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The value chosen for E was 20. These procedures were
checked by applying them to series (A2) and (A3) which
could be summed analytically. In addition, some internal
checks were provided by the recurrence relations

pi{k+1)—1/li{k}= 1/k,
y, (k+1)—P,{k)= —1/km,

which lead to the relations:
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FIG. 5. Comparison of theory and experiment at electron
energy of 2 Mev. The solid line is given by the theory.
The triangles give the experimental points as obtained by
Van de GraaE, Buechner et al.

Legendre polynomials but were not found as useful ex-
cept as used in {A4) and (A5). Another check was also
provided by the asymptotic expansion for &2~1/k+1/2k'
+1/6k'+ ~ ~ . It is estimated that the error in the com-
putation of R is 0.1 percent.
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Variational methods, similar to the Rayleigh-Ritz method for bound state calculations, are
developed for the phase shifts and elements of the scattering matrix in nuclear co11isions.
Numerical applications to neutron-proton and neutron-deuteron scattering involving trial
functions with undetermined coeScients are described. Another variational principle, for
scattering amplitudes, is shown to lead to the Born approximations and a formula recently
derived by Schminger. It may also be used in conjunction with the method of undetermined
coefEicients.

I. INTRODUCTION

A 4RVM' deal of information about the na-
ture of nuclear forces has been derived from

a comparison of experimental and theoretica)
studies of simple nuclear systems.

The bound states of nuclei comprising up to
four particles have been theoretically treated
with considerable accuracy' and have yielded

* This paper is based on Part I of a thesis submitted in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy, at Harvard University, June 1948.**Parker Fellow, 1947-8.

' See, for example, W. Rarita and R. D. Present, Phys.
Rev. 51, 788 {1937);H. Margenau and D. T. Warren,
Phys. Rev. 52, 790 {1937).

very important results. For nuclear collisions in-

volving more than two particles, Breit and Wig-
ner, ' Wheeler, ' Heisenberg, 4 and Wigner' have
developed general, phenomenologicaj theories.
However, no very satisfactory scheme for treat-
ing such collisions in detail has so far been given.
All calculations up to the present' are based on
an approximation of the wave function by an

' G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936}.' J. A. Wheeler, Phys. Rev. 52, 1107 (1937).
4 W. Heisenberg, Zeits. f. Physik 120, 513 (1942}.' E. P. Wigner, Phys. Rev. 70, 15 and 606 (1946).' For example, L. Motz and J. Schwinger, Phys. Rev. 58,

26 (1940); R. A. Buckingham and H. S. W. Massey, Proc.
Roy. Soc. 179, 123 {1941).



W. KOHN

expression of' the type

where y; is the product of the internal wave func-
tions of two colliding or separating nuclei' and
I', is the wave function of relative motion. The
sum is taken over all pairs of nuclei whose forma-
tion is energetically possible and the signs ad-
justed in accordance with the exclusion principle.
Wave functions of this so-called group structure
type were first introduced by Wheeler. ' While
the function (1.1) has the correct symmetry and
asymptotic behavior, one cannot expect it to
describe too well the correct wave function in
that part of the configuration space where the
colliding nuclei interact, and it is just this region
which determines the observable cross section.

To determine the best wave function of the
group structure type, Wheeler employed a varia-
tional principle. Variational methods have also
been applied by Hulthhn and Schwinger to two-
particle collisions.

The purpose of this paper is to propose varia-
tional methods, related to Hulthbn's approach,
which lead to stationary expressions for the ob-
servable scattering cross sections. In particular
our methods lend themselves to a systematic
treatment of composite collisions, which is not
restricted to wave functions with group struc-
ture. The mathematical operations bear a con-
siderable analogy to those of the Rayleigh-Ritz
method for determining the binding energies of
nuclei. The physical clue for this fact may be seen
in the connection between binding energies and
phase shifts which was pointed out by Heisen-
berg. 4 However, instead of attacking collision
problems from this point of view, it will be
simpler to investigate them independently of
related bound states.

IL ONE-DIMENSIONAL PROBLEMS

In considering the collision of two particles,
interacting by a short-range potential, one is
led to the equation

I d'/dx'+ «' —V(x) }u(x) =0, (2.1)
~ No systematic theory for nuclear collisions in which

more than two end products are possible has yet been
developed.

~L. Hulthdn, Extrait, Dixieme Congas des Mathbrna-
ticiens Scandinaves, Copenhague, 1946.

9 Unpublished lectures. I947,

for the partial wave of angular momentum 0;
here ~ is the wave number of relative motion and
V(x) the interaction potential. The wave func-
tion u(x) ha, s the following properties

u(0) =0, (2.2)

L, =u'(a)/u(a). (2.4)

Then it is easi1y verified that Q satisfies the
equation

+L,u'(a) =0. (2.5)

Furthermore, for a given value of I., ~' as calcu-
lated from (2.5) is stationary, if the trial func-
tions, u, , satisfy the condition (2.2). This fact is
the basis of binding energy calculations. One can
equally well regard (2.5) as providing a station-
ary expression for I., given the value of x'. This
is the more natural approach in collision prob-
lems, in which the energy of the system is pre-
scribed. If x=a is beyond the range of inter-
action, L= «cot(«a+s), so that tan» and hence
the scattering cross section, 0 =4x/ {«'(1+cot's) }
can be calculated, once I. is known.

To find an approximation for I. from the sta-
tionary property of (2.5) we write our trial func-
tion in the form

Qg =CyQy+CgQ2+ ' ' C)1Q)s) (2.6)

where u;(0) =0 and the unknown coefficients c;
are to be determined. Substituting (2.6) jn (2.5),
one is led to an equation of the form

Q=—P A,;(«')c;c;+L(P cu;(a))'=0, (2.7)

where we have indicated the dependence of the
integrals A;y on ~'. We may, of course, assume
that A;y=A;;.

The stationary property of (2.7) with respect
to variations of the c; now leads to the set gf

x~~: u(x) —+A sin«x+B cos«x
=A(sin«x+tan)) cos«x), (2.3)

where A and 8 are some constants and the phase
shift s is defined by tang =B/A.

Let the logarithmic derivative of u(x) at
x=a be
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equations,

=2{+Agc;+t, u;(a) Q u, (a)c;}=0. (2.8)
j'-I j~l

They are compatible only if the determinant of
the coe%cients of the c; vanishes, i.e., if

5=—iA;;+I.u, (a) u;(a) i
=0. (2.9)

As the matrix ~}u,(u) u;(a) ~~
has rank 1, this is a

linear equation for L, and hence determines I.
uniquely. " This is in contrast to the usual
secular determinants, whose degree in the un-

known energy is as high as the number of trial
functions. tA"e shall refer to determinants of the
character of 6 as collision determinants.

Another closely related variational principle
can be derived as follows. Consider the expression

is correct to the 6rst order and hence serves as a
variational principle for tang. As before, on using
trial functions of the form (2.6) one is led to a
collision determinant, 6, which is linear in tang,
so that the latter is uniquely determined by the
compatibility equation, 6=0.

V(x) = —4.01435, x &~ 1
=0, x'& 1

(2.15)

(x measured in units of 2.80)&10 "cm), which
gives the correct binding energy for the deuteron.
The wave equation, in this case, is simply

Numerical IOustrations

Using Eqs. (2.5) and (2.14), we have calcu-
lated scattering of neutrons by protons at zero
energy. We have assumed the interaction

d'u/dx'+ V(x)u =0, (2.16)

I= u {d'/dx'+ «' —V(x) }udx, (2.10)

eI=
~I (u d'/dx' 8u —8u d'/dx' u)dx

= (u d/dx bu —8u d/dx u), „=—«AbB, (2.12)

where bB =Bf,—B. Hence,

b(I+«AB) =0" (2.13)

Since for the correct I, I=O, and 8=A tang,
the equation

I+«ABg = «A' tanti, (2.14)

"This can also be made apparent by the transformation
n

d1= Z I;{c}c;,d; =c;, (i p 1). Then Q has the form
I

which vanishes if u is the correct solution of
(2.1). Now let us consider its first variation, if
the trial functions, N~

——u+bg satisfy the con-
ditions

u, (0) =0,
x-+ ~: u~-+A sin«x+B& cos«x. (2.11)

Then, in virtue of the differential Eq. (2.1),

and can of course be solved exactly. For x&1,
u has the form, u=C(x+X), where X is the
desired lim(tan|i/«), in terms of which the scat-

tering cross section is 4xX'. As trial functions
we have used

III. THE SCATTEMNG AMPLITUDE

It is desirable to have methods for calculating
the scattering amplitudes of the entire plane
wave without having to determine, separately,

TABLE I. Approximations to X= lim

—2.080; I. . . . .by Eq. (2.5); II. . . .
tan9/~i +exact, =
.by Eq. (2.14).

ug ——Q Csx", x& a(n= 1, 2, 3). (2.17)
1

Since (2.17) does not have the correct asymptotic
form, required by (2.11), we have assumed that
at x =a it passes smoothly into a function of the
form u~ ——Cx+D.

Clearly, for a given n, a function of the type
(2.17) can approximate the correct wave function
better over a short than over a long interval, so
that the best results are obtained with a= 1 (see
Table I).

Q =Z 8;;d;d;+I.d P, and the compatibility equation,

~

B~.;+I-Sich&i
~
=0, is evidently linear in L.

'1 L. Hulthdn {see reference 8) has used an equivalent
relation to determine tang, by restricting his trial functions
by the condition I=O. This js a little complicated and leads
to a quadratic equation for tang, only one of a@hose solu-
tions is good.

c&x+csxs

I II I II
1 —3.957 +1.338 —2.112 -2.126
2 +4.043 +1.338 —2.858 —4.039
3 +2.416 +1.338 —6.593 -51.606
4 +2.011 +1.338 968.870 +7.634

—2.083—2.201—2.385-2.936

—2.084-2.206-2.520-3.315

C aX'+C tX~+CaÃ3
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Dirac" has shown that the factor multiplying
5f&(sc&, sr) has a b-function like character for large
values of r, so that the integration simply gives

4—sr&f&(sri, —xs). Hence, corresponding to (2.14)
we find

the phase shifts of each partial wave. This is

usually accomplished by the use of successive
Born approximations, i.e. , by an iteration proced-
ure. Another iteration method, giving more accu-
rate results, has been developed by Schwinger. '
We shall now derive a variational principle which
serves as common basis of (a) Born approxima-
tions; (b) Schwinger's approximation; (c) The
method of linear trial functions.

Let the wave equation of the problem be

I(Li, —mrs)+4sf, , t(vt, —xs)
=4s.f(ni, —its), (3.7)

as a stationary expression for f(xi, —xt) relative
to independent variations of fr and Ps, subject
to the conditions (3.5).

More generally, if we admit trial functions of
the asymptotic form

l'7'+ s' —V(r) J f(r) = 0, (3.1)

where r is the usual relative position vector. Ke
denote by Pt, if s the two solutions of (3.1) which
correspond to plane waves incident along the vec-
tols set alld scs, respectively ( I

~i
I

=
I ~sl = s).

They have the asymptotic form

, Iif,.„—+A, exp(ssr; r)+f, ,( c,t, tr) —, (3.8)

P;=exp(sir; r)+f(tr;, r)exp(isr)/r,
(3.7) is replaced by the homogeneous equation

(3.2)
I(sc.i, xs)+—4trA Pfg i(try, .,

—Ls)

I(L„—sts) = Ps l W'+ s' —V(r) }fidr. (3.3)

For the correct fi, I(xt, —xs) =0. its first varia-
tion is

SI(~,, —~,) = I (P,(a/a~)sp,

where r =
I
r

I
and f(tt;, v) is the scattering ampli-

tude in the direction x of a plane wave incident
a1ong xg.

Next we define the bilinear form I(xt, —xs) as

=4s-A 'f(x, —s:s), (3.9)

where I(xt, —its) is defined as before, Eq. (3.3).

Born Approximations

The simplest admissible trial functions are

P, =exp(ix; r) which, by (3.7), directly yield the
first Born approximation,

exp(isrs r) V(r) exp(ssrt. r)

=4srf(xi, —Ls). (3.10)

The second Born approximation is obtained by
oui(8/BN)f—;)dS, (3.4) using either

where S is a large sphere and 8/Bn denotes diEer-
entiation along the outward normal. This follows
immediately from an integration by parts.

If we admit only trial functions of the correct
asymptotic form (3.2), but possibly false scatter-
ing amplitudes, f, , ;(tr;, ir), then, asymptotically,

;~Sf,(x,, r)ex p(i rs) r/(3.5).
Clearly only the plane wave part of Ps contributes
to the surface integral in (3.4), so that

8I(xt, —xs) = ~ exp(sirs r)—
~sl Bn r

P, =exp(sttt r);

f, =exp(its r)
(3.11)—)"(exp(s& lr —r'I)/4s'lr —r'I)

X V(r') exp(ists r')dr',

ft ——exp(strt r)

(exp(islr —r'I))/(4s Ir —r'I) (3.11')

X V(r') exp(sirt r')dr';

Ps exp(itcs ——r)."
"P.A. M. Dirac, The Principles of Quantum Mechanics

exp(isr) 8 (Clarendon Press, Oxford, 1947), third edition, p. 191.—exp(les i') bfi(xi, tr)dS. (3.6) "The symmetry with respect to the functional forms of
8% P& and $2 is I general property of this method.
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Linear Trial FunctionsSchwinger's Approximation

The correct f& satisfies the integral equation For simplicity, we use the same functional
form for P~ and f2 and write

P&(r) =exp(ix~ r)

(exp(i~ I
r —r'

I
)/4~ I

r r'
I )

X V(r')f~(r')dr'.

P, =c~ exp(iv. ; r)+P c~u;, g, i=1, 2, (3.18)

(3.12)
where u&, & and u2. & difIer only by a rotation of
the coordinates and have the asymptotic formUsing the well-known equation

Higher Born approximations are obtained in a This is Schwinger s variational principle for the
similar way. determination of f(x~, —x~).

f(ac&, —x2) = —1/4~)I exp(ix2 r')

X V(r') P&(r') dr', (3.13)

we can rewrite (3.12) in the homogeneous form

i(r) = — I G(r, r') V(r') i(r')dr, (3.14)

where

G(r, r ) = 1/(4s f(v„-x.,))

Then
u;, ,~f&(x;, x) (exp(i~r))/(r). (3.19)

f,&'&(x„—x,) = 1/cg Q c(f((xg, —x2), (3.20)
l=2

I(lcl K2)+4%el Q ctfl(xl K2)
l=2

=4~c,'f(x„—x2). (3.21)

Equation (3.14) has the property that regardless
of what function is used for Pq in the right-hand
side, the left-hand side, in virtue of (3.15), is a
wave function whose scattering amplitude from
&1 'to —X2 1S f(L'lp tC2).

In (3.8) we now use some trial function $2 and
a function P~ of the form

IV. COMPOSITE COLLISIONS: THEORY'4

We consider processes of the following kind:
A number of nucleons, divided into alternative
pairs, collide within a region of interaction
and then re-emerge into the asymptotic region,
grouped again into pairs. "

Let y; be the normalized product of the in-

ternal wave functions of the nuclei constituting
the pair i, and let F; be the wave function of
relative motion when they are apart. Then the
function

f~ ———
~

G(r, r') V(r') s, (r')dr'. (3.16)

Since now f& ~(L~, —r2) = f~(x~, —ac2), (3.9) be-
comes simply I(xq, —x2) =0, which when written
out in full is

As in the one-dimensional case, f(x~, —x2) is

+exp(iK~r —r'~)/(4s ~r —r'~) (3 15) uniquely determined by the vanishing of the
collision determinant corresponding to (3.21).

fO f f
0=~ $2(r) V(r)q~(r)dr+ ~ P&(r) V(r)

X (exp(i& I
r —r'

I ))/(4s Ir —r'
I )

4;=q;F;, (4.1)

will be called a mode of collision. On a hyper-
surface, S, separating the region of interaction
from the external region, the wave function, 0,
of the entire system has the form

X V(r') s ~(r') drdr'+
4s.f(xg, —x,) 4=+4,. (4 2)

X P, (r) V(r) exp(is~ r)dr

f
X s~(r) V(r) exp(ix2 r)dr. (3.17)

'4 Many of the mathematical operations of this section
are similar to those employed and explained by E. P.
Wigner (see reference 5).

'~ It is assumed that disintegrations into three or more
particles cannot occur and that at least one constituent of
each pair is electrically neutral.
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Let us note that, even barring accidental de-
generacies, the proper functions of the Hamil-
tonian, H, are highly degenerate for two reasons:

{a) The spatial orientation of + is arbitrary.
(b) The amplitudes of the incoming waves of the difer-

ent modes are arbitrary.

A degeneracy of the type (a) was made use of in
Section III to deduce a variational principle for
the scattering amplitude f()(), ~2) from one asym-
ptotic state into another. In precisely the same
way we shall in this section develop a variational
principle for the scattering amplitude, into the
mode C; of nucleons colliding in the mode C;. To
avoid complications we remove the degeneracy
(a) by considering only such functions 4' which
belong to the same proper values of the total
angular momentum, J, and its s component, J,.
With this restriction the modes satisfy the ortho-
gonality relations

c;= (2E;/M;) & = (h)(;/M, )&, where E; is the energy
of relative motion and M, the reduced mass of
the two nuclei. The sum in (4.4) is taken over
all possible pairs of nuclei.

Before developing variational principles for
the elements of the scattering matrix, let us note
that in the case of a continuum of degenerate
states the symbol 8 for the first variation must
be carefully defined. Thus, let +& be a tria1 func-
tion of the form (4.4), but with possibly incorrect
a;, p;, and (o, ; then b+=4'( —4', where + is some

neighboring correct function. For example, we

may choose 4 to agree with 0'& in the values of

(a) the amplitudes, a;, of the incoming waves;
{b) the amplitudes, P;, of the outgoing waves.

Consider now the integral

(4.5)

(4.3)

For if the modes 4; and C; describe different
groupings of nucleons, they exist on different
portions of S and hence (4.3) is satisfied; while
if they describe the same groupings, the internal
wave functions of the nuclei must be orthogonal
so that (4.3) follows in this case also.

The Elements of the Scattering Matrix

Let +&o and +(2) be two wave functions of the
relative coordinates of the nucleons, belonging
to the same proper values of II, J, and J, but
differing in the amplitudes of their modes. We
write their asymptotic form on the surface S as

+(» —g @,.(»

((S)),/ )(cfa, »e&xp( i)(;r,)/r;—

where V is the region enclosed by S, and H and
E are the total Hamiltonian and energy, after
the motion of the center of gravity has been
separated out. We now define M (" according to
(b) and b%'&2) according to (a), so that P;, (")=P;("
and e;, &&') =0.;&'). 5I&2 is the corresponding varia-
tion of I~~. It can be evaluated in terms of the cx;

and p; by transforming the volume integral aris-
ing from (4.5) to an integral over the hyper-
surface S by Green's theorem (cp. (2.12)) and

by making use of the orthogonality relations
(4.3). (For details see reference 5.) In this way
one obtains

bI)2= iI) Q p—;&'&* bp, &". (4.6)

It should be noted that, to the first order, errors
of the internal wave functions of the colliding
nuclei do not appear. For the correct +&'~, I~2 =0,
and hence the equation

—p;&"'exp(i)(,r,)/r;), (4.4)

where we have decomposed the function of rela-
tive motion into its a,ngular and radial parts. r; is
the separation of the centers of gravity of the
nuclei of the mode 4;; a; is the wave number and

5; the normalized angular wave function of rela-
tive motion; c; is a constant chosen so that ( a,'"'

)
'

represents the probability flux resulting from the
mode 4; into the interior of S. It has the value

I)g+ik Q p &'&* p, &'& =ih Q p;&'&* p &'& (4.7)

p, (» =g S, a.(» (4.8)

js correct to the first order.
We now introduce the scattering matrix, S;;,

belonging to the energy and total angular mo-

mentum under consideration, which is defined

by the equations
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and embodies all observable scattering proper-
ties. Then (4.7) may be written as

Igg+ik Q P;&n*P;, g&N =ik Q P;&'&~Spay&", (4.9)

where all quantities, except the elements S;,, are
determined by the trial functions. This is a
homogeneous variational principle for the matrix
elements S;;, allowing directly the application of
the method of linear trial functions. For example,
to find the element $~6 one would choose trial
functions with P,&" =c&')8

&; and a.&" =c&"b , in.
which case the right-hand side of (4.9) reduces
to ikc&'&~c&'&S&;6, the stationary property of S~6

relative to variations of the undetermined coef6-
cients uniquely determines its value with an
error of the second order in N'». The wave
functions can then be found in the usual way
correct to the 6rst order.

the ji; and e~, are the spherical Bessel and Neu-
mann functions of the argument ~g; and of the
order l,;, where l; is the relative angular momen-
tum of the nuclei in the mode c.

We assume now that our trial functions have
the correct asymptotic form, (4.12), although
possibly the internal functions y; and the coefFi-

cients A; and 8; may have 6rst-order errors.
Thus, asymptotically,

+g by;S, (A,j&,+B,ni, ) (4. ..13)

In evaluating 8I, we use the fact that

(II E)@=0—,
which gives

(4.14)

'The props phgses Of the Scatty' Ma~ where T is the kinetic energy operator. This may
be converted to a surface integral in which the

If the system of nucleons can grouP itself into asymptotic forms (4.12) and (4.13) can be used
n modes, the matrix S;;has rank e, and n ProPer to give, after some straightforward calculation,
values, 0. , satisfying the equations

5I= —Q (k')/(2M;~~) {A,bB, B,8A;}—

m= 1, 2, n; (4.10)

(4.11)

where 4 is a proper function of S;; (correspond-
ing to one of the 0 ), with the asymptotic form

4'~Q q;S;(A;j&,+Bn&,);. .(4.12)

the a„&&"& and p,'I ) are the amplitudes of the
proper wave functions. Because of the unitary
property of the matrix S;;, the a have unit mag-
nitude and hence can be written as 0 =exp(2is„),
where the g are referred to as proper phases of
5;;. The corresponding wave functions have,
asymptotically, the form of standing waves.

Schwinger' has suggested the use of proper
phases in collision problems, and has shown that
the total cross section in neutron-proton scatter-
ing with tensor forces is expressible in terms of
these phases.

To 6nd a variational principle for the g, con-
sider the expression

= Q (k')/(2M, a;) {b(A.,B;)
—(B;)/(A;) b(A ') }. (4.15)

Since for a proper function all ratios B~/A; equal
—tang„, it follows that

8{I++(k')/(2M;~;)

X (A;B;+tanr1~, 2) }=0, (4.16)

where tang is considered fixed at its correct
value. As the curly bracket vanishes for a correct
0', the equation

I++ (k')/(2M;~;)A;, gB;, g

= —tang P (k')/(2M, a,)A ' (4.1'i)

provides a stationary expression for tang . The
collision determinant, 6, arising from the method
of 1inear trial functions is of the nth degree in the
unknown tang corresponding to the sum of e
squares multiplying it."The n solutions of the
"Certain modes differ only by interchanges of identical

particles. Hence their amplitudes must agree within a
factor of &1, determined by the Pauli principle. This a1-
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equation 5=0 are variational approximations to
the tangents of the e proper phases, y . The
proper wave functions are then determined as
usual.

To determine the cross sections of some given
physical process (e.g. , only certain modes incom-
ing) one must, in general, take suitable linear
combinations of the proper functions of S;;, in
each of which every mode is both incoming and
outgoing with a certain amplitude. However,
since the proper functions involve first-order
errors even asymptotically (the phase shifts are
determined to the second order, but the relative
amplitudes of the modes only to the first order)
the cross sections so calculated will also have
first-order errors. Exceptions from this rule are
neutron-deuteron and proton-deuteron scatter-
ing, without tensor forces (Section V), where the
relative amplitudes are known exactly from sym-
metry considerations, so that the method of
proper phases gives the physical scattering cross
section correct to the second order.

V. COMPOSITE COLLISIONS:
NUMERICAL APPLICATIONS

The theory developed in the preceding section
has been applied to two simple systems: The
neutron-proton system with the inclusion of ten-
sor forces and the neutron-deuteron system, at
low energies, assuming central forces. The first
calculation is simple and could be checked against
a numerical integration by Schwinger. The sec-
ond calculation demands the use of a great num-
ber of trial functions, because of the three-
dimensional character of the wave function.
Only preliminary results have been obtained in

this case.

TABLE II. '51+'D1 scattering with tensor forces.

X =2.62828,
f(r) = —1, r ~&1

=0, r&i,
g(r) =2.19203f(r); h(r) =4 10000.f(r)

(5.2)

It is simpler to base our variational procedure
directly on Eqs. (5.1) rather than go back to the
three-dimensional Schroedinger equation. Thus
we define

I=
I u[(d2/dr2+ «2)u+) (fu+gw) j

Jo

+wnd2/dr2+a2 b/r2)w+X—(gu+hw) j}dr. (5.3)

If we use trial functions with the asymptotic form

u = r[A s, ji2(«) +Bs. i222(~r) ],
w = r[AD. j(2(Kr)+BD, 1222(Ãr)],

we find the following variational principle for
tang

I 1/~(A s, gB a g+—AD, gBD, g)

=1/x(AB, /+AD, p) tang . (5.5)

We have used the trial functions

Neutron-Proton Scattering with
Tensor Forces

At low energies the scattering is main)y due to
the 2Si+2D2 part of the wave function. Rarita
and Schwinger" have shown that for this partial
wave the Schroedinger equation leads to two
coupled equations,

((d')/(dr') +~2)u+X(fu+ gw) = 0,
((d')/(dr') —6/r'+ 22)w+ X(gu+ hw) =0,

(5.1)

where u(r) and w(r) are the radial functions of
the 5 and D wave, respectively. Following refer-
ence 17 we set

Trial functions

a =c1r +cd~
m ~d1r~

Uncoupled
tany8 tanya

6,9850 —0.3199

Coupled
tangs tangy

+6.986 -0.0003

u„=P c2r',
1

p=1 2, 3

.r ~& 1, (5.6)

u ~cy+csrs $
ur d1rs+d~ j

6.9850 —0.3070 -1.525 -0.0002 w, =P d2r2+', g = 1, 2
1

co'+car'+csr'i
Qf ~d~+dgrt'

9.1398 —0.3070 -1.425 -0.0002

Correct functions 9.2314 —0.3069 -1.435s 0.0000s

lows one to reduce the number of squared unknowns multi-
plying tang in (4.17) and hence the degree of the collision
determinant.

and the expressions (5.4) for r&1. As, ~, Bs,„
A~, g, J3~, g were determined from the conditions
that at r=1, the functions (5.6) pass smoothly
into the free particle wave functions (5.4).

'7 W. Rarita and J.Schwinger, Phys. Rev. 59, 436 (1941).
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As checks on our calculation we have at each
stage computed by the variational method the 5
and D phase shifts when tensor forces are absent
and compared the results with the exact values
which are easily obtained for the uncoupled
states. The results of our calculations are col-
lected in Table II.

It is seen that the last pair of trial functions
gives good agreement with Schwinger's numerical
integration, given in the last row.

Neutron-Deuteron Scattering

We have made an exploratory calculation of
5 scattering in the limit of vanishing neutron
energy. For the interaction between the nucleons
i and j we have assumed a signer potential

V;, = —Vg exp( —(r;,)'/b') (5 7)

where Vo= 72.00 mc', r;; is the distance between
the nucleons, and 5 =2.24X10 "cm. These con-
stants give the correct deuteron binding energy.

Let us now introduce the vectors y~ and r~ from
the proton, 3, to the neutron, 2, and from the
center of mass of 2 and 3 to the neutron, 1,
respectively. (See Fig. 1.) Further, if P|2 denotes
interchange of the neutrons 1 and 2 we define

gg =Py2py aI1d rg =Py2ry.

As trial function we have used

where

q &(p) = (0.0904468) exp( —(0.0637755)p')
~~( ) =«+«r'+«r', «8.4X10-"cm;

I|=pm=a(1)a(2)a(3)
for quartet scattering; (5.9)

xi=&»xI=6 'L~(1)~(2)P(3)
+~(1)P(2)~(3)—2P(1)~(2)~(3)3

for doublet scattering.

The function (5.8) has group structure, for
simplicity, but our methods are not restricted to
this type of trial function (see Section VI). Our
polynomial expression for I'

& has the wrong
asymptotic form. Hence at some distance r=a
it was assumed to pass smoothly into the correct
asymptotic form C+D/r. We found that the
smallest c including the region of interaction was
approximately 8.4)&10 "cm.

In order to eliminate meaningless contribu-
tions to I which come from thy error of the trial

Fif-. 1.

function for the deuteron wave function (see
(5.9)), we have replaced 2 in the expression (4.5)
for I by the expectation value of the deuteron
Hamiltonian in the deuteron trial function. Be-
cause of the stationary nature of the deuteron
binding energy, the change is of the second order
and hence theoretically legitimate.

We have calculated by the formula (4.17) the
quantities X=limit tang/~, where ~ is the wave

~-4
number and g the phase shift of the incident
neutron, for quartet and doublet scattering. If
we denote these by X9 and Xd, respectively, the
total cross section in the limit of zero collision

energy is
o =4s (see'+-', Xg'). (5.10)

The values obtained were X,=5.12X10 '3 cm
and X~=4.20X10 " cm. In the case of Xq it
appears that inclusion of more terms in Ii& may
appreciably alter the result. The cross section
corresponding to our calculated values of X9 and
X& is 2.9 barns. This compares reasonably well

with the recently published experimental value
of 3.3w0. 2 barns"

No great significance is claimed for the result
of this calculation which was carried out pri-
marily to provide a rough test of our method. It
should be extended by using more elaborate trial
functions as well as different types of interaction.

VI. DISCUSSION

The methods which we have described bear a
strong analogy to the Rayleigh-Ritz method for
the determination of the binding energies of
bound nuclei. The chief new features, in collision
problems, are the following.

(a) The trial functions must, asymptotically,
become sums of products, as do the actual wave
functions (see (4.4) or (4.8)).

Rainwater, Havens, Jr. , Dunning, and u, Phys. Rev,
'D, 733 (1948),
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(b) In the determination of elements of the
scattering matrix the integral I is bilinear (see,
for instance, (4.5)), involving two diferent trial
functions, as compared to the quadratic forms
encountered in binding energy calculations. This
is a reRection of the degeneracy of collision func-
tions, corresponding to the arbitrariness of the
amplitudes of the incident waves.

(c) The scattering properties are determined
as solution of a determinantal equation, whose
degree in the unknown is determined by the
problem itself and not by the number of trial
functions, as in bound state problems. For ele-
ments of the scattering matrix this degree is 1;
for the tangents of the proper phase shifts it
equals the number of physically difkrent modes
into which the system can split.

In numerical calculations one requires matrix
elements of the Hamiltonian and total energy
just as in binding energy problems. Thus the
labor involved is approximately the same except
for the somewhat more complicated trial func-
tions in collision calculations. Here, to assure con-
vergence to the correct answer, one must use
trial functions of the form

where f,—+sinag;/r;, g;~ os~;r~/r, , the y, & are
trial functions for the internal wave functions of
the colliding nuclei and the f are a complete set
of functions vanishing rapidly at infinity. The
first sum is required to describe the asymptotic
behavior, the second to describe the region of
interaction. In binding energy calculations only
the second sum is required.

On the other hand, the necessity of solving
high order determinantal equations does not
arise in reasonably simple collision problems,
which is a simplification over binding energy
calculations.

In view of the great theoretical interest at-
taching to the scattering of light nuclei, more
extensive calculations along the indicated lines,
perhaps with the aid of electronic computing
machines, would appear desirable.
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