x'/x. (33)

By successive approximation, the selection of the
x(T) curve was improved until agreement with
(33) lay within 1 percent for all temperatures
from 1.1'K up to about 1.95'K. Above this
temperature the difference rose to about 10
percent at the lambda-point; this may be due to
the experimental uncertainties in C and Q near
Ty, or to errors in the graphical determination of
x' and e' near Ty where both curves change their
slopes very strongly. The results are shown in
Fig. 1, and Table I, where the values of C, S,
and Q are also given.

Peshkovs has published values for x(T) de-
duced from Landau's theory of second sound"
and using his measurements of the velocity.
In that theory, entire absence of relaxation was
assumed in setting up mass continuity equations,
but the fully relaxed (equilibrium) "elastic coef-
ficients" were used.

Andronikashvilli" has also deduced values of
x(T) from his measurements of the inertia of
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He II. His points lie about 5 to 10 percent below
those of Peshkov, which is just about the limit
of the experimental errors. The values calculated
in the present paper, using non-equilibrium
"elastic coefficients" are slightly lower than
Andronikashvilli's, but are much nearer to the
latter than those of Peshkov, the relative dif-
ference from Peshkov's being about 10 per-
cent. t t t Our results can, to a first approximation,
be represented by a (T/Ti)' curve up to about
1.8'K, and above this temperature they tend
rather towards a 6.5 or 7th power curve.

The writers are happy to express their grati-
tude to Professor Clarence Zener for helpful dis-
cussions.

APPENDIX A

ThefQ10d. fQRZI11CS

In general, any function of three variables p,
x, and 0 can be expanded:

DF= (BF/8 p) hp+(BF/Bx) p.hx
+(BF/Ba).,ho+ . (Al)

Under zero relaxation, hc =0, which reduces
(A1) to its first two terms. Under full relaxation
the expansion also reduces to two terms, because
here 60 has its equilibrium value:

Ao = (80/8 p),5p+ (Bo/Bx),hx+ . (A2)

In what follows, partial 6rst derivatives with one
sufFix will indicate equilibrium derivatives; first
derivatives with two sufFixes indicate that the
equilibrium represented by (A2) cannot be
assumed. In particular for internal equilibrium
we also have

hF = (BF/8 p),A p+ (BF/Bx),hx+, (A3)

and this must be identical with the result of
using (A2) in (A1). Therefore it follows that

(BF/Bx),.= (BF/Bx), (BF/80) „(80/Bx—)„(A4)
(BF/8 p), = (BF/8 p), (BF/Bo) „(8~—(8p). (A5).

Writing E for F in (A4), it is then easy to show
that

P = p'(BE/Bp)r+T(BP/BT)„, (A8)

Eq. (7) of the text also follows at once.
To evaluate the second derivatives of E, the

first derivatives given by (A6) and (A7) are sub-
stituted for F in (A4) and (AS). Thus (A4) gives

(8'E/Bx'), .= (8[p,+ (r T,]/Bx) p—(Bo/Bx), (8[p,+0T ]/8&r), (A9).

ln the 6rst term, the relaxed derivative, we may
already set p, =0 and T,= T, so obtaining
simply (80T/Bx), Again .from (A4) with 0T, in

place of I' we have

(BoT/Bx), (80/Bx), (80 T—,/80),
= (8(rT./Bx),.= (r(BT./Bx),.

Using this in the second term on the right of (A9)
we obtain

(8'E/Bx') p. ——o (BT,/Bx) p. (80/Bx) p(B—p, /Bu) p,
= (BT./Bx),.

+(8&./Bx)„(8&./Bx),—(A10).
The last term here again vanishes because p,,=0
for the relaxed condition implied in the single
sulfix, while from (9)

(Bp,/Bx),.= C[1—(BT,/BT)„]/T (x')'. (A11)

Finally, therefore, evaluating the expression at
the origin of the variations —namely, at T,= T,
we find

(8'E/Bx'), .= (5/xx') (BT /BT)„
+C[1—(8T./8 T),.]/T. (x') '

(B~E/Bx~) =[C/T (x')2]
X [ST/Q+ (1—xC/x'Q) ]. (A12)

where p,, and T, have been defined in the text.
Also from (A5) with E replacing F, we derive

p'(BE/8 p)„=p'(BE/8 p), +T,(BP/BT) „. (A7)

This last equation yields Eq. (8) in the text,
while from (A6), (9) and (8) and the thermo-
dynamic relation

(BE/Bx),.=p.+a T., From (8) and (A7) and (A8)
th) A comprehensive discussion of the different methods

used to compute the fraction x has been given by J. G.
Daunt at the Washington Meeting of the American
Physical Society, May I947, which vri11 be published soon.
We wish to thank Professor Daunt for sending us a copy
of this report.

p'(8'E/8 p').*= (BP/8 p) r 2P/p—
—[1—(BT /BT) ](BT/Bp), (BP/BT), (A13)

when evaluated at T,= T. This can be written
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in the form

p'(B'P/B p')*.= p'(B'&/B p'). +(BT/Bp)*
X (BP/BT),/[xC/x'Q 1].—(A14)

From (8) we may write

Introduce the Frenkel operator defined by Eq.
(19) in the text, such that

rsd/dt =As 1,—

then (B4) and (B5) can be solved formally for
x~ and xp:

p'(B'E/BxB p). = (BP/Bx),. x.=(BT/Bp). [(BT./BT).. 1](1——A )ap,
—(1/x')[1 —(BT,/BT)„)(BP/BT),. x, =(BT/Bx),[(BT,/BT),. 1](1——g,—')gx.

But

(BP/Bx) „=s (BP/BS), = —(S/x) (BT/B V)„
so that we have, finally,

p'(B'8/BxB p), = —(Slx) (BT/B V),
—(1/x') [1 xC/x'Q—](BP/BT)„(A15).

APPENDIX 3
Re&@~ation Theory

As stated in the text, Eqs. (17) and (18), the
quantity X= T,—T is a measure of the lack of
internal equilibrium, and we assume

dxldt = xlrs+(dx/«)—-, (B1)

where (dx/dt)„ is the value expected at zero
relaxation, v2= ~. But we can write

(dx/dt) = (dt's p/dt) (Bx/B p)..
+ (dhx/dt) (Bx/Bx) ... (B2)

where b, p and dx are the first-order variations
present in the wave. Note that b,0=0 at zero
relaxation. However, by dehnition of X we have

(Bx!Bp)*.= [(BT./BT)*. 1](BT/Bp).—,

and

At full relaxation, 7~~0, A2~1 and Xz Xp 40th
vanish. At zero relaxation, ~2~ ~, A2 '—+0, and
therefore

x*~(BTIBp).[(BT*!BT)*- 1]~p—, (B))
x, +(BT/B—x),[(BT,/BT) p. 1)hx. —

lt is now clear from a comparison between (B6)
and (B7) that in the general (partially relaxed)
case [(BT,/BT) —1)(1—A &

—') replaces [(BT./BT)
—1], as stated in the text, no matter whether x
or p is kept constant.

Using (20) in the equation preceding (A12),
we obtain for the general (partially relaxed) case
the following expression for the "elastic coef-
ficient" which determines the velocity of second
sound propagation:

(B'P/Bx'), .= S/xx'+ (C/ Tx" S/xx')—
X [1—(BT,/BT) p.)(1—As ') (88)

By (15) this reduces to the expression given in

the text, (21). Similarly, using (20) in (A13)
yields the third expression in (21) for the elastic
coefficient determining the velocity of ordinary
sound. Finally, with the same substitution, (A15)
gives the cross term coeKcient in (21).

APPENDIX C

(B / B ) [(BT / BT) 1 )(BT/ B ) (B3)
The Lagrangian Equations of Wave Motion

Using the two velocity 6eld model, theFor variations at constant x we may therefore
Lagrangian per unit mass in the completely
unrelaxed case is written

dx./«= —
x* /r+s( BT/B)p.

X [(BT,/BT)„1)(d~p/dt), (B—4)
I..= -,'xu. '+ ', (1 x)u.' A.P-.,

— —(C1)

f As we are not interested eventually in the shape of
the attenuation curve, me assume for simp1icity that the
relaxation times for the two processes, (84) and (B5),
are identical.

(j)=xu. +(1—x)u. ,

(5)= *—(v)=(1 —)(.—.)
(C2)
(C3)

where u and u, are the velocities of the two
and for variations at constant p components, normal, and superfluid, and h„B is
dx./dt = x./rs+ (BTIB—x), obtained from (5) in the text. Following Tisza'

X[(BT/BT), 1)(dM/dt). (B5)f —we use coordinates for the center of mass and
relative displacement:



BAND AND L. MEVER

then the Lagrangian is

To express h„F in terms of 27 and $ we write
the mass continuity equations, assuming zero
relaxation, in the forms given by Tisza 2

Bp/p= —~ s,

Ax/x = —7 (s+ $).

(C5)

(C6)

f 1 p2 (B2+/8p2) 1x2 (B2@/Bx2)

g. = ——',x(1 x) (B2E/Bx2) .—..
72 = —(x(1 x))&p(B2F—/BxB p).

—2x(x(1 —x)) &(B 22/B )x2

(C9)

Turning now to the fu11y relaxed limit, we can
no longer use (C6), but are obliged instead to
use the conservation of energy in the form

or, from (CB),
CT= —2V (xu, ) (C10)

It is then more convenient to use in place of P

the variabIe

~
= ( /(1 —.))'l (C7)

Using (C5), (C6), (C7) in (C4) with (5), we

finally obtain for this limiting case

sary to choose the correct generalization of the
two hmiting expressions of the conservation
equation, (C6) and (C12), respectively. From
(15) and (20) it is immediately clear that the
required generalization is simply

Dx/x = (BT./BT),.(x'Q/xC) 7' (g+ &), (C14)

since this reduces to the correct expression at
each limit, zero and full relaxation.

Using (C14) in place of (C6) or (C12), the
Lagrangian retains the same form as before but
now the coeRicients f, g, 72, must be replaced by
the fallowing expressions:

1p2(B2+/Bp2) 4 —1x2(B2+/Bx2)4

X (x'Q/xC) (BT./BT),.',
——,'x(1 x) (B2F/—Bx2)*

X(x'Q/xC)'DBT. /BT)„*]', (C15)
—(x(1 x) ) &p(B—2F/BxB p)

*

X (x'Q/x C) (BT,/B T),.*
—2x(x(1 x) ) &—(B28/Bx2) *

X (x'Q/xC)2((BT. /BT) *j'.
In general, terms with the asterisk contain the
operator A ~.

The cross terms, h~, represent coupling between
the two sounds, but can be formally eliminated
by transforming to new coordinates:

P =q cossl+g sin0,
Z = t cosa —g sln8,

so that
CAT= —ex%' ($+rI)

~./. =-( '/G)~ (&+~)
= —( xQ/ Cx)V (&+q).

(C11) where

(C12)

tan28 = 12*/(f*—g*).

The Lagrangian now becomes

L,*=12(Y)2+2(Z)2+F*(V Y)2+G*(V S)2, (C17)

This modifies the Lagrangian which will have the
same form as (C8) except that the coeScients f,
g, h have new values which we may denote as
follows:

f„= ', p2(B2F/B p'), —,'-x2(B2F/Bx2-), (—x'Q—/xC),

g, = ——',x(1 x)(82F/Bx2), (x'Q—/xC)2, (C13)
I2„= —(x(1 x))&p(B2F—/BxB p) (x'Q/xC)

—2x(x(1 —x)) &(B F/B2),(xx2'Q/xC)',

where it is to be noted the partial derivatives are
now all fully relaxed ones.

For the general case intermediate between the
above two limits we note first that it is necessary
to employ the general expressions given in (21)
instead of the limiting forms for the elastic coef-
6cients. In addition to this however, it is neces-

Y;,= B Y;/Bx, , Z;;=BZ;/Bx, ; (C19)

then the Lagrangian has the general form

L*(x;, t; Y;, Z, , Y;;, Z;;, Y;, Z;) per cm'. (C20)

where

F*=f"+72*2/4f*, G~ =g* 72*2/4f* —(C18).
From a numerical point of view the differences
between F~ and f*, and G* and g", are prac-
tically negligible, so that actually this coupling
can be neglected.

The components of the two vectors V and Z
are six dependent variables, say Y; and Z, ,

i = 1, 2, 3; and the four independent variables
are the position coordinates and time, x;, t.
Write for the partial derivatives
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f

dxidx2dxvdt =0, (BT /B T),.*~xC/x'Q
+ (1 x—C/x'Q)/2«vri .(C25)

The dynamical law, in absence of dissipation, gives the partially relaxed coefhcient in terms of
has the variational form the unrelaxed one. Also from (15) and (20) we

have in this case

and the Euler equations solving this are simply

BL*/B Y —g (B/Bx ) (BL*/B Y )"
—(d/dt) (BL*/BY;) =0 a.ll i,

BL*/BZ, Q;(B/B—x;)(BL*/BZ;;)
—(d/dt) (BL~/BZ;) =0 all i

If there is dissipation, the rate of loss of mo-

mentum appears on the right of these equations.
I'ollowing the ideas already introduced, ' we

shall now assume that there is a dissipation of
relative momentum by relaxation interference
between the opposing streams of superfluid
and normal part. The relative momentum is
(BL*/BZ,), so that we may define the relaxation
time as 7 i where the loss of momentum occurs at
the rate (BL*/BZ,)/ri. This loss appears only in

the equation for 8, not in that for P, in (C21).
Writing out this modified form of (C21), using

(C17), we find the two wave equations:

(B' Y/BP)+2F"&V' Y=O
(B'8/Bt2) +2G*W'r7. Z = —(Z)/r i.

The first of these is the wave equation for
ordinary sound, and includes dispersion and
attenuation effects in the expression for I *.The
second equation is the propagation of second
sound, including the relaxation term which is
eventually responsible for the degeneration to
d iff usion .

Consider steady-state solutions F, Z, de-
pending on time only through the factor
exp(2«vt), then the operator (1—A2 ') con-
tained in I'* and G* becomes equivalent to multi-
plication by the complex factor

(1 —A2 ') =1—1/(1+2«vr2). (C23)

This vanishes when v2 —+0 in full relaxation, and
becomes unity when 72—+~ for zero relaxation.

Second Sound

Case 1:2~& 7./&i

From (21) we have in this case

(B'E/Bx')*~(B'E/Bx') „
—DB'E/Bx')„S/xx'5/2sivr—, (C24)

Case Z: 2~vr2 —4
Equation (21) now gives

(B'E/Bx') *~$/xx',

and (20) gives, of course,

(BT,/BT)*~1.

Now (C15) yields immediately

—2g' =x(1 —x) (S/xx') (x'Q/xC) '

so the wave equations becomes

(B'Z/Bt~) +(Z)/ri = V O'V'V' Z

where

(C28)

(C29)

U„o' ——x'(1 —x)SQ'/x'C' (C30)

If now also 27rvri~O, then (B'Z/Bt')(((Z)/ri and
(C29) reduces to the diffusion Eq. (30) as stated
in the text.

Ordinary Sound

Neglecting terms of the order g*/f*, or V,2/ V„2,

we find for the velocity of propagation V„of
ordinary sound, from (C22) and (C15)

V '= —2F~ = p'(B' E/Bp')"

or from (21)

V„'= V„p'+X/(1+1/2«v 2), r

(C31)

Now use (C24) and (C25) in (C15) and (A12),
the result is

—2g"= V '(1+1/2«vr3) '

where V, is given by (29) in the text, and where

I/rg ——(1/r2) I 3 —2x'Q/xC
—S(1—x)/x' V,„'I. (C27)

Evidently the velocity of propagation of second
sound at infinite frequency is V,„as stated in

the text. Dispersion effects can only be expected
if the frequency is such that the relaxation time
given in (C27) is small enough to compare with
1/2s v.
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where E is as given in the text, Eqs. (24) and
(25). Here

Case Z: 2x~~2&&i

t/'„2= V„P2+X.2eiVV2, (35)
Case 1:2~~72&& j.

V '= V o'+E+iA/2orv. ro,

so that at in6nite frequency

V„„'=V„p2+A. .

(C32)

and at zero frequency
2 P' 2 (C36)

while the attenuation coe%cient for this fre-
quency range is

a= 2or' v'r oE/V„p'. (C37)

The attenuation coefficient arising from (C32),
and entering the solution of the wave equation
in the f'orm

V= Yos exp2oriv(t r/ V„), —

The peak attenuation occurs at the frequenc~
given by

2orv ro = ( V„p'/( V„o'+E))~,

which is practically unity. The peak attenuation
coefficient is then

where r is position, is

a =E/2 ro V p'.

a, = -', or vE/ V„p',

(C34) as stated in the text.

(C38)
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The equation for thermal diffusion derived in the foregoing paper agrees with the relaxation
equation for second sound used previously (see reference 3), if the second sound velocity is
corrected to zero frequency. The relaxation time ~ is calculated to a higher accuracy. The
peculiar property of the heat current in being proportional to the cube root of the temperature
gradient can be phenomenologically reduced to the relation

Ss Ts Jo

where u, is the velocity of the superfluid balancing the mass flow of normal particles trans-
porting the energy. r, is a relaxation time derived from v, the relaxation time responsible for
the damping of second sound, by the conditions for frequency balance. J appears to be a
simple function of temperature only, approaching h/mx at temperatures below 1'K. The
equations lead to a qualitative understanding of the reduction of thermal conductivity by
mass flow found by Kapitza.

' 'N the previous paper' it has been shown that
the wave equation for second sound degen-

erates into a diffusion equation approaching
zero f'requency and becomes

(~)/ri= V,op&&. &' V o'=x'(1 —x)SP/x'C-' (1)
where x is the fraction of the liquid in the normal
(excited) states, Z is the relative displacement
vector of the normal Quid, v1 is the relaxation

' W. Band and L. Meyer, Phys. Rev. 74, 386 (1948).

time for momentum exchanges between the two
component streams. Take the divergence of this
equation: assume very small amplitude and
absence of ordinary sound, then we sha11 have,
by (C6) of the previous paper,

V.Z ~ hx//x.

Thus:
(1/ri)(8/Bt)(hx) = V,p'VV. (hx). (2)

Here there is full relaxation so we have b x =x'6 1,


