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In Part I of this paper the stress energy tensor and the mean velocity vector of a simple gas
are expressed in terms of the Maxwell-Boltzman distribution function. The rest density p°,
pressure, p, and internal energy per unit rest mass ¢ are defined in terms of invariants formed
from these tensor quantities. It is shown that e cannot be an arbitrary function of p and p° but
must satisfy a certain inequality. Thus e=(1/y—1)p/p° for ¥>5/3 is impossible. It is known
that if e is given by this relation and v >2, then sound velocity in the medium may be greater
than that of light in vacuum. This difficulty is now removed by the inequality mentioned
above. In Part II of this paper the relativistic form of the Rankine-Hugoniot equations are
derived and it is shown that as a consequence of the inequality mentioned earlier that the
shock wave velocity is always less than that of light in vacuum for sufficiently strong shocks.

PART 1. SPECIFIC INTERNAL ENERGY
1. Introduction

ACROSCOPIC relativistic theories of fluid
dynamics characterize the fluid by giving
the internal energy per unit mass, ¢, measured by
an observer at rest with respect to the element of
the fluid as a function of the pressure, p and the
rest density p°% and also by prescribing the vis-
cosity and the heat conductivity of the fluid. For
perfect fluids, for which the latter two quantities
vanish, it follows from the work of Lamla! and
Section 5 below that if

e=(1/vy=1)p/p° (1.1)

and v is a constant greater than 2, then the
velocity of sound in the fluid may be greater than
the velocity of light in vacuum.

Thus, consistency of hydrodynamics with the
special theory of relativity can only be achieved
from the macroscopic viewpoint by restricting
the allowed relations between specific internal
energy, pressure, and density. This restriction
applies to fluids with non-vanishing heat con-
ductivity and viscosity as follows from the work
of Eckart.? For it is evident from the equations
Eckart gives for the flow of heat in a gas at rest

* The major portion of this work was done while the
author was a Guggenheim postservice Fellow in residence
at the Institute for Advanced Study, on leave from the
University of Washington.

1E. Lamla, “Uber die Hydrodynamik des Relativitits
prinzips,” Dissertation, Berlin (1912).

2 C. Eckart, “The thermodynamics of irreversible proc-
esses. III. Relativistic theory of the simple fluid,” Phys.
Rev. 58, 919 (1940).

(Egs. (43) and (44)) that if e is taken as given by
(1.1) then the velocity of propagation is greater
than the velocity of light in vacuum.

This functional restriction also enters in the
discussion of the relativistic formulation of the
Rankine-Hugoniot equations governing the prop-
agation of shock waves, as follows from Part II of
this paper.

It is our purpose in Part I of this paper to show
how equations of the type of (1.1) are ruled out
on the basis of the kinetic theory of gases when
this theory is formulated relativistically. In
Part II we derive the relativistic Rankine-
Hugoniot equations and show that in view of the
inequality that must hold on ¢ as a function of p
and p° the shock wave velocity is less than that
of light in vacuum.

2. Derivation of the Hydrodynamical
Equations

We shall now derive the equations governing
the motion of the fluid considered a collection of
a number of particles with rest mass m. Let

vi si

T (1+g/en

— 2.1
¢ IRy, (2.1)

where

3 3
v’=Zl @92 £=2 (&)
i= =1
and ¢ are the components of the velocity of a
particle. Let f(x, ¢, £) be the number of particles
in the region x* to x*+dx* in space at time ¢ and
with values of £ between ¢ and £i+d&*. Then the
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Boltzman equation for f is
of & of .o

—_— =A.f, (2.2)
ot (1+4£/c2) ox ag
where F* is the external force per unit mass and
A.f is the time rate of change in f due to en-

counters between the particles.
An integration by parts shows that

Jopsise=—mton
ol G
gy PGl 09
n= [ f0ass

and the integrations are carried out over the
entire volume of the £, £2, £ space. The notation
J -+ -dst indicates such a volume integral.

The laws of conservation of mass, energy, and
momentum follow from Egs. (2.2) and (2.3) by
observing that

where

n(hy = f 1(E)F(Ddat,

f‘P"Aefda$=0y ¢=0,1,---,4

where

¢O=m, ‘Pi=mgi (1'=1;21 3)
and
et=m(1+8/c).

Multiplying Eq. (2.2) by the various ¢? in turn
and integrating over all £'s we obtain five
equations which may be written as

mU<® =0,
TP g=p°F,

(2.4)
a,8=1,2,3,4, (2.5)

respectively, where the comma denotes differ-
entiation the summation convention is used, and
the quantities involved are defined as follows:
U= is the mass current four vector given by

Ua_. Va
Jromo s

= f Ve(8)du(®), (2.6)
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where
=¢§/c, Vi=(1+48/)Y
hence
VaVBgag=ValV,=—1, 2.7
where now
gaﬂ‘—“O, aF#f and g11=g22=g33= —g44=1.
That is,

Ui= f H@ds= [ g/ du@ =,

%

Ui= f e 2)%f(£)da£ f £/cdu(®)
gi
=”<(1+sﬁ/c2>*> ’

T+ is the stress energy tensor and it is defined

as
7®)
TaB = 2y Ve VB(§)—— 8 ——— 3
met [ ve(g Ot

=1,2,3.

= me? f V(e V(Odu(). (2.8)

Fa is the four-dimensional force vector:

Fi=Fiui/c,

i

i fmf(s)daé / [ra, 29)

. Fi
and p° is the rest density of the gas defined as
(09):=—m2UU.. (2.10)
It follows from Eq. (2.7) that
= —mc2fdy(£) (2.11)

It is evident from Eq. (2.5) and the fact that
p°Fe= is a four-dimensional vector that T*f is a
tensor. From Eq. (2.8) it then follows that f(x, £)
is a scalar function under Lorentz transforma-
tions since the Lorentz invariant volume measure
in £ space is

dst
(14g/c)Y
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3. Specific Internal Energy

We now define the function € in terms of the
components of 7*% and U< as is done by Eckart.?
We write

miw
T“ﬂ =

m
UsUP+—U=W?
(02 p°

m
+——0U"W"‘+W“ﬂ, 3.1)
o

where W< is the heat flow vector and W8 is the
stress tensor. We require that

WelU,=0, WeUz=0. (3.2)
The scalar wis the energy density as measured by
some one instantaneously at rest with respect to
an element of the fluid.

From Eq. (3.1) we have

T,=3p—w, 3.3)

where

Wae=3p

and p is the hydrostatic pressure. It follows from
(3.1), (3.2), and (2.10) that

U=U#
()2 =p"(c*+e).
o

W =m2Tag (3.4)

The last of these equations will be regarded as our
definition of ¢, the internal energy per unit rest
mass of the fluid.

4. The Fundamental Inequality

We now propose to show that e defined by
Eq. (3.4) when considered as a function of p and
p® must satisfy an inequality which rules out
functions of the type given by (1.1). Let us define

g(&) = f V(&) Va(®)du(®)

= Va(¥) f Va(®du(®). (4.1)

3 See reference 2, p. 921.
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It follows from Eq. (3.4) that

e f Vul®) Va(B)du(®)
w= a
o0 s(&)du(é
X f Va(e)du(?) f V(& )du(E")
4.2)
m3c?
= V. B(ENdu(E) )d
) (70 feo v Jaue
m3c?
- 2)du(f). (4.2
o Jrone. an
From Eq. (2.10) we have
—(‘i) = UU.= [ Ve(8)du(e)
m

X f Va(#)du(¥) = f ¢Bdu(®). (4.3)

Now from Schwartz’s inequality we have

(f g(adus))z
([ e0auw ) ( [ o). G

Substituting in (4.4) from (2.11), (4.3), and (4.2)
we have

O s @)
m4c4 m2

Using (3.3) we obtain
w(w—3p) 2 (°)%*;

9 b 2\ %
—e)
4\ pO?

97 p \2\!
e23p/p°+c {1+ — —1). @45
e (1(05) ) 1) 9

The existence of this inequality shows that the
kinetic formulation of the theory of gases and the
formalism of the special theory of relativity to-
gether are in contradiction with the macroscopic
viewpoint which allows e to be any function of p

hence

and
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and p° In particular the functions of the type
(1.1) with y25/3 are not permitted. Thus the
restrictions on the types of functions e(p, p°) have
been shown to be furnished by kinetic theory and
are not ad hoc ones.

PART II. RANKINE-HUGONIOT EQUATIONS
5. One-Dimensional Motion of a Perfect Gas

The equations governing the motion of a per-
fect gas subject to no external forces are (2.4) and
(2.5) ; these may be written as

(p°u%), a =0, (5.1)
T_p"ﬂ=0, (5.2)
where
ue=(m/p°) U* (5.3)
and
T = p0(e+ep/pOueu+-pg75,  (5.4)
since, for a perfect gas,
We=0 (5.5)
and
Web=p(gf+uub). (5.6)

Substituting (5.4) into (5.2) and taking ac-
count of (5.1) we obtain

P ub(uu), g+, s8¢ =0 (5.7)

where

p=1+(1/c*)(e+2/p%.

Multiplying (5.7) by —u, and summing we ob-
tain the equation of conservation of energy

p*(e+p/0°), puf — b, puP
=p%(e, suP+p(1/p"), su?) =0.
Defining absolute temperature 6 and specific

entropy S as measured by an observer at rest
with respect to the gas from the equations

de+pd(1/p°) =0dS,

(5.8)

5.9

(5.9

where ¢ is a function of p and p° Egs. (5.9) may
be written as

p%0.S, guf =0. (5.10)

Hence, the conservation of energy along the
stream lines is equivalent to the statement that
entropy is constant along a stream line. If all the
gas is initially at the same entropy and the flow is
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continuous, then we shall have

S=constant. (5.11)

This equation determines p as a function of p°. It
is then sufficient to consider only three of the four
Egs. (5.7).

In the case of one-dimensional motion all
quantities are assumed to be functions of x'=x
and x*=c¢t and #*=u*=0. Then we may write
for u=

u

T —uY

4=

— (5.12)

where u is the velocity of the gas in units in
which the velocity of light is one. Equations (5.1)
and (5.7) with a=1 become

) ( )—0, (5.13)
¢ ot 1- uz)* dx\ (1 —u2)}
1 0 /cupu C2upu?
-2 )+ () -0 61
¢ 9t\1—u? 1—u?
If we now introduce the two auxilliary quan-
tities
a p° du\? 1 a
a=—=(—-—— , ¢=—f—dp°, (5.15)
c u dp® cd p°

Egs. (5.13) and (5.14) may be written as

(1—u?) (— ———+u—~) (ul ?ﬁ_}.iz_‘

¢ ot c 0t ox
¢ do 19u Ou
a(l— uz)(u——-— — )+ —+u—=0.
at c at ax

These in turn may be written as

Diyu+(1—u?)Dye=0,
D_u—(1—u?)D_p=0,
where

19 of
D,f=(1+au)- —f+(atu)—,
c ot dax

19 af
D_f=(1—au)-—f—(a—u)—,
c ot ax

and hence

Diu 14u

_D:i: log( )
1—u?
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Thus Egs. (5.13) and (5.14) become

14uy?
a--fios(; =) o]0

14u\}
(1- uz)D_[log(—-) - <p] =0.
1—u

If we now define

14u\?
r= <p+log(-—————) ,

1—u (5.16)
.16
14u\?
s=¢p—log ————),
1—u

Egs. (5.13) and (5.14) become equivalent to

(I+au)(1/c)(dr/dt)+ (a+u)(dr/0x) =0,

(1 — ate) (1/¢)(3s/0t) — (@ —u) (ds/dx) =0. (5.17)

From these equations it is evident that r and s
are the relativistic analogs of the Riemann
functions which occur in the classical theory of
propagation of one-dimensional waves of finite
amplitude. In particular we have that

r = constant along the curve (dx/dt)

=(a+u/1+au),
s=constant along the curve (dx/dt)
=—(a—u/l1—aun).

The quantity « will be shown to be equal to the
velocity of sound in units where the velocity of
light is one. The expressions for (dx/dt) are then
the relativistic sum and difference of particle
velocity and sound velocity.

6. Progressive Waves

A disturbance will be said to propagate as a
progressive wave if either 7 or s is constant. Let
us suppose

§ = g = constant.

Then from (5.16) we have

u=tanh(¢— ¢). (6.1)
and the first of (5.17) becomes
(1/6)(8/3t) o+ T (p)(de/3x)=0  (6.2)
where
I'(e)=(a+u/1+au) (6.3)

TAUB

and a is considered as a function of ¢ determined
by Egs. (5.15).
The general solution of Eq. (6.2) is

fle)=x—T(o)ct, (6.4)

where f(p) is an arbitrary function. Equation
(6.4) states that ¢ is constant along the straight
lines in the x, ¢t plane of slope I'(¢), and hence
T'(¢) is the velocity of propagation of ¢. From
Eq. (6.3) it is evident that for weak disturbances
for which #—0, I'(¢)—a, and hence a is the
velocity of propagation of sound in units where
the velocity of light is one.
If we define
e=(1/y=1)p/p°

then Eqgs. (5.9’) and (5.11) lead to
p/p1=(p"/p1")"

as the equation for the adiabatics. It may then be
verified that

vp/c?p° }

a=
¥y 1

1+———p/p°
vy—1¢?

From this it follows that if a sound wave is
progressing into a medium of high temperature,
that is, if p/c%p° is large, then

a—(y—1)4

Hence for ¥>2 sound waves propagate with
velocity greater than that of light in vacuum.
For gases the equation used for e is not a possible
one as follows from the argument given in the
introduction.

7. Derivation of the Rankine-Hugoniot
Equations

It follows from Eq. (6.4) that for certain func-
tions f(¢) which are determined by the boundary
conditions the curves ¢=constant in the x, ct
plane intersect. This is impossible physically and
hence continuous one-dimensional motions are
impossible under these conditions. From classical
theory it is to be expected that shock waves form.
We now derive the equations which must hold
across these waves.

We first write the equations governing the
motion in integral form. Thus Egs. (5.1) and
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(5.2) may be written as

f(p°u“),,,d4x=fp°u“)\ad3x=0 (7.1)
and

fT,Baﬁdw=fT“")\ﬁdax=0, (7.2)
where the integrals on the left of (7.1) and (7.2)
are taken over a volume in space-time and the
integrals on the right are taken over the three-
dimensional hypersurface bounding this volume.
Ae are the covariant components of the outward
drawn normal to the hypersurface.

Next we suppose that the three-dimensional
volume is a shell of thickness e enclosing a surface
of discontinuity Y, whose three-dimensional
normal vector is A;. If we choose our coordinate
system so that the discontinuity is at rest, then
since

3

Z Ai2=1v

i=1

AeN®=1,
we have
)\z’=A.' and A4=0.

Hence Egs. (7.1) and (7.2) become, as € goes to
zero,

[p%uiA;]=0, (7.3)

[T=A;]=0, (7.4)
where

[f] =f+—f-

and represents the discontinuity in the function
involved. That is f, represents the value of the
function f on one side of the surface ) and f_
represents that on the other side. We shall take
f+ and f_ as the values of the function f on the
side of the surface opposite to and in the direction
of the outwardly drawn normal, respectively.
We may further restrict our coordinate system
so that A;=4,!, that is, the discontinuity is perpen-
dicular to the x axis. Then in view of Egs. (5.4)
and (5.12), Eqgs. (7.3) and (7.4) may be written as

P40 p-u_
= = 7.5
= a0
and
mciu, mcip_
(-2} (1—u?)! -
mciuiuy mciu_u_ )
(-t (-
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The second of Eqgs. (7.6) may be written as
By Mo
mic( == =p-—p+
p+° p-°

_E( P+—P- )*
c\p_/p0—py/ps0)

The second of Egs. (7.6) may also be written as

- ( piluy u—214—2)
mi -

1—u,?2 1—-u2

or

(7.7)

= (o= pamic( —+—).

p+® p-0

Subtracting this from the square of the first of
(7.6) we obtain

by M
mzcz(uﬁ—u—z)=m2(P+—P—)(—D+—-0)- (1.8)
P+ P—

Equations (7.5), (7.7), and (7.8) are the relati-
vistic Rankine-Hugoniot equations. It may
readily be verified that if we neglect terms of
order p/c?° compared to one, then these equa-
tions reduce to the classical ones. In the next
section we investigate the effect of these terms
when they are not negligible.

8. The Shock Velocity

Let us write

E=pi/p-, n=p+"/p-",
1 1 - B
€= D4/’ =——E/n—=—C%/n,
v+—1 v+—1 p-0 ¥4
(8.1)
Ry
v+—1¢? P-o'
py=1+BE/n,

where v+ and hence 8 may be functions of p,/p°.
We shall assume that they are slowly varying
functions and for the purposes of the discussion
to follow v, will be treated as a constant. From
the inequality (4.5) and the requirement that
€20, we have

1<v: <5/3. (8.2)
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Equation (7.8) may now be written as

v+—1
(1+BE/m)2—n 2=
Y+

1 B¢
B(¢—1) —+-—2+#* .
n "
Treating 4+ and B as constants we obtain a
quadratic equation for 1/9 with one positive and
one negative root. Since n must be positive we
have

=R_[(’Y++1)f+‘)’+""1:]

ey &Y
where
R=[(v+—=1)*(§—1)*+4£(t+v+—1)
X(v4ul+Bu_(v4—1)(E-1)) 1 (8.4)
Hence
#+=R—(7+—1)(£—1). 8.5)
2(+v+—1)
It follows from these equations that
B B (e = DE 1) — s
T B(e+7e—1) '

However, it is a consequence of (7.8) and the fact
that p+ and u_ are positive that

Bt 2 fee

Hence we have

B(E+v+—1)
X((E=1B2—v) +v+(1+B—p)).
Now we may write

po=1+(y-/v-—1)p/c%-".

B——b4/n2

(8.6)

Then
1+8—p_=(v——v+/v+(v=—1))8,

A, H. TAUB

and

pe—pp /72—
Etve—1

Y-"7+
.><(<s—1)(2—~/+>+ ) 8.7)
y-—1

Since Eq. (7.7) may be written as

(1—u_2)b

_ —1 —1)\?
u ((‘Y+ )B(¢—1) 89

Y(be—ps/n)

we will have u_ less than one whenever the right-
hand side of the inequality (8.7) is positive. That
is, in this case the velocity of the shock wave
relative to the gas into which it is traveling will
be less than that of light in vacuum. Now in view
of the inequality (8.5) which must hold for both
v+.and y- it follows that for £>3 the right hand
side of (8.7) is positive. Thus, for sufficiently
strong shocks the shock velocity must be less
than that of light in vacuum.
It is evident that if

V=2 Y+ (8.9)

then this result holds for all values of £ The
inequality (8.9) is satisfied for a monotonic gas as
follows from the expression derived by Jiittner*
for the internal energy of such a gas.

In case y— =14 or in the general case for weak
shocks where we may assume this equality be-
cause of the slowly varying nature of v, it may be
shown that as 8 becomes large Eq. (8.8) becomes

(v—=1D(E+y—1)\?
(")

It is evident from this that we must have vy <2 in
order for u_ to be less than one. The inequality
(4.5) insures that v <2.

4 F. Jittner, “Das Maxwellsche Gesetz der Geschwindig-
keitsverteilung in der Relativtheorie,” Ann. der Phys. 34,
856-882 (1911).



