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A Note on Perturbation Theory*
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The perturbation theory for a stationary state is developed in the form of an implicit equation
for the eigenvalue and an explicit equation (involving the eigenvalue} for the amplitudes.
Kith the aid of a formal algebraic identity the equation for the eigenvalue is transformed
into a semi-explicit form by a procedure having a wider range of validity than the more obvious
iteration or power series processes.

HE physical system under discussion pos-
sesses quantum states in the space defined

by the complete orthonormal set of functions
. These functions need not be

eigenfunctions of any set of commuting opera-
tors; in particular, it is possible to dispense with
the conventional separation of the Hamiltonian
operator into an unperturbed part Ho, of which
the P's are eigenfunctions, and a perturbation
operator Hl which couples the unperturbed
states.

The eigenfunction of H

with the eigenvalue E, is determined by the
system of linear homogeneous equations:

ay=1,

a =[H i/(m)$+ Q [(H„„H„i,)/(m)(n)j+

E=H»+ P [Hg, H i,/(m)5

+ 2 [(H~~-.H")/(m) (ii) 3+

in which (m) =E Hand —only non-diagonal
matrix elements occur in the numerators of the
sums. VA'gner' has shown that the energy formula
in an odd order 2v+1 is precisely the expectation
value of H with respect to the normalized wave
function of the v'th order.

An obvious iteration process starting from
E"'=Hkk and employing the expansion

(E-II„„)a„=Q H „a„. (2)
[~/(E'"' —H-) j= [~/(H» —H-) 3

Xg[(H» —E'"') /(H» —H )3" (4)
V I=0An essential preliminary step in the solution of

Eq. (2) is the reduction to diagonal form of
one or more subspaces in which the diagonal
matrix elements of H all have the same value.
After the reduction the condition H„=O for
n/m holds within each reduced subspace. Fol-
lowing this step Eq. (2) can be solved (at least
formally) by a process of successive approxima-
tion.

If Pg ls a good approximation to an eigen-

function of H a suitable starting point is a = 6&„,

E=H&I,. Successive orders of approximation are
derived by inserting the values of a from the
preceding order into the right-hand member of
Eq. (2). The formal solution has the form'

transforms Eq. (3) into an explicit formula for E
in which all energy denominators have been
reduced to differences of diagonal matrix ele-

ments. This last form is equivalent to the
Schroedinger perturbation formula' derived as a
rule by assuming that all eigenfunctions and
eigenvalues can be expressed as power series in

an expansion parameter (i.e., the fine structure
constant in the electromagnetic self-energy prob-
lem). In many applications the convergence
condition for the inhnite series of Eq. (4) fails
and the explicit formula for E then embodies an
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infinitely reiterated series of logical contradic-
tions. One important characteristic of the itera-
tion process is that it removes an infinite series
of higher order terms (generated by the expan-
sion of the denominators) from each summation
in Eq. (3).

The present note is concerned with the trans-
formation of Eq. (3) into a semi-explicit form

by a procedure having a wider range of validity
than the iteration process.

The discussion of Eq. (3) is facilitated by the
introduction of the set of auxiliary functions.

HqrHr q

&km ~ p q —=~q q+ r»m" pq (r)

H, „H„,H„
+ Z — —+ (5)

r'nkm ".pq (r) (S)

lt is clear that 8& ..., can be identified with an
eigenvalue only when 4 = yg =. . . =g; then
E= hkkr s k(E) —= hk(E)

The formal algebraic identity

Z [(hk n II.q)/ (E"~—qq) 3"
k=0

=1+ 2 [(II.Il"/((V) (r))j
rgkm ~ - p

+ 2 [(~"II-Il")/((V)(r) (s))]
r.sgkm .. p

+ ' ' '. (6)

(gWkm .p) can be verified by expanding the
right-hand sums as products of sums like those
which appear in Eq. (5). Identical products of
sums then occur on both sides of Eq. (6) multi-
plied by identical binomial coeScients. An
essential factor in the identity is the absence of
terms in Eq. (5) for which the variable indicsn
take on the value q. If

lf the convergence condition (7) fails, then it is
suggested that the left-hand member of Eq. (8)
is equivalent to the series on the right in the
sense of an analytical continuation. In the
application of Eq. (8) the left-hand member
replaces the infinite (and possibly divergent)
series on the right whereas the reverse procedure
is followed in the application of Eq. (4).

The general term in the formal series for a is
expanded in the algebraic identity

H „H„gH„. - HI,

rrp ~ . rsrnk (m) (s) np ~ rs»m (m) . (s)

Knn ' ' 'FIrrrk Hmk
+ + n ~ \

rrp" rs» (m) . (r) (m)

Ei„,„FI„„,+2»» (m)(n) p" rs»m (ni) . (s)

Hm, p
' ' 'Hsk

(9)

KVith the aid of Eqs. (8) and (9) the formal series
for a is transformed into

Hmk II „ FI„k FI„„H,g+2 +L-
E hkr» rr»rrrE P, m (n)—P»rn (n) (P)

H„~H„qDq&+ 2 + s ~ ~

pq». (n)(P)(q)

Again employing Eq. (8) and an obvious general-
ization of Eq. (9), the factor in square brackets
in Eq. (10) can also be transformed and the
process continued indefinitely to yield the result

H I, H „FI„g

E hk k n(mE m—hi )—(E—h„. „)

II,„„Fi„~EI,)-
+

rr nkm (E—hi, ) (E —bs,.„)(E hr „,„,)—
P Wkqpssr

Eq. (6) reduces to

1/(E hk- .q)— "

Equation (2) now yields

r~ y'km -.p
(qgkm .P) (8)

PkrrJIm »II»k+2* +s . . ($2)
(E—hk„,)(E—rnk „)
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The star on the summation symbol signifies that
there are no duplications among the variable
&ndlces nzepq- and furthermore that mnpq-
/k:

Since 8, = 8,...,(E)=8„(F) the energy denom i-

nators in Eqs. (11) and (12) can be replaced by

w hick. may bc con ver gent even %'heI1 bg and
SI„- ...,„are separately divergent. There is also
the possibihty that the usual substitution of
II&I,—H« for E—H« in the second- and third-
order terms of Eq. (3) may be justified in par-
ticular cases even when

~
B H„~ &&

~

H— H„~ . - —
A straightforward generalization of the pro-

cedure yielding Eqs. (11) and (12) transforms
h~„...~, into a form similar to Eq. (12). The
result is

H, „II„,
&inc pq

=IIqq+
* Pg E 8$~e ~ opqr

+ . (15)

For computing the required energy denominators
Fq. (15) may be replaced, ivith advantage, by

+ . (16)

Now Si, ...~,= Si, ...„,when Z = Bq(E) so that the

physical solution of Eq. (12) is also a solution of
the modified equation obtained by substituting

hi. —hg,- ...„for 8—8p ...„in Eq. (12).
For the special case of a finite matrix (of

order iV) the right-hand members of Eqs. (11),
(12), and (15) are finite rational functions of the
energy and the matrix elements. In this case the
analytical continuation mentioned in the sen-
tence following Eq. (8) has a precise meaning.
First suppose that all non-d. iagonal matrix ele-
ments are multiplied by a convergence factor ).
For a su%ciently small upper bound on the
absolute value of X, Eq. (3) is unobjectionable
and can be solved rigorously by the iteration
process; furthermore, all the infinite sums in-
volved in Eqs. (6) and (8) are convergent.
Adding the fact that Eq. (12) is an algebraic
equation of degree N in E, the conclusion follows
that it is simply a convenient way of writing the
characteristic equation

(17)

Since Eqs. (12) and (17) are both algebraic
equations of degree X in E, the irrelevant
restriction on ) may be dropped. The special
cases %=2 and 3 provide instructive, though
trivial, illustrations of the above remarks.


