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Calculations were also made for the deuteron
in a closely parallel form to serve as a control.
The analogous 5 state calculation gives 76
percent for the analytic joining and 92 percent
for the new type of joining. With tensor forces,
the results are 66 percent and 77 percent for

analytic and mere continuity joining, respec-
tively.
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The radial distribution of singly scattered particles in air showers is discussed. The probability
(P(x')dx' that a singly scattered particle is found in the annular ring between x' and x'+dx' is
6'(x')dx'=0. 16(dx'/x"), where x' is the "Moliere unit. " In the deduction of this formula
Belenky's expression for the mean square length of a shower, which remains valid below the
critical energy, is evaluated. The main process contributing to particles at large distances
from the shower axis involves the radiation, and subsequent rematerialization, of electrons
below the critical energy.

I. INTRODUCTION
' ~XTENSIVE cosmic-ray showers are initiated

~ at the top of the atmosphere by particles
with energies up to 10" ev. In traversing the
atmosphere the electrons and positrons in the
shower are scattered by the electrostatic fields of
the air 'nuclei, and over most of the shower's
length can be deAected to distances of the order
of hundreds of meters from the shower axis. The
particles at the largest distances from the axis
will be predominantly those which have been
scattered once through a large angle (single
scattering). For experiments such as those of
Skobeltzyn et al. ' it is important to know the
radial distribution of these particles. Moliere'
has calculated this, but the details of the calcu-
lation are not given. Moreover, he uses the Arley
approximation, neglecting radiation processes
below the critical energy, which gives too few
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low energy electrons, as Moliere himself recog-
nizes. In this paper we have independently
calculated the distribution function for singly
scattered electrons without using the Arley ap-
proximation. It turns out that the most im-
portant process contributing to the electrons at
large distances is radiation and rematerialization
of electrons below the critical energy. Surprisingly
enough, however, our result does not di8'er

greatly from Moliere's. It therefore seems clear
that Skobeltzyn's' assumption that the radial
distribution falls off exponentially at large dis-
tances is not correct.

II. DERIVATION OF THE SINGLE-
SCATTERING FORMULA

In this section we will derive a formula for the
distribution of particles which have been once
scattered through a suf6ciently large angle that
the probability of a second scattering through an
angle of the same order is small. Hence these
particles will retain their original direction except
for small deviations resulting from multiple
scattering. In this derivation several approxi-
mations will be made, without a discussion of
their validity. The justification for these approxi-
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mations can only be made after evaluation of the
formula, which is done in Sections III and IV.
The validity of the approximations is then taken
up in Section V.

The probability that an electron of energy E
is scattered into the solid angle 2~sin8d8 in
travelling a distance dt' (radiation units) is o

1 E,' sin8d8
do=- dt',

8 In(181Z~) E' (1—cos8)'

where E,=21 Mev is the 'characteristic scatter-
ing energy, ' and Z is the average atomic number
of the scatterer, air in our case. We will assume
that although 8 is large it is still small enough
that the approximations sin8=8, 1 —cos8=8'/2
are reasonably good. Using them (1) becomes:

where we have used (d8/8') =(dx/x')t'= (dx/x')
(T—t')'. This integral would be very difFicult to
evaluate; in fact, it seems impossible to do. it
analytically. We are saved by one fact; the
radial distribution is almost independent of T.
The reason is that the distribution depends
mainly on the energy distribution of electrons a
few radiation lengths back in the shower, and
this energy distribution is itself an insensitive
function of T. The electrons at more than a few
radiation lengths back have no effect on the
radial distribution at T, since if they have high
enough energy to produce particles at T they
will not be scattered, and if they are low enough
in energy to be scattered appreciably, mill pro-
duce no particles at T.

From these arguments we may expect that the
radial distribution, averaged over the shower length,
will be a good approximation to the radial dis-
tribution at any point in the shower except near
the very beginning and end. This average radial
distribution is a much easier quantity to find
than the distribution defined by (4). Thus con-
sider the expression for the total number of
particles at x integrated over the shower length.
This number is:

(2)

Consider now a shower initiated by a particle of
energy E0. Let the number of particles of energy
E at depth t' be x(Eo, E, t').

The number of particles of energy E scattered
in the layer dt' is m(Ep, E, t')do In traver. sing an
additional thickness t of material these particles
suffer a lateral displacement (Fig. 1)

x=t sin8=t8

and produce a shower of their own with a total
number of particles II(E, 0, t). The number of
particles in x, dx at the thickness T is then given
by the integral

E,' dx p~o dE

21n(181Z ~) x' "o E'

X " or(Ep, E, t')dt'
~I t'II(E, 0, t)dt (4').

0 0

The probability that a particle is found at x is
then this number divided by the total number of
particles, integrated over t, which is:

II(Eo, 0, t)dt =Ep/P,
0

where P is the "critical energy. " If we use two
quantities familiar in shower theory: the "track
length, "

E,P dx
t

~odE

2 In(181Z &) x' "o E'

X t or(Eo, E, t')II(E, 0, T—t')(T —t')'dt', (4)

s (Ep, E) =
~ ir(Zp, E, t)dt,
0

and the "mean square length" of a shower

pg)

11(E,0, t)todt

(6)

B. Rossi aIId K. Greisen, Rev. Mod. Phys. 13, 262
(j,941).
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If we use the 'Moliere unit' of length x'=E~/P
and for convenience in later work introduce the
dimensionless variables e=2.4E/P, co=2.4Ep/P
into the integral we get

dx' p'
6'(x')dx' =

z (ep, e)
(t'(e))A, de,

x ' 9.06Ep "p

where 9.06=2 ln(181 7.22 &). We will now an-
ticipate a future result by de&ning a new function
G(e) by the equation

the probability distribution is

dh E,'
0 (x)dx =—.

x' Ep. 2 In(181Z~)

p&o z (Ep E)
X II dE (t'(E)) „.

0 E

] ) p (I ~

~ p(e)= —
I

1+-
)

q'& el

X P (e, z)f (e, s')dsds', (iia)
J,,

pf
re(e) = P,(e, s)ds,

g~2 ~0

2( 111 (' ~
t

r4(e)= —,
~

1+- I- i~ ~~ |f.(e, z)

(11b)

X Lfr(s, s') P„(z, s'—)]dzdz', (11c)

hence we will work with this. The expressions for
the r's are:

zo(ep, e) eo=—G(e) =

(P(x') is then:

2.4~0
G(e) .

pp

where g=2.4 and

Big, (z, z')
X dzdz', (11d)

dx
(P(x')dx' =

x'3

(44 &0

.265 j (t'(e))A, G(e)de (9).
0

P,((, s) = rteo ) dx
X2

It is clear that the normalization of (P(x') is such
that the number of particles in the annular ring
between x' and x'+ dx' at any depth in the shower
is the total number of particles at that depth
times the probability (P(x') given by (9).

The dependence of the distribution (9) on x'

is the same as that given by Moliere. To find
the numerical coefficient one must have ex-
pressions for s and (t'(e))A„which remain ~alid
for energies considerably below the critical
energy, which is the region where most of the
scattering occurs. Such expressions have been
given by Belenky' in the form of integrals.
These are evaluated in the next section.

IIL EVALUATION OF (~(&))Av

Belenky's expression for (t'(e))A. is a sum of five
integrals

(t (e))Ao = rA(e)+ re(e)+ ra(e)+ r4(e)+re(e). (10)

The integral rA+rp which we shall call rAp, is
simpler than either ~~ or 7.3 taken separately,

' S. Belenky, J. Phys. U.S.S.R. 8, 305 (1944),

1+
I

IAA

~)

2

ger
(14b)

2 ( iii
r4 ———

)
1+-

~
I4, -

q'&
(14c)

A(k, s) =A(S s)—t.i-(exp-k+s)]. (»)
)2

r is the photon absorption coeScient per radia-
tion unit, i.e. , the sum of the absorption coeff-
icient for pair-production and the Compton
effect. For high energies p =constant=7/9. We
will be interested mainly in the energy range
107 to 10' ev, where 0. varies somewhat and is in
fact less than 7/9. We shall assume for the
present that it is constant, however, and correct
for the variation later.

Now we define four new quantities, Ii3, I2, I4
and Ip as the integrals which appear in Eqs. (11).
Thus,
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Small e

TWBLE I.

Large e

3

0

Ig(e)
I1g(e)
I4(e)
Ig(e)

e/2 —e'/12
ell/12—e'/36
e~/12

1ne-0.425
$(1n'e —0.85 Inc —0.43)
-g(1ne-1.t35)
1ne —1.425

IA ——2P+ Q.

X + + dx, (19c)
2 ~2 3!3

(19d)

2t 1i
rA= —

I
1+- ~IA.

g'E ~)
(14d)

1

lny =0.5772 =)f (1 e '/t)—dt—

The integrals can be evaluated in terms of
elementary functions, exponential integrals, and
rapidly converging series of incomplete F-func-
tions.

The expressions for the four integrals I/3 Ig,
I4, I5 can be put simply in terms of three new
functions I', Q, and R. Let

2.4
(t'(g))A„= )I II(E, 0, t)t'dt. (20)

There are two independent partial checks on the
correctness of these expressions. For e large
enough so that e ' and 1/e are negligible, our
expressions agree with those of Belenky. 4 For
small e they agree with results obtained by first
expanding the integrand in the original integrals
and then integrating. The asymptotic forms for
small and large e are given in Table I.

As we shall see later, the main contribution to
our formula for single scattering will come from
small ~, and hence from I2 which varies as e.

The other integrals I~3, I4 and I~ vary as e', this
is easy to understand. Consider

P(~) = (1/~) —(e- /~) —1,

Q(e) =lne+Iny+)f e */xdx,

s-'/tdt, (15)
1

(17)

For small e, i.e. , energies below the critical
energy, where the range R is proportional to e,

R=ke say, if we assume that the particle loses
energy mainly by collision loss, we will have one
particle for t &k~ and no particles for t & kt.. Thus

n(~, 0, t) =1 «k~,
rr(~, 0, t) =0 t&kA.

j.—inc —— ' In'xe *dx. (18)
2 0

Then (20) becomes

2.4
(t'(~)).„= tAdt (21)

Then,

IA(&) =&(&)+Q(&)
e

I,, = lny[P+Q]+It. +2 J
e—'

X' X4

+ + ~ ~ ~

2!2 4!4 6!6

x x
+ il e ~ —— + +. dx

2! 3!2 4.'3

(19a) I~A, IA, IA are thus the contribution to (t'(e))A, of
this collision process. It is clear that I2 must corre-
spond to a diAerent kind of process. I~ repre-
sents the contribution to (t'(e))A„of a particle
which produces a photon very soon after its
single scattering, which photon travels a long
distance and then materializes into a slow elec-
tron. This can be seen from Belenky's derivation
of (t'(e))A„. His result is in the form of integrals
over products of track lengths. IA(A) comes from
the track length y„ i.e. , the track length of
photons, in a shower initiated by a photon, and
in particular from that part of the expression
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which corresponds to the original photon con-
tinuing for a considerable distance and then
materializing. The importance of this process
can be seen from the fact that the photon mean
free path remains roughly constant (between 1.2
and 1.6 radiation lengths) down to 10' ev,
whereas the electron mean free path decreases
very rapidly for electrons below the critical
energy.

We have calculated numerically (P(e))A„ for
the region in which the asymptotic forms do not
hold. The results are listed in Table II. The
dominant integral v2 is listed separately.

e

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

{&'(s))A.

0.141
0.286
0.435
0.586
0.738
0.890
1.044
1.197
1.350
1.503

distribution:

0.133
0.259
0.377
0.487
0.592
0.690
0.784
0.873
0.957
1.037

2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.0

10.0

1ABLE II.

{&'(e))Av

1.503
2.241
2.939
3.589
4.197
4.764
5.295
5.795
6.627

1.037
1.388
1.674
1.913
2.119
2.299
2.459
2.602
2.732

JQ

e0

(t'(e) )A,G(e)d ~.

IV. NUMERICAL INTEGRATION

We must now calculate

(22)

5'(x') dx' =0.162dx'/x". (26)

This is to be compared with Moliere's distribu-
tion, in which the numerical coefticient is =0.1

instead of 0.162.

V. VALIDITY OF THE APPROXIMATIONS

Belenky has given as the expression for s

60 &I/&(cg, 0)
s, (eo, e) = —— (23)

From Eq. (8) then

(24)

where P~ is given by (12).After some transforma-
tion we get

p
00 g

—g g
—g

= 1 —(ce'+e')
~

dx —(~e'+e') jl
—dx.

BE. x eQ X

Since ~Q is at least 10"ev for air showers and the
main contribution to the integral (22) comes
from around 10' ev, we can neglect the last term
and get:

e
—g

G(e) = —— 1 —e'(I+~)
~

dx . (25)
vY

Using our tabulated values for (t'(e))A, the integral
was done numerically. It is important to know
what ranges of e contribute most; Table I I I
gives this information. For ~ &2 a correction was
made for the fact that o (e), the photon absorption
coe%cient, varies somewhat.

If we use this result in (9) we get as the final

We turn now to a discussion of the assumptions
and approximations on which this result is based.
The first point to consider —it is at the base of
the whole calculation —is whether the large angle
scattering we have assumed is really possible.
Williams has shown that the finite size of the
nucleus limits the scattering probability so that
for angles greater than a certain 8„, the scatter-
ing probability goes rapidly to zero. For air
(Z=7.22), 8, is given by'

8, = (66/E(Mev)).

I'or &=2, 8=72 and 8,„=52'. From Table, Ill
we see that roughly 2/3 of the contribution to
the integral (22) comes from e(2, i.e. , from
energies which admit angles greater than 52'. It
seems plausible then, especially in view of the
fact that the angle defined by (27) is not a
perfectly sharp cut-oE, that the assumption of
large angle single scattering is justified.

We now consider the angular approximations
in the scattering formula (1). We have used
(4d8/8') as an approximation to the correct ex-
pression Lsin8d8/(1 —cos8)'j. In terms of x/t=I
= sin8 we have replaced the exact expression

d (cos8) I d I

(1 —cos8)' $1 —(1 —I')&]'(1 —I')&

by the approximate expression (4f'dl'/f') The.
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TABLE III.

f {t (s}}«G(a}d'

be greater than x. This means that the last in-
tegral in (4) should not be

0
0.2
0.4
1
2

10

0.2
0.4
1

2
10

0.028
0.121
0.154
0.105
0.167
0.026

0.601

(28)

Introducing (1 f')—&=cos8= rt we get

t'1+q) '-

2 )
(29)

ratio r of the exact expression to the approximate
one ls:

but

j| t2II(E, 0, t)dt

(3o)

(31)

The error involved in this replacement is hard to
estimate, but obviously is an increasing function
of x. It is true however that most of the con-
tribution to (31) comes from large t, hence the
approximation represented by (30) is probably
not intolerable. We can see that large t con-
tribute most by considering the expressions for
(t (e))«and (t(e))«'.

For small e Beienky has found (t(e))« =0.94I&(e)
where I& is given by (15). Thus

r thus turns out to be

}t'arithmetic mean of }}and 1y '-

! !
&geometric mean of q and I)

We get from Table I and Eqs. (11) that

XVe might expect from this that r remains close
to 1 over a large region, and this turns out to be
the case. Thus for 8 =53', r = 1.07, 8 =66', r = 1.22
and for 0= 78', r =1.80. Beyond 80' the approxi-
mation rapidly becomes worse, and blows up
completely at 90'. For large angles we see that
r &1, i.e. , that our approximation gives too
small a result. This error is partially com-
pensated by another approximation we have
made. It is clear from Fig. 1 that t must always

We see that for e as large as 2, which includes
the most important energy range for our integral
(22) that (t'(e))« is considerably larger than
(t(e))«2, confirming that most of the contribution
to the integral comes from large t.
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