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fhe reactions Liv(p, o,)a and Lie(d, n}n have a special
interest because the Bose statistics and consequent even

parity of the final pair of alphas simplifies the analysis.
It is assumed on reasonable grounds that Li' has odd
parity and Li' even. This means that only p, f ~ ~ protons
entering Li~ are relevant to this reaction and only entering
s, dt ~ deuterons of Li . An expression for the energy
variation of the angular distribution in the Li~ reaction is
derived from the dispersion formula, with the specific
assumption that only two levels of the compound nucleus,
having angular momentum 0 and 2, are important in the
range of energies employed in the experiments. (An
alternative assumption is investigated but is more involved
and it is considered less plausible. ) The angular factor is

1+A(E) cos~e+B(E) cos'8. A formula for A(E) as far as
it results from entering p waves has been derived previ-
ously by Critchfield and Teller, but it may not be adjusted
to fit the data in the energy range up to 3 Mev even
within the rather large experimental uncertainty. 'Ihe
effect. of entering f waves is also included in the present

analysis, and this contribution is not only essential to the
existence of B(E}but also makes it possible to obtain
agreement with the recent measurements of A(E). Certain
matrix elements are treated as arbitrary parameters in

obtaining this fit. In addition to the low-energy node
apparent in the early data, a second node of A(E) is

required at higher energy. The formula derived for B(E)
contains the same resonance denominator as does A(E}
and is compatible with the present experimental results.
The contrasting facts, first that the easy entrance of s
waves makes the Li'(d, a)e reaction symmetric at very
low energies and second that the p waves responsible for
the Li~ reaction at low energies may introduce asymmetry,
are associated in a simple way with the qualitative experi-
mental observation that both A(E) and B(E) rise more
quicklv in the Li' reaction than in the Li' reaction as the
bombarding energy is increased from zero. Presentation
of a detailed formulation of the Lis reaction is deferred
until a later paper.

I. INTRODUCTION

HE nuclear reactions Li'(p, o)n and
Li'(d, a)a are unique in having two alphas

as their end products, and the Bose statistics
obeyed by these alphas simplifies the theoretical
treatment on the basis of the dispersion formula
to a point where some measure of interpretation
of the angular distributions is easily possible.
The angular distribution of the Li'(p, o.)a reaction
was first investigated experimentally by Young,
Ellett, and Plain, ' and theoretically by Critch-
field and Teller. ' The angular distribution seemed
to be of the form 1+A(Z) cos'e, with the value
of A(Z) approaching a maximum at the top
bombarding energy 8 of 400 kev. The form
1+A (8) cos'8 follows most simply from the
assumption that only p protons enter and are
responsible for the reaction, f protons being
repelled by the Coulomb barrier and s and d
protons being inefkctive because of the assumed
odd parity of the target nucleus and the even
parity of the final configuration. A form for

' V. J. Young, A. Ellett, and G. J. Plain, Phys. Rev. 48,
498 (1940).

2C. L. Critchfield and E. Teller, Phys. Rev. 60, 10
(1941).

A (2) rising to a maximum and gradually tailing
off to small values at high energies (through a
node or not, depending on the existence of an
unobserved node at very low energies) was shown

to follow from the assumption of a broad s state
and a narrow d state of the compound nucleus.
Both the appearance of a maximum of A(E) at
400 kev and the detection of a corresponding
resonance maximum in the yield curve (relative
to penetration factor) constructed from the yield
data then available seem to have been spurious.
The sensitivity of this inferred maximum in

relative yield to the assumed nuclear radius has
been discussed brieHy by Eisner. '

I ater experimental investigations' have
shown that A(B) increases to a maximum value
of about 2 at about 1 Mev, and then decreases
steadily but remains positive to the highest
energies of the observations (3 Mev). The latest
observations' show moreover that there is also a

3 E. Eisner, Phys. Rev. 65, 85 (1944).
'C. D. Swartz, H. H. Rossi, B. Jennings, and D. R.

Inglis, Phys. Rev. 65, 80 (1944).
~ S. Rubin, W. A. Fowler, and C. C. Lauritsen, Phys.

Rev. 7l, 212 (1947}.
6 N. P. Heydenburg, C. M. Hudson, D. R. Inglis, and

W. D. Whitehead, Jr. , Phys. Rev. 73, 241 (1948).



term in cos48: that the angular distribution is
more accurately of the form 1+A (E) cos'9
+B(E)cos'8. The experiments are not yet
sufficiently accurate to 6x the dependence of the
coefficient 8 on energy very well, but it is
Gcfinitely negative and of the order of magnitude
——.' throughout at least most of the range from
I Mev to 3 Mcv.

l he reaction Ll"(d,o')u nlvolves lhc fotlnatton
of the same compouI&d nucleus Be' as is fornied

in Li'(p, a)n but the binding energy of a deuteron
to Li is 4.96 Mev higher than the binding energy
of a proton to Liv, so the compound nucleus is in

a more highly excited state in the Li' reaction
than in the Li' reaction, for comparable bom-

barding energies. The Li' spectrum thus makes
it possible to explore a diferent part of the Be'
spectrum than that explored as yet by the Li~

reaction. Observations on the angular distribu-
tion of the alphas from the Li' reaction have
been made recently by Heydenburg, Hudson,

JIlglls, and Khltchcad . .I hc cxcl tatlon cuI vc
displays a broad dip between a peak at 0.7 Mev
and one above 3.5 Mev, the highest energy of
the observations. Here again the angular distri-
bution is limited to even powers of cos8 by the
Bose statistics of the product alphas, and the
observations indicate that A(E) rises, starting
near 0.7 Mev, to a broad maximum of about
unity at 2 Mev, while B(E) is absent to almost
1.5 Mev and is small and positive at the higher

energies.
Even though the validity of nuclear models,

such as the alpha-model and the central-field
model, for the calculation of 6ner details seems
at present extremely questionable, the parities
deduced on the basis of these models are almost
beyond doubt, and it is assumed throughout this
work that the parity of the ground state of Li'
is odd while that of Li is even. The results
show that the data are compatible with these
assumptions. Only in the case of flagrant dis-

agreement would it seem to us worth while to
investigate the contrary assumption.

In this paper we extend the theoretical

' N. V. Heydenburg, C. M. Hudson, I&. R. Inglis, 3.nd
EV. D. whitehead, Jr. , Bull. Am. Phys. Soc. 23, No. 3
(1948).

interpretation of the Li' reaction to include the
eff'ects of entering f protons, and we shall present
a similar interpretation of the Li' reaction in a
subsequent paper. Some characteristic differences
appear in the two reactions. The protons which
enter the Li' reaction most easily, the p protons,
are themselves responsible for the cos2tI term, so
the necessity of penetrating a barrier does not
»sake the asymInctry vanish at zero bombarding
energy. The observed vanishing of A(E) near
J =0 is caused by a pure coincidence in the
placing of the resonant state of the compound
nucleus. In the Li' reaction, on the contrary,
the deuterons which enter most easily are s
deuterons which by themselves give spherical
symmetry, and the penetration of d deuterons is
necessary for the appearance of the asymmetry,
so the coefficient A (E) rises from zero for a more
natural reason as E increases from zero, and
this makes the rise more gradual than Li' as is
observed. This qualitative agreement is perhaps
the simplest experimental vcri6cation we have
of the validity of the parities as given by thc
nuclear models.

A similar simple correlation is found between
the theoretical expectation arising from the
assumed parities of the two target nuclei and the
qualitative features of the observed behavior of
B(E). The penetration of the f waves may be
expected to be more meager than the penetration
of the p waves in the Li" reaction by a factor of
the same order of magnitude as the penetration
of the d waves relative to the s waves in the Li'
reaction. The product of a P wave and an f wave
(which appears because the incoming matrix
element is contained quadratically or bilinearly
in the dispersion formula (1)) introduces a degree
of complexity in the rotational properties suffi-

cient to account for a cos'8 term, and this
product term is rendered small by the penetra-
tion factor to the same degree as is the product
term between s and d waves in the Li' reaction.
The latter product only introduces a term as
high as cos'8, and the square of the d wave
involving the square of the penetration factor is
required to make the cos48 term, leaving the
cos'8 term less prominent in the Li' rcactio»,
as observed.
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II. CALCULATION OF ANGULAR DNTMBUTIONS
FROM THE MSPERSION FORMULA

The calculation is based on the Breit-signer
rlispersion formula' extended to several com-
pound states, which for a system prepared in;i
well defined initial state I' ma& he written

mt+a'=m, to make up by linear combination
a wave function of a proper state of the angular
momentum j, for any j between / —S and l+S.
The transformation coefficient from (fSOm. ') to
such a proper state of the angular momentuni
ive call (lSOm/lSjm). &Ve may then write for the
"incoming" matrix element,

(P/II/r) =P(lSOm&lSj„m)(lSj„/FI!r). (4)

I'he fact. that the cross section is the square of a
sum gives rise to interference between various
states r of the compound nucleus. The "in-
coming" state I' is characterized first by some
quantization of the spin directions of the particle
spin s and the target-nucleus "spin" I. A possible
representation is that defined by the projections
(along the beam direction) m, and mr. A more
convenient and equivalent representation is that
in which the sum of these two "@pins" is given
bx a quantum number S, u herc

S =a+I, (2)

and by its projection m. In discussing the
applications of (1), we first imagine that such a
well deFined initial state has been selected. The
wave function of the prepared incoming state I'
is the product of a "spin" function Z |'~& and a
plane wave describing the orbital motion:

P,&" = Z„,&s& Pi'(21+1)&ki(kr) Pi(cos8, )

= Q (/50m, ') . (3)

'G. Breit and E. %igner, Phys. Rev. 49, 519 (1936);
H. A. Bethe and G. Placzek, Phys. Rev. 51, 450 (1937);
H. A. Bethe, Rev. Mod. Phys. 9, 71 (1937); G. Breit,
Phys. Rev. 58, 506 (1940). Cf. also H. Feshbach, D. C.
Peasley, and V. F. KVeiskopf, Phys, Rev. 71. 145, 564
(1~47).

The functions (15m im/) =Z & 'P&(cos8~)e'""~
Xi'(2l+1) k, (k&r) are the normalized spin and
angle factors of the incoming waves, each multi-
plied by a radial function depending on /. These
functions do not describe proper states of the
angular momentum j„,since they diagonalize
the projections of 1 and S separately rather than
the vector sum of 1 and S. Nowever, any one of
the states (lS mO, ') appearing in (3) could be
used, along with the other (lSm, m'/) having

'I'hc numerical factors i'(2 (+1) are considered
contained in (lSj,/II/r) and this matrix element
also involves a radial integration over f&(kr)
along with other factors. This (LSj „/FI/r) might
have been written (l5j „m/H(rm) but both wave
functions diagonalize j so the matrix element is
independent of m. (3Sj „/H(r) then transforms
from an incoming proper function of the angular
momentum, having j=j„and a given 1, to the
resonant state r of the compound nucleus. N~i

simple model which might allow the assignment
of values of S and l to the nuclear states is to be
expected to be valid, especially in the very
highly excited states r of the compound nuclei
encountered in nuclear reactions. The state r is
rather to be thought of as a complicated mixture
of states having various values of S and /, in
such a way that neither of these possible quan-
tum numbers would have any meaning. Even if
the spin angular momentum S and the orbital
angular momentum l were to have a meaning in
a specific state r, the transformation from the
incoming state S, l would in general involve
transformation coefFicients mixing spin and orbit
because the "spin" I of the target nucleus
generally contains orbital contributions. The
vector-coupling situation for the transformation
of the incoming state to the compound state r is
thus a complicated one, usually involving a
complex coefficient. If, for a given value of l,
there are n values of S which combine with it to
give a certain value of j„,the n incoming proper
ivave functions (Slj,/) may be combined in n
orthogonal linear combinations, n —1 of which
have zero matrix elements of II with r and the
other of which, X&„hasa value of this matrix
element (Xi„/H/r). Then we may write

(ISED,!H/r) = t;IS~„/X„](X„/II/r), (5)

and this incoming matrix element may be



further factored thus

(Xi./H/r) = 4 i(E)~~', (6)

e'"' ~ = Q i"(2n+1)j,„(kR)tP„(cosa)P„(cos8)

(n —m)!
+2 P ——P "(cosa)P "(cos8) cosm(@ —P)

=o (n+m)!

wherein a and P are the colatitude and azimuth

where p~(E) is real and n&„'is in general complex.
The vector-coupling coefficients are expected to
be complex but not to depend much on energy as
one passes through a resonance, so they are
contained almost entirely in e&„',while the energy
dependence of p, (E) arises almost entirely from
the penetration of the Coulomb barrier. (In
certain simple cases encountered in nuclear
models aI, ' might be real, such as the case in

which both incoming state and compound state
are the same Russell-Saunders state, that is, in

a transition with the magnitudes of spin and
orbital momenta separately conserved and with
no admixtures of other configurations of the
compound nucleus. ) Both of the reactions here
considered are so highly exoergic that the
"outgoing" matrix element (r/H/Q) is assumed
to be independent of energy during the passage
of even a broad resonance. (A slow dependence
of this factor on energy could also be included
in Pi(E).)

In Eq. (1), the angle 8 which appears explicitly
on the left side is implied in the final state Q on
the right side. This means that the matrix
element (r/H/Q) describes not only the transi-
tion to the state of two alphas whose orbital
motion is characterized by angular momentum
matching that of the compound state, I.=j,
and 3IJ.——m, but also describes the fact that
observations are made at an angle 8, which
brings in as a factor the angular wave function
of this final state at 8, the associated Legendre
polynomial Pl, (cos8). Formally, the observed
final state is a plane wave in the 8 direction, and
this angle factor is the angle part of the transfor-
mation coeScient from the outgoing radial wave
(which includes an angle factor Pr."(cosa)e™)
to the plane wave Q, arising from the expansion

angles of the position vector R, 8 and p those of
the observation direction k.

Because products of incoming and outgoing
matrix elements appear in (1), we combine the
complex factors in one complex number 0.&„
defined as the product of a„'and all of (r/H/Q)
except the angle factor Pp(cos8). Then we have

op(E, 8) =4slt'~ Q((lSom/lSj, m).

y [lSi,/X i„]y,(E)n „P,„"(cos8)/

The preparation of the system into well defined
states for the application of (1) would involve
orienting the spins in just one quantized fashion
before the impact, which is not done in the
experiments. An unpolarized beam hitting an
unpolarized target is equivalent to a repetitioii
of the experiment equal numbers of times in the
various possible prepared states I', and the cross
section for finding an alpha in a small element of
solid angle at 8 is

&r(E,8) = Q p 0 p(E, 8). (8)

Equations (7) and (8) together form the basis
for the interpretation of the experiments for
which rather extensive results have recently
become available.

III. ANGULAR DISTRIBUTION OF THE
Li'+PROTON REACTION

In the reaction Li"(p,n)a, the proton spin is
s=-,', the target nucleus has angular momentum
I=~3, and these combine to give "spin" states
S= 1 and S=2. The ground state of Li~ is
assumed to be odd, so incoming p, f, h waves
may give the even states of the compound
nucleus required for the reaction, and the
successively higher values of I find penetration
more and more difticult, so it will su%ce to
consider only /= j. and /=3. The Bose statistics
of the product alphas demands that the com-
pound states of interest have not only even
parity but also even angular momentum j„.
With /=1, the "spin" state S= j. leads to j,=0
or 2, while S=2 leads only to j,=2. With the
incoming f wave, $=1 and S=2 each lead to
j„=2or 4. We are then free to assume such
disposition of virtual levels of the compound
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TABLE I. Transformation coefficients (lSOm/1Sj, m).

2
1
0—1—2

(110m/112m)
0

2H
{2/3)»

2-»
0

(120m/122m)—(2/3)'

0
6&

(2/3)'

(310m/312m)
0

jw
—(3/7)'

7—
»

0

(320m/322m)—14»
2/14»

0—2/14»
14-»

{4/5)»P2 (x)
(3/2)»(1 —x&)
6»x(1 —x'-)»

(1—3x')

nucleus, having j,=0, 2, or 4, as may be neces-
sary to account for the observations. The main
trends of the observations may be attributed to
an entering p wave, involving levels having not
more than j„=0 and 2, and it is rather grati-
fyingly found unnecessary to introduce any
further states in order to explain the 6ner details
arising from the f wave. That is, it may be
assumed, in the interest of simplicity, that the

f wave reacts only with the j,=2 state(s),
without invoking j„=4.

The transformation coe%cients (/SOm//Sj „m)
appearing in (7) transform from a representation
in which the projections of It and 5 are diagonal to
that in which the total angular momentum is
diagonal, and are the same as are used to
describe Russell-Saunders states in the theory of
atomic spectra. They have indeed been tabulated
in a form convenient for the present work in the
book of Condon and Shortiey. P (Investigators
preferring to make their own calculations com-
pIete from the beginning can do so without
writing as many matrix elements as are listed in

reference 2 by using a sum rule introduced by
Breit and Darling" for the purpose of confining
attention to those coefficients having m& ——0 in

just such calculations as these. ) The coefficients

(9) for the states that concern us are evaluated
in Table I. (Those with /=1 are also listed in

reference 2.)
Our first set of assumptioiis about the coin-

pound nucleus is that it has just two states which

contribute appreciably to the reaction in the
energy range investigated, a state numbered
r =0 having j0=0 and having its half-width Fo
considerably greater' than the range of energies
covered by the experiments so that the energy
variation of its "resonance denominator" may
be neglected, and a state number 2 having j2 ——2

and j ~ small enough to account for the rather
rapid energy variation of the angular distribution
of the product alphas. These are the assumptions
about the compound states made in reference 2.
With these states, the cross section given by (1)
and (8) is

o(E,e) =4nX'Q IHp Hq"/(iFp/2)
S, m

+Hp'Hq'/(E Ep+iF p/2)—I-'

=(16wX'/F p') Q ~

(I'../iFp)Hp"Hq"

+H,PHq'/(p+i) ~'-'

= [(16m''/Fp')/(c+1)]

X Q ~(Fp/iF p)(p+i)HppHqP+HpPHq'~'. (9)

Here we have put

(E-E.)/(F. /2) =,
which then measures the energy deviation from
resonance with the state r = 2 in units of its
half-width. The summation indices 5 and m are
implicit in the initial state I. Putting this in the
more exphcit notation of Eq. (7), we have

a(E,8)=[(16n4'/Fpp)/(p'+1)]pi(I' /'I' p)(pp+p)yinipb(S/I)b(m/0)
s, m

+ P (/SOm//S2m) [/S2//2]a, p@&Pp"(cose) i'

=[(16-X'/Fpp)/(p'+I)] p ~ p (/20m//22m)[/22//2]a&pp&~'(Pp")'+ Q ~ Q (/10m//12m)
m=—2 l=I, 3 m-+1 /=1, 3

X[/12//2]n, @,~'(P )'+ l(F,a„/iFo)(p+i)P, + P (/100//120)[/12//2]n, g,P "~-' . (10)

' E. U. Condon and G. H. Shortley, Theory of Atomic Spectra {Oxford University Press, New York, 1935), pp. 76, 77.
I0 6. Breit and B.T. Darling, Phys. Rev. 71, 402 {1947).
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(4/5) Z (i)20m/l122m)

x(i~20~/l222~)(&~-)»

1 1 2(1—x')
{3/7)~(1—x2) {1—sx2)

3 3 (3/28)(1 —x'}(1+15x')

(4/5) Z (l110m/l112m)
ppp -1

x (l21'/l p12m) (P„~)~

(2/3)(1+3x')—(2/7)&(i —12x'+15x')
(3/7) (1—4x'+7x4)

'l Aal. a, II. Sums used in the Li reaction ~ith j,=0 and 2. I'palp/il'p[112/12]ag p
R——p+iEp,

[122/12)/[112/12] =Rg+iI g, (11)
[312/32]app/[112/12]arp =Rp+pIp,
[322/32]app/[112/12]asap R——p+iI p

With these definitions, the first summation in
the last member of (10), for example, can be
developed as follows:

The sums over m appearing here (and more
exphcitly in Fq. (12)) are easily evaluated by
use of Table I with the results shown in Table I I
(in which we put cose=x). The use of these
sums is helpful in consolidating the result ex-
pressed in (10), but we are still left with a rather
distressing number of arbitrary constants in
addition to the energy-dependent factors
which we consider to be just the penetration
factors of the incoming waves penetrating the
Coulomb barrier. At least we may first note
that the first row of Table II contains no powers
of x higher than x', and this leads immediately
to the result that for &3=0 the cross section
varies with angle as 1+A(Z) cos'ti, as may also
be obtained from the transformation properties
of the entering p wave. Ke further note in

Table Il that the cos'8 term comes in with the
f3rst powel of Q3, as anticipated in the intro-
ductory paragraphs above, and that there are no
higher powers of cos8 with &3~.

The most conspicuous contributions to the
angular distribution at fairly low energies are
made by the terms in &1 alone, and with only
these terms the analysis involves the arbitrary
complex constants

[122/12] , [112/12] , I' /iI'„

and also the common factor (16xX"'/I'pp) in which
we need not be interested if we confine our
attention to the angular distribution. The nuni-
I )c1 Uf coils tan ts appear i llg 1n the cq u ation all (3

(ssential to the angular distributioI~ may be
reduced by dividing through by one of them,
say by [112/12]a&p as was done in reference 2.
This procedure, which simplifies the leading
terms, neither simplifies nor complicates the
terms in p3. In carrying it out, we dehne the
remaining arbitrary constants in terms of their
real parts R and imaginary parts I:

P ~ Q (120m/122m)@, (R,+iI,) i'(P;")'
no=—2 l=l, 3

= Q I [p(l20m/122m)y, R,]'

+[g (l20m/l22m) &,I,]' I (Pp")'

= (RP+I,')yr'g (120m/122n1)'(Pp")'

+2 (R,Rp+ I&Ip) @gbpP (120m/122m)

X(320m/322m}(P;)'+ (RpP+I )

)& yp'Q (320m/322m)'(P p")' (12)

When the other terms are treated similarly and
evaluations made by use of Tables I and II,
Eq. (10) becomes

~-(."-+1)-'I[(5/2) (R,-'+IF) (1 —x-')

+ (5/6) (1+3x')+ (RpP+IpP) (1+p')

+ (10/3) &(Rp p —Ip) (1—3x')]@P
+(3/7)'L(5/2)(R R.+I I.)(1-")(1-5.')
—(5/6~)R, (1—12x +15x ) —5i((RpR, +IpI,),
+RpIp —RpIp) (1 —3x')]y,yp

+ (15/112)[(Rp'+ Ip') (1—x') (1+15x')
+4(RpP+ IpP) (1—4x&+ 7x4) ]ypP I (13)

It is clear from Eqs. (8) and (10), among others,
that there are no interference terms between the
incoming states with S=1 and S=2, and conse-
quently the phase of (Rr+iIq) relative to
(Rp+iIp) cannot affect the result. If we consider
these as entirely arbitrary parar»eters, we might
without loss of generality of the result set I& =0
(as suggested by footnote 9 of reference 2), and
this is reflected in the form of (13). We prefer
instead to keep our parameters uniquely de6ned
in terms of the matrix elements even though
these matrix elements are not in practice calcu-
lable, since expressing the parameters, which are
handled as arbitrary, in this conceptually clearer



way does not interfere with the usef'ulness of the
formulas. With the equation for the cross section
in the form (13), it appears expedient to rename
some of the combinations of arbitrary constants
thus:

ii = (5/2) (Ri'+ Ii'),
b = (5/2) (3/7) &(RiRi+ IiI3),
c = (5/14&)R2,
d = (15/7) &(ROR2+ IOI2),
c = (15/112) (R32+Ip).

(14)

Rp and Jp together with these five are used as
the seven independent real parameters. Among
them, a and c are necessarily positive (or at
least not negative). The formula for the cross
section may then be written in the form

n=C(~)} 1+A(c) cos'8+B(e) cos'8j, (15)
with

A (c) = L5/2 —a —(30)&(Roe —I,)
+3(2b+4c+d ~+a)4

+ (14e—4y)4']/D(e),
B(e) = [5(b 3c)C (1—5e 7y—)C—'5/D(e),
C(e) = s (4XL112/121ai2@i/2&)'D(c)/(a'+1), (16)
D(~) = (Ro'+ Io') (~'+1)+5/6+&

+2 (2/3) &(Rpa Io) + (b c —da a)4— — —
+ (c+V)@'-,

where
+ = 4'3/Qi

is the ratio of the penetration amplitudes of the
incoming f and p waves, and the auxiliary
constants a and y (which were introduced as
abbreviations for (15/7)&(RoI2 —R~IO) and

(15/28) (R22+ IP), respectively) may be expressed
in terms of the independent parameters thus:

(x = (Rod —(6/5)&(R(p+I0')c)/Io, (17)
y = (3/10) I c'+ ((5/6) &d cRO)'/I—o' }

The common factor C(e) contains a further
matrix element not included in our listed pa-
rameters, but it: need not necessarily be con-
sidered in a ~tully of t.he angular distribution.
I t must be remembered that e is related to the
bombarding energy (in c.m. coordinates) and the
resonant energy through the relation c=2(Z
—Z2)/1'2 so that the Z2 and I'2 must be con-
sidered as further arbitrary parameters. With
no entering f wave, 4 reduces to zero and makes

B(F)=0, as has been noted above, and the
parameters involved in the determination of

A(F) are five: F2, I'~, Ro, Io, and a, of which I'2

and a are limited to positive values. When the
terms in 4 but not those in 4' are taken into
account, we have the three additional arbitrary
parameters, b, c, and d, and the terms in 4'
bring in the last parameter, e, which is positive.

The algebra is here presented more explicitly
than is required to derive the form of the results
used in the experimental comparisons below.
This is done in order to display the extent to
which the integrals originally appearing in the
theory in principle determine, or from the em-

pirical viewpoint are determined by, the final

parameters which are adjusted to fit the data.

IV. COMPARISON WITH THE EXPERIMENTAL
RESULTS

Since it depends on arbitrary assumptions
about the compound nucleus, the theory here
presented should be considered as merely the
simplest of several alternative theories, and its
adequacy must be judged by comparison with
experiment. Unfortunately, the experimental
determination of the coefficient A (8) and partic-
ularly of B(E) depend on taking rather small
diAerences of observations subject to statistical
and in some cases probably systematic errors,
and the measurements at present available,
which have only recently exhibited the term in
cos'8 at all, must be regarded as preliminary.
Under these circumstances the comparison be-
tween detailed theoretical and experimental
results must be regarded more as a test whether
the theoretical formula has sufficient flexibility
to fit a typical experimental trend than as a final

adjustment of the theory to the data. If the
final data should require a more complicated
theory, the understanding of it will have been
aided by a study of the insufficient flexibility of
the simpler theory. It is nevertheless gratifying
t.hat the theory here presented appears to have
;adequate flexibility to arrouot for the general
trend of the data over the fairly wide energy
range in which they are now available.

The experimental measurements on A (8)
made by four diHI'erent groups of investigators in

partially overlapping energy regions are not in

very c1ose accord on the details of the curve. In
reference 1 an 5-shaped curve was drawn through
the data up to 400 kev, and this does not seem
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to join in a reasonable way with the curves of
either reference 4 or 5. This 5-shaped curve is
reproduced as the short curve near the origin of
Fig. 1. References 4 and 5 disagree by about
1SO kev on the position of the principal steep
ascent of the curve. However, these minor dis-
crepancies leave little doubt that the main trend
of the curve includes a sharp rise from practically
zero at a small positive energy to a rather broad
peak at about 1 Mev and a somewhat more
gradual descent toward higher energies. The
lower curve in Fig. 1 is drawn to fit all the data
reasonably well with emphasis on avoiding sharp
bends and inflections and with the knowledge
that the theory does not require it to go to zero at
zero bombarding energy. The only point which
deviates from this compromise curve by more
than 0.3 in A is the point whose originally
plotted limits of uncertainty are reproduced by
the vertical broken line in Fig. 1, the point from
reference 4 at 87S kev, and it may be seen
clearly in Fig. 3 of that paper that the reason
this point was plotted too low was a prejudice
against the possibility of a term in cos'8. (On
the cos'8 plot, the 90' point was so far below a
straight line through the others, probably the

E /Mes

Fit. 1. The coefficient of the term in cos'8: curves
summarizing the general trend of the observed angular
distribution of Li {p,a)n with varying energy. The lower
curve is drawn in keeping with the interpretation of the
earlier experimental papers, in which the term in cos48 was
not recognized. That these curves are uncertain in detail
is indicated by discrepancies of overlapping data in the
low energy part and by difticulties encountered in dis-
criminating against scattered protons at the high energy
end. The upper curve gives the general trend of the part
of the angular distribution attributed to the cos'8 term
after a part has been attributed to the term in cos48,

combined effect of experimental fluctuations and
of the negative ~alue of B(E), that it was
ignored in determining the slope, since repetition
of the observation had become impossible be-
cause of the advent of the war. ) The curve
avoids the inflections of the S-shaped curve at
low energies and is consequently drawn with a
node at about 100 kev. In reference 1, there
seems to be a little evidence of a very natural
prejudice against the possible appearance of
negative values of A at low energies: the lowest
point at 100 kev seems to be plotted in their
Fig. 3 with an indication of the upper limit but
with no indication of a lower limit. The scatter
of points on their Fig. 2 would seem to permit a
slightly negative A at 100 kev. The intensity is
so low at these energies that the observations
have unfortunately not been extended to energies
sufficiently below 100 kev to have detected the
negative value of A(E) which would be expected
there if there is a node near 100 kev. Experi-
mental proof of the existence of a node rather
than a gradual approach to zero would be
desirable as a test of the theory.

The lower curve in Fig. 1 is based on htting
the data as well as possible to the simplified
form of the angular distribution 1+A(L') cos'8,
with neglect of the observations at 10' and 20'
when these were available in the more recent
data in order to facilitate a comparison with the
older data.

The upper curve in Fig. 1 represents A(E) as
determined by fitting the data to the more
adequate form for the angular distribution
1+A(&) cos'8+B(E) cos48. This is, of course,
the curve for A(E) which should correspond to
the theoretical expression (16). The part above
1 Mev is taken from reference 6, where this fit
was carried out. The broken portion of t.hc
curve below 1 Mev is an arbitrary extrapolatioii
guided by the lower curve, the data in this
region being inadequate for any determination
of B(Z). (Preparations are being made for
further observation of this region. ) The upper
curve is expected to approach the lower curve
closely at very low energies, where B(E) is
expected to vanish, so this curve also has a node
at 100 kev.

Since A(E) is observed to have its most rapid
variation and pass through its maximum in the
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range of energies up to not much over 1 Mev, in
which 4 is expected to remain well below unity,
it may be expected that the gross features of the
curve for A (8) may be reproduced by the
approximation neglecting terms in 4. On the

face of it, it would seem that almost any general
form of curve could be reproduced over a fairly
limited range by a formula containing as many
as Ave parameters. The equation for A(e) when
4=0,

5/2 —a —2 (6) *'(Rpe —Io)
A(e) =

(Ro'+ Io') (e'+1)+5/6+a+2 (2/3) '(ROC Io)
(18)

(which corresponds" to Eq. (12) of reference 2),
does, however, seem to have a peculiar fitness
for reproducing a curve which rises to a single
maximum and falls to a node at one end of the
observed range and to a small value but not a
node at the other end. The numerator is linear
in e and thus has only one node, which can be
made to match the experimental node'4 at about
F. =100 kev in the 1aboratory coordinate sys-
tem. "- Vor convenience in plotting a curve to
compare with the experimental curve, Kq. (18)
may he written with fewer terms:

A (2) = (CgE+ C.)/(F'+ CgE+ C4), (18.1)

where the four parameters are expressed in the
previous five parameters a, Rp, Ip, B2, and I'~ as
follows:

Cl = —6 RGF2/pq p =RD +IIP~
C2 ——[(5/2 —a+ 2 (6)&ID) (F2/4)

+6'&~RO]F 2/n, (19)
Cg = (2/3) &ROF2/p —282,
C4 ——(5/6+a —2 (2/3) ~IO) Fg'/4p

—(2/3)&(RpF2/p)E2+E22+ F22/4.

The shape of the curve thus depends on only
these four parameters and the previous five
parameters are not uniquely determined by
fitting the curve to the experimental data, even
in this approximation which neglects terms in C.

This curve is plotted as curve II in Fig. 2,
with the constants determined to match the
experimental curve in the following respects:

"The correspondence between the coefficients becomes
clear if one puts cos2& = i —2 sin~g and notes that
a = (5/2) tan'$ and that the terms in P~ in numerator and
denominator have the ratio 3 when sing=a=O and the
ratio —1 when sin(= 1 (or a= ~).

"For convenience in comparison with experiment, at
this point we consider the definition ~=2(E—E2}/F2 to
hold in the laboratory system, which is permitted since Fz
is now treated as an arbitrary parameter. This parameter
F2 is then (8/7) times the half-width appropriate to the
theory, and for consistency a factor (8/7)' should hence-
forth be inserted in. the expression in (16) defining C(e).

A(0. 1 Mev) =0, A(3 Mev) =-,', E,„=0.95 Mev,
A(Z,„)=2.32. This curve has a considerably
sharper maximum than the experimental curve I
of Fig. 2, the latter being a copy of the upper
curve in Fig. 1 which was drawn simply as a
reasonable compromise between the slightly
divergent and uncertain data. The constants C
for curve II are C~=0.92 Mev, C2= —0.092
(Mev)'-, C~= —1.5 Mev and C4 ——0.86 (Mev)-'.
A typical set of the previous five parameters
compatible with this curve is

82=0.6 Mev; I'g =0.1 Mev;
Rp = —0.04; Ip = —0.1;

a = (5/2)(RP+IP) =0.23.

The domain over which these sets of parameters
may vary is limited by the requirement that c be

I E'/ Mev

FIG. 2. The coefFicient of the term in cos'8: comparison
between theory and experiment. The curve taken to
represent the rather uncertain experimental results is the
same as the upper curve of Fig. i. The theory resulting
from only entering p waves gives too sharp a peak when
fitted at the low energy node, at the peak, and at the
highest energy. The theory including entering f waves is
sufEciently adaptable to fit the experimental trend satis-
factorily over this energy range.



TABI.E III. Barrier penetrabilities for p and f waves.

R
e2 /me~ Z/mc&

l.5
C;

5.06+2 In@ i

2.25 Ci
C's

3,34+2 In@i

In I'{90')

1.73
6.53
0.005 5
0.70

) .00
4.17
0.028
0.83

1.6)

1,5

1.23 0.90
5 54 487
0.0087 0.012 1
1.73 2,44

0.58
3.38
0.038
1.81

2.10

0.33
2.80
0.050
2.44

2.44

0.51
3.97
0.0)93
3.32

0.07
2.07
0.065
2.56

3.20

0.28 0.04
3.35 2.52
0.0266 0.038)
3.92 4.&0

) .58 0.96

4.26

positive. E2 remains fixed, and the rapidity of
variation of the other parameters is indicated by
the statement that, while a varies from 0 to 0.5,
I'2 varies from 0.2 Mev to 0, Ro from —0.07 to
0, and the ratio Io,/'Ro from 2.6 to 2.4. The
smallness of Ro"-+Io' relative to R)2+I)2 pre-
sumably arises primarily from the small ratio
I',/I'0, rather than from the other coeScients
appearing in Fqs. (11), since the latter contain
complicated integrals having no apparent reason
to be very much larger for one state than
another.

The next step in increasing complexity is to
take into account the effect of the f wave of
entering protons by including the terms con-
taining 4 in the expression for A(e) in Eq. (16).
As we have noted above, 4 is essentially the
ratio of the penetrabilities of the f and p wave
functions (not probability amplitudes). These
penetrabilities shouM properly be computed from
the amplitudes, at the edge of the nucleus, of
the regular and irregular solutions of the wave
equation with a Coulomb field. Of these, only
the regular solutions are at present available for

f waves in the published literature. " We shall
for the present content ourselves with a rough
indication of their variation with energy obtained
from the KVKB approximation, which is ad-
mittedly unreliable for energies near the top of
the barrier such as we are concerned with here.
In Table III are shown data on the energy
variation of 4 =@3/P~, for two assumed nuclear
radii, R = 1.5e'/mc 'and R = 2 25e'/mc' T-. hese
about span the range of uncertainty of R —they
correspond to 2'A&e'/mc' plus half the range of
the internuclear interaction and to about
0.7A ie'/mc' plus the full range of the interaction,

"F.L. Yost, J. A. wheeler and G. Breit, Terr. 1%lag.
40, 443 (1935).

respectively. The data are computed from Eq.
(631) of Bethe's Nuclear Dynamics article" by
putting our @, equal to (BI E)—'e c', where
B&= L'&(R) is the height of the barrier. Here
U, (r) =l(l+1)h'/(2Mr')+3e'-/r, with M the re-
duced mass, and C& = 2(M/h') J'(U& F)'d—r inte-
grated through the barrier. With 8=1 Se'/m. c
B~ is 7.19mc' and B3 is 33mc' With R = 2 25e. '/mc',
8) is 3.6rnc'- and B~ is 15tnc"-, and with this
large radius an energy of even 4mc' is over the
p wave barrier. f.n the table are also given the
values of log@)'-' within a constant made to
match the experimental data for log Y(90')
(taken from Fig. 4 of reference 6) at E=2mc'.
Equations (15) and (16) above show that the
90' yield can have a complicated dependence on
energy through the explicit appearance of ~ in

C(e) and D(e), but because of the exponential
nature of the penetration factor a large part of
this energy variation is still expected to arise
from the factor @1"-. For the sake of making this
comparison, the experimental data for log Y(90')
are displayed as the last row of Table III. These
data are taken from Fig. 4 of reference 6 (after
converting energies from the center-of-mass sys-
tem in mc' to the laboratory system in Mev).
The traditional way of plotting log Y against
8 & as followed in that figure arises from the
expectation of a straight line in a much cruder
approximation than we have used here, valid
only even further below the top of the barrier,
and the comparison of yields in Table III is
more significant than the deviation from a
straight line in that figure.

fn the comparison between in@&-' and ln Y(90')
in Table III the two R's both lead to the ex-
pectation of a sharper variation with energy
than is observed in the region below 2mc'-', as
though the existence of a resonance, presumably
the state j„=2 at 0.6 Mev, elevates the observed
value there through the resonance denominator
in C(e). Aside from this, the value 8 =1.5e'/mc'
provides as satisfactory agreement as can be
expected from the &KB approximation in a
light nucleus. (The larger value or R might show

up better, too, were it not that the approach to
the top of the barrier invalidates the estimates
completely at intermediate energies. )

"H. A.. Bethe, Rev. Mod. Phys. 9, 178 (1937).



The main purpose of Table III is to exhibit
the variation of C with energy. With the smaller
radius, the relative penetrability 4 varies almost
linearly with energy (or more nearly as the 1.1
power). With the larger radius the more ques-
tionable calculation gives a variation more nearly
like the 0.85 power of the energy, which at least
suggests that the variation is probably not very
far from linear for a small range of radii R in
the neighborhood of 1.5c'/mc'.

In Fq. (16) we may then put

4 = XE/mc'-. (20)

in place of (18.1), and for the coefficient of the
cos4 term

B(E)= (CpE'+ CpE)/(E'+ CpE+ C4). (22)

Since this is multiplied everywhere by arbitrary
constants, the exact value of the numerical
coefficient X is of no importance, though its
order of magnitude is of considerable interest
because one would presume oRhand that several
of the larger ratios of matrix elements in (14)
would have the same order of magnitude, and
that the coefficients of C in (16) would be of the
same order of magnitude as the terms without 4,
except where fortuitous cancellations of the
matrix elements cause some combinations of
coefficients to vanish. The experimental fact is
that B(p), which contains C as a factor, is, in
the energy range 2 to 6mc', about one-fourth to
half as large in magnitude as is A(p), which has
a leading term without C. The leading term in
A cannot be fortuitously small at all these
energies (it is known to be so at 100 kev), so C

is expected to be of order of magnitude -', at
4mc', for example, suggesting that one would
prefer to find X of order of magnitude yp,
rather than 0.006 to 0.03 as suggested by the
calculations for 8=1.5 to 2.25e'/mc' While one
might take this as indicative of a large nuclear
radius, our ignorance of the matrix elements
involved actually allows us to conclude only
that the coefficient 5(b 3c) which—determines
the size of B(p) in (16) is probably considerably
larger in magnitude than, say, 2(6)&Rp which is
responsible for the size of A(p).

The linear relation (20) in (15) and (16) yields

A (E) = (CpE'+ CiE+ Cp)/(E'+ CpE+ C4) (21)

These new coefficients C are no longer defined
by (19) but instead involve the additional arbi-
trary parameters b, c, d, and e, as well as the
constant IC. Equation (21) which includes the
effect of an entering f wave contains one more
arbitrary coefficient C„than does (18.1), which
resulted from an entering p wave only. Whereas
(18.1) gave somewhat too sharp a peak to fit
the experimental data, the additional freedom
provided by the Cp term in (21) is sufficient to
make a satisfactory fit with the data. This is
shown by curve III in Fig. 2, which represents
Eq. (21) with the constants" chosen to satisfy
the following requirements: A(0. 1 Mev) =0,
A(3 Mev) =-', , A(2 Mev) =1.6, E, =1 Mev,
A (E ) =2.3. While these requirements are
stated in "round numbers" and may not give the
best possible fit to the experimental curve I, the
curve does show that (21) permits freedom to
make the peak rather broad as required by the
experimental results. Raising the curve as we
have done on the high energy side of the peak
raises it on the low energy side also and makes
it steeper at very low energies than suggested by
the low energy experiments. A slightly better fit
with the various low energy experiments could
perhaps be obtained by placing the node at
about 200 kev and the peak at about 900 kev.
In view of the tentative and discrepant nature
of the experimenta1 results below 1 Mev, which
have not yet been analyzed for a term in cos4tt,

the agreement of curve III with curve I may be
considered satisfactory, and a distinct improve-
ment over curve II.

The f wave was included primarily in order to
explain the cos48 term, but we see now that the
additional freedom that it introduces also he1ps
to account for the energy dependence of the
cos'8 term, insofar as the rather preliminary
experimental data at present available may be
trusted. Our assumptions about the states of the
compound nucleus and about the barrier pene-
tration must also be regarded as tentative, but
within the limitations of these assumptions it
should be noted that the inclusion of the f wave
results not simply in additional freedom to fit
the data within a limited energy range but also
requires quite different behavior of A(E) over

"Theyare C&= —0.99, C&=4.34 C2=, —0.43, CI= —0.98,
C4 ——1.24.



an extended energy range. In particular, the
quadratic form of the numerator of (21) requires
either no nodes or two, and the interpretation of
the low-energy data in terms of a node near
100 kev requires another node at some higher
energy. The available experimental data at the
high energy end of the curve, near 3 Mev, are
particularly uncertain because of the inconveni-
ent range of scattered protons at those energies,
but they seem at least to be compatible with a
descent toward a node. Another important aspect
of the greater freedom introduced by the f wave
is that the correlation between the angular
distribution and the expected position of a
resonance in the excitation curve has been lost.
Whereas with only a p wave curve II of Fig. 2

required a resonance (not observed) in the 90'
yield at about 0.6 Mev, the number of param-
eters B2, 12, Ro, a, b, etc. , has been increased by
four in including the f wave, while the number
of coeScients C„uniquely determined by the
data has been increased by only one, so it may
unfortunately no longer be expected that the
"parameters" E2, I'~, etc. , may be determined
or even seriously limited.

As for the energy variation of B(E), com-
parison of (22) with (16) and (20) shows that Cq

contains a factor E', so that CSE' may be ex-
pected to be much smaller than CsB, at least at
energies below 1 or 2 Mev, since the coeoicient
5(b —Bc) may not be fortuitously small as we
have seen above. Because the experimental
determination of 8 depends on taking second
diA'erences of values subject to statistical and
other Huctuations (and because the observation
at the highest energy, 3 Mev, is made more

l
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FIG. 3. The coeScient of the term in cos48. Plausible
variations of the two remaining arbitrary parameters
would be expected to leave the theoretical curve between
or near the two curves shown. The scattered preliminary
experimental points are also shown.

doubtfu1 than the rest by interference from
scattered protons), the trend of 8 with energy is
far from well established. The curves resulting
from a couple of trial values of C6 and C5 (one
with C~=O and the other with C~ relatively
much larger than would seem most likely) are
shown in Fig. 3, along with the scattered experi-
mental points. The resonance denominator here
contains the same constants" as used for curve
III of Fig. 2. The form of the curves gives hope
of obtaining agreement with more definite
experimental data if they should become avail-
able.

V. ALTERNATIVE SET OF COMPOUND STATES

The assumption investigated above, that the
angular distribution is to be attributed to a broad
state of the compound nucleus with j,=0 and a
narrower state with j,= 2, seems to us the
simplest and most natural basis for the interpre-
tation of the experimental results, simplest »e-
cause it involves fewest arbitrary parameters,
and most natural because the gradual energy
dependence of the angular distribution suggests
a low density of levels of the compound nucleus
Be' in this region of excitation, and one expects
to encounter low angular momenta at those
energies where the density of levels is very 1ow.
The great breadth of the state with j,=0 is
naturally associated with the ease with which
such a state is expected to break up into two
alphas.

It must however be recognized that the possi-
bility of fitting the data with the above assump-
tions does not constitute a complete demonstra-
tion of the validity of those assumptions, and
this investigation wouM be very incomplete
without a display of some of the qualitative
features of results obtainable from alternative
assumptions. The simplest modification of the
assumptions used above is to drop the require-
ment that I 0 be very large. This alteration
complicates all the formulas considerably, but
the development parallels so closely the calcu-
lation already carried out that we wish here only
to note that its final formula for A(E) is analo-
gous to (21) with the numerator including powers
of E up to the fifth and the denominator up to a
term in F4, the latter being small of order X'.

We consider here in more detail the possibility



that there are two virtual states of the compound
nucleus, each having J„=2,but differing in B,
and I',. We develop from Eqs. (7) and (8) as
before, and the incoming states are the same as
considered above. We find for the factor in the
cross section which determines the angular
distribution,

~- {[PClll, /(f, '+1)+((flf2+1)D111
+ (fl 2f)F111)/( lf+ 1)(f2 +1)](1/3+x )

+ [+ Cl lb'/(fr +1)+ ((flf2+ 1)D112
+(fi f2)8112)/(fl +1)(f2 +1)](1 x ) j
—7 '{2'[QC131,/(f, '+1)+((flf2+1)D131
+ (fl f2)+131)/(fl +1)(f2 +1)](1 12x
+1~x ) +3 [QC133r/(fr +1)+ ((flf2+ 1)D133
+ (fl —f2)2133)/(f 1'+1)(42'+ 1)](1—6x'
+5.') I C'+ (3/28) {[ZC331./(f'+1)
+ ((flf2+ 1)D»1+(fl f2)Z 313) /( fl +1)
X (f22+ 1)](1+14x' 15x') +4[BC»3./
(fp +1)+((flf2+ 1)D333+ (fl f2)8333)/

(f 2+ 1)(f22+ 1)](1—4x2+ 7x4) I@2

The weal th of constants appearing here are
defined as follows in terms of the integrals
originally entering the theory:

Cess. —Res.&ss.+~es.hs. ,
DabS +asl+b82++a82~bsl+iasllb82+ia82~bsli
+abs +aslib82 I asl+b 82++ b811 a82 Ib 18+ a28y

~18,+2118,= (1'1/1',)p&j,/&j,]«,/[11jl/ljl]~11

Ke then have the conditions

+111 ~ b 1111

and the other R~s, and Il.s„may be considered
as arbitrary parameters, which amounts to the
same thing as treating the C's, D's, and E's as
arbitrary parameters with the conditions

Cll1 1 b C1112 @111+Dill /4

Neglecting terms containing 4, we obtain 0 ~1
+A cos'e as the result of an entering P wave,
with

b(f2'+1)+d(flf2+1)+f(fl —f2) + {,'[(~+d—)'+(8+f)'5 g I (fP—+1)
43(f2 +1)+b(flf2+ 1)+S(fl f2)+g(fl +1)

1 fere we have renamed the parameters to simplify
the appearance of the equation, and of them,
a&& -,'and g&&0. This contains seven parameters
explicitly, and there are four more implicit in
the definitions of the e's, as compared with three
explicit and two implicit parameters in Eq. (18)
above. Kith so many parameters there is without
doubt much more freedom than is required to

fit the experimental results and any correlation
achieved would seem less significant than with
the fewer parameters of the simpler interpreta-
tion presented above. It is, of course, still
possible that future more accurate data might
require this greater freedom, or perhaps even a
more complicated set of assumptions involving
a state of the compound nucleus with j„=4.


