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In Part I of this paper the stress energy tensor and the mean velocity vector of a simple gas
are expressed in terms of the Maxwell-Boltzman distribution function. The rest density p',
pressure, p, and internal energy per unit rest mass e are defined in terms of invariants formed
from these tensor quantities. It is shown that ~ cannot be an arbitrary function of p and p' but
must satisfy a certain inequality. Thus e = (1/y —1)p/p' for y&5/3 is impossible. It is known
that if e is given by this relation and p &2, then sound velocity in the medium may be greater
than that of light in vacuum. This difFiculty is now removed by the inequality mentioned
above. In Part II of this paper the relativistic form of the Rankine-Hugoniot equations are
derived and it is sho~n that as a consequence of the inequality mentioned earlier that the
shock wave velocity is always less than that of light in vacuum for sufFiciently strong shocks.

PART I. SPECIFIC INTERNAL ENERGY

1. Introduction
'ACROSCOPIC relativistic theories of Quid

~ ~ dynamics characterize the Quid by giving
the internal energy per unit mass, ~, measured by
an observer at rest with respect to the element of
the fluid as a function of the pressure, p and the
rest density p, and also by prescribing the vis-
cosity and the heat conductivity of the Quid. For
perfect Quids, for which the latter two quantities
vanish, it follows from the work of Lamia' and
Section 5 below that if

~= (1/v —1)P/t '

and y is a constant greater than 2, then the
velocity of sound in the Quid may be greater than
the velocity of light in vacuum.

Thus, consistency of hydrodynamics with the
special theory of relativity can only be achieved
from the macroscopic viewpoint by restricting
the allowed relations between specific internal
energy, pressure, and density. This restriction
applies to Quids with non-vanishing heat con-
ductivity and viscosity as follows from the work
of Eckart. ' For it is evident from the equations
Eckart gives for the Qow of heat in a gas at rest

(Eqs. (43) and (44)) that if e is taken as given by
(1.1) then the velocity of propagation is greater
than the velocity of light in vacuum.

This functional restriction also enters in the
discussion of the relativistic formulation of the
Rankine-Hugoniot equations governing the prop-
agation of shock waves, as follows from Part II of
this paper.

It is our purpose in Part I of this paper to show
how equations of the type of (1.1) are ruled out
on the basis of the kinetic theory of gases when
this theory is formulated relativistically. In
Part II we derive the relativistic Rankine-
Hugoniot equations and show that in view of the
inequality that must hold on e as a function of p
and p' the shock wave velocity is less than that
of light in vacuum.

2. Derivation of the Hydrodynamics
Equations

Ke shall now derive the equations governing
the motion of the Quid considered a collection of
a number of particles with rest mass m. Let

(2 1)

where

~The major portion of this work was done while the
author was a Guggenheim postservice Fellow in residence
at the Institute for Advanced Study, on leave from the
University of Washington.' E. Lamia, "Ober die Hydrodynamik des Relativitat
prinzips, " Dissertation, Berlin (1912).

~ C. Eckart, "The thermodynamics of irreversible proc
esses. III. Relativistic theory of the simple fluid, " Phys.
Rev. 58, 919 (1940).

and e' are the components of the velocity of as
particle. Let f(x, t, () be the number of particles
in the region x' to x'+Ck' in space at time S and
with values of g' between $' and ]'+d$'. Then the

328



RAN KINE —HUGON IOT EQUATIONS

Boltzman equation for f is where
Vi Pi/c V4 (1+(2/c2) $ ~

(2.I)

U'= jl f(()d3$= j((—1+)'/c')&du($) =n,

~f 5' ~f . ~f
Df= + +F =g,f (2.2) hence

a~ (1+@/cm)»ax' ag' VV~'g p=V V= —1,
where now

where F' is the external force per unit mass and
A,f is the time rate of change in f due to en- g s=0, a~p and g» ——gm, g33 ———g44 ——1.
counters between the particles.

An integration by parts shows that

+ +F' t (2.3)
(1+P/c')& Bx' Bx' I

where T & is the stress energy tensor and it is defined

&&)=j"h($)f(k)d 5 =J"f(k)& k as
ro f(k)

T~& =mc') V~(g) V~($) d 3$
(1+~'/")i

V (f) V'(k)du(k) (2 8)

and thy integrations are carried out over the
entire volume of the P, P, P space. The notation
J' d~g indicates such a volume integral.

The laws of conservation of mass, energy, and
momentum follow from Eqs. (2.2) and (2.3) bY Fo is the four-dimensional force vector
observing that

I y&h, fd~f =0, iI=0, 1, ~, 4

F' = F'u'/c

f0=m, p'=mP

s 4 =m(1+ P/c') &.

(~=1, 2, 3)
Jr s—

(1—u'/c')&

(2.10)

Multiplying Eq. (2.2) by the various s in turn and po is the rest density of the gas defined as
and integrating over all $'s we obtain five
equations which may be written as (p')'= —m'U~U .

mU =0 (2 4) It follows from Eq. (2.7) that

T~~ s=p'F, a, P=1, 2, 3, 4, (2.5)

respectively, where the comma denotes difkr-
entiation the summation convention is used, and
the quantities involved are de6ned as follows:
U is the mass current four vector given by

—=
J

V (t)d~($) (26)

f
T = —mc' du(g).

aJ

(2.11)

It is evident from Eq. (2.5) and the fact that
p F is a four-dimensional vector that T & is a
tensor. From Eq. (2.8) it then follows that f(x, $)
is a scalar function under Lorentz transforma-
tions since the Lorentz invariant volume measure
in $ space is

diiP

(1+]'/c') &
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3. Syeci6c Internal Energy

VA now define the function e in terms of the
components of T & and U as is done by Eckart. '
We write

It follows from Eq. (3.4) that

S1 C

w =
I

V (g) Vii(g)de(g)
(i ')' "

5$ ZU m
T-~= U-U +—U-m'~

4')'

+—UsW +W i', (3.1)
po

where 8" is the heat Row vector and 8' & is the
stress tensor. %'e require that

8' U =0 lV &Up=0. (3 2)

The scalar m is the energy density as measured by
some one instantaneously at rest with respect to
an element of the Quid.

From Eq. (3.1) we have

(4 2)m'c'

(i ')' J ~ Vs(~)J g«) V'(e)d~(e) ld~(&)

m'c
a'(k)d~(() (4 2)

(~0)2 g

From Eq. (2.10) we have

i
= U U = V (P)de(f)

f~') '

&~)

XJ V-(k')di(k')= ~~g($)di(() (43.)

where

T N=3p m, —

W =3p

(3 3) Now from Schwartz's inequality we have

I J"g($)d~($) I

and p is the hydrostatic pressure. It follows from
(3.1), (3.2), and (2.10) that

m =m'T. s
—=p'(c'+e) .

(c')'

The last of these equations will be regarded as our
definition of ~, the internal energy per unit rest
mass of the f1uid.

g'(6)dP(8) (( J dl4(k) ) (4.4)
~(I

)
Substituting in (4.4) from (2.11), (4.3), and (4.2)
we have

(~')' ( ')'
zv( —T )&

m4C4 m2

Using (3.3) we obtain

4. The Fundamental Inequality
hence

ni(ni —3p) &~ (p')'c';

We now propose to show that ~ defined by
Eq. (3.4) when considered as a function of p and
p must satisfy an inequality which rules out
functions of the type given by (1.1). Let us define

g(k') = ' V (5') V (k)d~(k)

and

9f p i')'
&~p+I' 'i 1+-i

4 E p'c'J J

(( 9( p ~'i'
e~»p/p'+c'f

I
1+-I

I /

—1 /. (4.»
4 Lpoc~) ) )

' See reference 2, p. 921.

The existence of this inequality shows that the
kinetic formulation of the theory of gases and the
formalism of the special theory of relativity to-
gether are in contradiction with the macroscopic
viewpoint which allows e to be any function of p
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and p'. In particular the functions of the type
(1.1) with y&~5/3 are not permitted. Thus the
restrictions on the types of functions e(P, p') have
been shown to be furnished by kinetic theory and
are not ad hoc ones.

PART II. RANKINE-HUGONIOT EQUATIONS

5. One-Dimensional Notion of a Perfect Gas

The equations governing the motion of a per-
fect gas subject to no external forces are (2.4) and
(2.5); these may be written as

continuous, then we shall have

5=constant. (5.11)

(5.12)

This equation determines P as a function of p'. It
is then su%.cient to consider only three of the four
Eqs. (5.7).

In the case of one-dimensional motion all
quantities are assumed to be functions of x'=x
and x'=ct and u'=u'=0. Then we may write
for u

(p'u ), =0,
eP —0

ua (m/po) P

(5 1)
where u is the velocity of the gas in units in

which the velocity of light is one. Equations (5.1)
and (5.7) with a=1 become

and
2-s= p'("+.+p/p') "+fg', (5 4)

1 8 f po ') 8 tt' pou

i+—
I

c Bt ((1—u')&) Bx E. (1—u')&)

since, for a perfect gas,

(5.5)

1 8 (c'pp'u) 8 (c'tip'u'
i+—

i +& i
= o. (5.14)

c Btl1 —u') Bx(1—u' )
W ~ P(g &+u ui') (5.6) If we now introduce the two auxilliary quan-

tities

u (p' dtiq& 1 t ay=- ' ~p', (515)
c & ti dp') c & p'(5.7)p' (utcui), s+P, pg ~=0

p =1+(1/ ') ( +P/p')
where Eqs. (5.13) and (5.14) may be written as

5.8

Substituting (5.4) into (5.2) and taking ac-
count of (5.1) we obtain

Multiplying (5.7) by —u and summing we ob-
tain the equation of conservation of energy

"(+f/"), ~ f, ~-
=p'(, p '+f( /p'), p ')=o ( )

f'1 By By/ ( 1 Bu Bui
(1—u')i ——+u—(+ei u- —+—

i
=O,

&c Bt Bx) E c Bt Bx)

( 1 By By) 1 Bu Bu
a(1—u')~ u——+—~+-—+u—=O.

c Bt Bx) c Bt Bx

De6»ng abel««emP ra«««nd sPec~~c These in turn may be written as
entropy 5 as measured by an observer at rest
with respect to the gas from the equations D+u+(1 u')D+. y =0, —

D u —(1—u')D y=o,
ds+Pd(1/p') = Bd5, (5 9') where

where e is a function of p and p', Eqs. (5.9) may
be written as

1 8 Bf
D+f= (1+au) — f+(a+u)—

c 8$ Bx

p'BS, pg&=0. (5.10)

Hence, the conservation of' energy along the
stream lines is equivalent to the statement that
entropy is constant along a stream line. If all the
gas is initially at the same entropy and the Row is

D~u (1+u) &

=D~ logi1-u' k1-ui
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Thus Eqs. (5.13) and (5.14) become

(I+u) ~

(1—u')D+ log) —
i +y =0,

LI-u)
t'1+u) &

(1 —u')D logi i
—y =0.

Ei —uJ

If we now define

f1+up &

r= y+ log~
I 1-u)
)1+up i

(I-u)

(5.16)

Eqs. (5.13) and (5.14) become equivalent to

(1+au) (1/c) (Br/Bt) +(a+ u) (Br/Bx) =0,
(1 au) (1/—c) (Bs/Bt) —(a u) (—Bs/Bx) =0.

From these equations it is evident that r and s
are the relativistic analogs of the Riemann
functions which occur in the classical theory of
propagation of one-dimensional waves of finite
amplitude. In particular we have that

r = constant along the curve (dx/dt)
= (a+u/1+au),

s=constant along the curve (dx/dt)
= —(n —u 1 —au).

The quantity 0, will be sho~n to be equal to the
velocity of sound in units where the velocity of
hght is one. The expressions for (dx/dt) are then
the relativistic sum and difference of particle
velocity and sound velocity.

and e is considered as a function of y determined
by Eqs. (5.15).

The general solution of Eq. (6.2) is

f(y) =x r—(y)ct, (6.4)

VP/c't '

I
I+ ,P/P')—

From this it follows that if a sound wave is
progressing into a medium of high temperature,
that is, if P/ ' cpis large, then

a~(y —1)&.

Hence for y&2 sound waves propagate with
velocity greater than that of light in vacuum.
For gases the equation used for e is not a possible
one as follows from the argument given in the
introduction.

where f(y) is an arbitrary function. Equation
(6.4) states that y is constant along the straight
lines in the x, ct plane of slope I'(y), and hence
I'(y) is the velocity of propagation of y. From
Eq. (6.3) it is evident that for weak disturbances
for which u —+0, I'(y) —+a, and hence n is the
velocity of propagation of sound in units where
the velocity of light is one.

If we define
s = (Ile —1)0/t ',

then Eqs. (5.9') and (5.11) lead to

P/Pi = (t '/ai')"

as the equation for the adiabatics. It may then be
verified that

6. Progressive Waves
V. Derivation of the Ran»ne-Hugoniot

EquationsA disturbance will be said to propagate as a
progressive wave if either r or s is constant. Let
us suppose

s = go= constant.

Then from (5.16) we have

u = tanh(y —yo).

and the first of (5.17) becomes

(1/c) (B/Bt) y+ I'(y) (By/Bx) =0

I'(y) =( +u/1+au)

lt follows from Eq. (6.4) that for certain func-
tions f(y) which are determined by the boundary
conditions the curves q =constant in the x, ct
plane intersect. This is impossible physically and
hence continuous one-dimensional motions are

(6.1) impossible under these conditions. From classical
theory it is to be expected that shock waves form.
We now derive the equations which must hold

(6.2) across these waves.
We first write the equations governing the

(6.3) motion in integral form. Thus Eqs. (5.1) and
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(5.2) may be written as The second of Eqs. (7.6) may be written as

and

(p'u ) +4x= p'u Xg x =08 (7 1) (p+
82 C

&p+'
P

) T p ~d4x= T ~Xpdsx=0 (72)

where the integrals on the left of (7.1) and (7.2)
are taken over a volume in space-time and the
jntegrals on the right are taken over the three-
dimensional hypersurface bounding this volume.

are the covariant components of the outward
drawn normal to the hypersurface.

Next we suppose that the three-dimensional
volume is a shell of thickness e enclosing a surface
of discontinuity P whose three-dimensional
normal vector is A.;. If we choose our coordinate
system so that the discontinuity is at rest, then
since

3

XA =1 QA =1,

we have
X;=A; and X4=0.

Hence Eqs. (7.1) and (7.2) become, as e goes to
7el o,

(7 3)t p'u'A;j =0,

LT-s,j=0, (7.4)

U j=f+ f-
and represents the discontinuity in the function
involved. That is f+ represents the value of the
function f on one side of the surface P and f
represents that on the other side. We shall take

f+ and f as the values of the function f on the
side of the surface opposite to and in the direction
of the outwardly drawn normal, respectively.

%'e may further restrict our coordinate system
so that A; = 6,', that is, the discontinuity is perpen-
dicular to the x axis. Then in view of Eqs. (5.4)
and (5.12), Eqs. (7.3) and (7.4) may be written as

or
1( P+ P—

m=-f (7.7)

The second of Eqs. (7.6) may also be written as

Subtracting this from the square of the Grst of
(7.6) we obtain

(p+
m'c'(p ' —p ') =m'(p —p )~ + ~. (7.8)

&p 0

Equations (7.5), (7.7), and (7.8) are the relati-
vistic Rankine-Hugoniot equations. It may
readily be verified that if we neglect terms of
order p/c'p' compared to one, then these equa-
tions reduce to the classical ones. In the next
section we investigate the eR'ect of these terms
when they are not negligible.

8. The Shock Velocity

Let us write

k=P+/P , n =p+'/p-

1 p
kin = c'k!n, —

Y+ ~ P- 7+
(8.1)

Y+ 1 P-

y+ —1c~p '

p+ =

1+PAL/g,

(p+u+ p u
m'c4

L1—u' 1 —u Ii

(v= (p —p,)m'c'~—
&p ' p-')

(1—u+')& (1—u ')&

mC p,

(1—u+')& (1 —u ')&

mC'@+I+ mC'p, I
+0+= +P-.

(1 —u ')& (1 —u ')& 1&7 &5/3. (8.2)

(7 5) where Y~ and hence p may be functions of p+/p+'.
We shall assume that they are slowly varying
functions and for the purposes of the discussion
to follow y+ will be treated as a constant. From
the inequality (4.5) and the requirement that
~&~0, we have
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Equation (7.8) may now be written as

-i—+/s &~

Treating y+ and p as constants we obtain a
quadratic equation for 1/s with one positive and
one negative root. Since g must be positive we
have

Since Eq. (7.7) may be written as

~—[(v++1)5+v+ —13
pis=

2S(&+&+-1)
(8.3)

f ('r+ —1)p($ —1)i
(1—u ') ( 'r+(ii —p+/s) ) (8 8)

where

~= L(v+ —1)'(5—1)'+4k(5+v+ —1)

Hence

&—(v+ —1)(k —1)

2(5+v+ —1)

It follows from these equations that

(8 5)

we wi11 have u less than one whenever the right-
hand side of the inequality (8.7) is positive. That
is, in this case the velocity of the shock wave
relative to the gas into which it is traveling mill
be less than that of light in vacuum. Now in view
of the inequality (8.5) which must hold for both
y+.and y it follows that for P&3 the right hand
side of (8.7) is positive. Thus, for sufficiently
strong shocks the shock velocity must be less
than that of light in vacuum.

It is evident that if

7+F +pP ('Y+-1)(k— 1) 7+8+

P(5+v+ 1)—
However, it is a consequence of (7.8) and the fact
that p+ and p. are positive that

p+~~ p

Hence we have

V- &r V+, (8.9)

then this result holds for all values of $. The
inequality (8.9) is satisfied for a monotonic gas as
follows from the expression derived by Jiittner4
for the internal energy of such a gas.

In case y =y+ or in the general case for meak
shocks where we may assume this equality be-
cause of the slowly varying nature of y, it may be
shown that as P becomes large Eq. (8.8) becomes

X(($ 1)P(2—y+)+y+(1+P —y—)) (8 6)

Now me may write

=1+(v /v-1)f/r'-I- —
It is evident from this that we must have y &2 in
order for u to be less than one. The inequality
(4.5) insures that y(2.

1+p i =(v v+/v+—(v -—1))p, -—
4 F. Jiittner, "Das Maxwellsche Gesetz der Geschwindig-

keitsverteilung in der Relativtheorie, " Ann. der Phys. 34,
856-882 (1911).


