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angle so that

1
c{a)=— cQ~, p, 2(p, &, a, y) jdp, j.d4~

4x
c'(0.) =— c'Q), ps(p, c, 0., p) jdp, cdy.

F(I ) = aiJ'l(~)

(8)

(9)

This formula shows that, if F(8) (and therefore c(a)) is
known, one can obtain the ratio p~/pg from a measurement
of coincidences at two different angles.

However, even without any assumptions on the hssion
neutron spectrum and on F(8), one can obtain an upper
or lower limit for the ratio p&/p2 simply considering that
c(a} has a maximum for n=1. In efFect, from (11) one
obtains

represents the development of F(p) in series of spherical
harmonics, using the addition theorem, one obtains

al2
c(m) =2a]'P 5 '

P)(n},

a 2

c'(n) =2'% Z (—1}' &l(~} c( ~)-2l+ 1

Finally, if p~ and p~ are the average numbers of neutron
pairs, respectively, originating from the same fragment and
from opposite fragments, the number of coincidences per
hssion becomes

C{a)=p)c(o.)+pic{—cr).

pr C(1)/C( —1)—c(—1}/c(1)
p, =1—c(—1)C(1)/c(1) C(—1)'

and, considering that both numerator and denominator are
always positive, one has p&/p2m1 for C(1)/C( —1)a1. Also
from (11}one can write

C(1)/C( —1)= (p /p +c(—1)/c(1)}/(p c(—1)/p c{1)+1),
and this leads to

—
m C{1)/C( —1) for C(1}/C(—1)&1.

p2
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It is possible to consider breakdown in a cylindrical microwave cavity whose radius is large
compared to its length as approaching the conditions of parallel plate breakdown. This assump-
tion has been used to measure high frequency ionization coefficients. The present paper in-

vestigates the corrections to be made when the length is increased. Numerical results are given
for cavities whose ratios of radius to length are as low as 0.5, and the method is applicable to any
cylindrical cavity. The breakdown data in these longer cavities are used to extend the high

frequency ionization coefficient curves for air by a factor of ten.

HE electrical breakdown of a gas at micro-
wave frequencies has been discussed in two

papers by the authors. The 6rst' developed the
principle of balancing the generation of electrons
through ionization by collision against the loss of
electrons through diffusion. The resulting break-
down criterion appeared as the solution of a
characteristic value problem. A new ionization
coefficient appropriate to the high frequency con-
ditions was introduced. It is necessary to know
this quantity as a function of the experimental
conditions in order to compute the electric field

*This work has been supported in part by the Signal
Corps, the Air Materiel Command, and the O.N.R.

' M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291
(1948).

for breakdown. Breakdown data were used to
give experimental values of the ionization coefFi-

cient. The second paper' illustrated a computing
technique for solving the boundary value problem
for breakdown between coaxial cylinders. Com-
parison with experiment indicated that the
breakdown theory is valid.

The present paper develops the breakdown
criterion for the case of the TMO&0-mode cylin-
drical cavity. The object of this computation is
primarily to extend the range of the experimental
data for the ionization coe%cient beyond the
region where the cavity height is small compared

~ M. A. Herlin and S, C. Brown, Phys. Rev. 74, 910
{1948).
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to its diameter. This generalization removes the
assumption that the cavity approximates the con-
ditions of infinite parallel plates. Moreover, a
theory for breakdown in this cavity is valuable in

itself, because the cavity is commonly used in

microwave work.

BREAKDOWN THEORY

The differential equation and boundary condi-
tion which lead to the breakdown field strength
are obtained from the continuity requirement on
the electrons. The resulting differential equation
is

PP+gE'P =0,

where the electron diffusion current density po-
tential P is given by P =Dn, and I is the high fre-

quency ionization coefficient defined by I =v/DE'.
The quantity n is the electron density function, D
is the electronic diffusion coefficient, v is the net
production rate of electrons per electron, and E
is the r.m. s. value of the electric field intensity.
The boundary condition that f be zero on the
walls of the discharge cavity is sufficiently accu-
rate. The ionization coef6cient is a function of
E/p and pt, where E/p expresses the energy
gained by an electron per collision at zero fre-

quency, and pX expresses the ratio of the collision

frequency of the electrons to the frequency of the
applied high frequency field. The quantity p is
the pressure and X is the free-space wave-length
of the electric field. The electric field appears
explicitly in Eq. (1) because it varies with posi-
tion in the cavity. On the other hand, pX is con-
stant throughout the cavity. The electric field

in an arbitrary cavity is given in the form
E=Eof(x, y, z), where Eo is the maximum value
of the electric field and f is a geometrical factor
obtained from a solution for the field distribution
within the cavity as an electromagnetic boundary
value problem. The value of f is unity at the
maximum field point. The degree of excitation of
the cavity is expressed by Eo, and the relative
field distribution through the cavity is inde-
pendent of the excitation. The boundary value
problem of finding a non-zero solution to Eq. (1),
with the boundary condition that P be zero on the
cavity walls, leads to a characteristic value of Eo,
which is the breakdown field at the maximum
field point.

Integration of Eq. (1) is simplified by the use
of an approximation to the ionization coefficient
which was used in the analysis of the coaxial
cylinder. ' This approximation expresses the
ionization coefficient as the simple analytic
function,

f'Eq&-' f k q 't Eq~-'

&E,) EE,) &E,)
(2)

1d (d4l——
I

r—I+(I.E'-( ')/(~'))~=0.
rdr( dr)

(4)

L
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/

FiG. 1. Cylindrical cavity, showing coordinates and
dimensions. The electric field is given by Eq. (3) for the
T3I010-mode of oscillation.

where fo is the value of the ionization coefficient
at the maximum field point. The quantity k is
introduced for mathematical convenience in the
following equations. It has the dimensions of
reciprocal length, and appears multiplied into the
radius variable below. The quantity (P —2) is ob-
tained as the slope of the I versus E/P plot on a
logarithmic scale at the point Eo/p. This ap-
proximation gives accurate results because it is
correct where the ionization is high, and is inaccu-
rate only where the ionization is low and there-
fore has little effect on the solution of the
equation.

The electric field in the TAO&0-mode cylindrical
cavity, shown in Fig. 1, is given by the expression,

E = Ep Jo(2 405r/R). (3)
It depends on the radial coordinate only, which
allows the differential equation, Eq. (1), to sepa-
rate. Separation results in /=A sin(sz/I)@(r),
where A is a constant, L, is the length of the
cylindrical cavity, s is the axial coordinate, and @
is a function only of r, determined from the
differential equation
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r-- R

2. Comparison of actual ionization function {solid
curve) with its approximation (dotted curve).

It is dificult to find an analytic solution to this
equation. A good approximation is to express the
Bessel function as the first two terms of its power
series. This approximation is also accurate where
the ionization is high and fails only where it is

low. Equation (5) then becomes

1 d ( d@pr-
rdr E dr)

+9'(1—(r')/(b')) —(~')/(I') j0 =o (6)
where

b = 0.831R/(P) &

is the radius at which the ionization goes to zero
under the above assumptions.

The ionization function in Eq. (6) is negative
beyond r=b, which is not physically correct.
Accordingly, the ionization is set equal to zero
from r =b to r=R. Equation (6) is used in the
range 0&r&b, and in the range b&r&R the
equation

1 d ( d@~——
(

r
f

——4=0-
rdr E dr) Z2

(8)

is applied. The ionization function employed here
is compared with the actual ionization function
in Fig. 2. They are identical near r =0, where the
ionization is high. The error in the approximation
becomes positive as r increases, and negative as it
approaches the radius b. Beyond r = b, the ioniza-

The approximation of Eq. (2) and the electric
field of Eq. (3) substituted into Eq. (4) lead to the
equation

1 d (' d@)r-
rdr & dr)

+ (k'J(P(2.405r/8) —(~')/(L') ]P= 0. (5)

tion drops rapidly to zero and is approximated by
the value zero. The boundary condition on p is
that it be zero at r =R and that its derivatives
and value match at r =b.

Letting the ionization be zero beyond the
radius b neglects the effect of attachment in this
region, since attachment contributes a negative
term to the net production rate of electrons.
However, attachment is properly accounted for
within the radius b, where the breakdown is
inHuenced most heavily. Neglecting attachment
outside the radius b is the same kind of approxi-
mation as letting the ionization function be
represented by a poor approximation in the low
field region, which is known to introduce very
little error. This statement holds if the negative
production rate in the low field region is small in
magnitude compared to the positive production
rate in the large field region, which must be the
case for breakdown to occur.

The solution of Eq. (6) is

( ax2)
@=exp( — )3I((2cr —1)/(4o), 1, ~x'), (9)2i

w her(. .

(
I2I. &

x = (1 —(w-') /(O'I ') )1kr,

100C

IOO

lO

FIG. 3. Solution of the transcendental breakdown equa-
tion, Eq. {11).The ordinate is the square of the ratio of
the equivalent infinite parallel plate separation to the real
cavity length.
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FIG. 4. Experimental values of
{x/Bl.)' as a function of 8/p for
various cavity lengths, obtained
from breakdown 6eld 8 versus
pressure P data. The ordinate
would be the high frequency ion-
ization coefBcient if the experi-
ment were performed between
infinite parallel plates.
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and M is the con6uent hypergeometric function. '
The second solution is omitted because it has a
singularity at the origin. The solution of Eq. (8) is

p =iHO&'&(i~/L) ~20(is r/L), (10)—

where ~ is a constant of integration. It is chosen
to make p equal to zero at the point r =R, and it
is thus a function of the ratio R/L.

' The conHuent hypergeometric function is dehned as in
E. Jahnke and F. Emde, Iilnklioneefefeln {B.G. Teubner,
Leipzig and Berlin, 1933), p. 275.

The Bessel function in Eq. (10) is an expo-
nentially increasing function of r, while the
Hankel function is an exponentially decreasing
function of r. Therefore, ~ is zero when R/L, is
infinity. The exponential decrease in electron
density in the region where the ionization rate is
very small, and assumed to be zero, is a result of
diffusion to the end plates of the cavity. If R/I. is
not infinite, the negative exponentially increasing
Bessel function term provides the extra decrease
in electron density which causes it to go to zero at
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FIG. 5. Curves of p) versus E/p
for various cavity lengths. These
curves are used to obtain con-
stant pX curves of Fig. 6.
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the finite cavity radius. Numerical computation
of the relative magnitudes of these two terms
shows, however, that for a wide range of the ratio
R/L, the value of a is very small and the contri-
bution from the Bessel function term is corre-
spondingly negligible. Thus, for R/L greater than
0.5, the Bessel term may be neglected. The range
below 0.5 may be computed if the Bessel term is
retained. The numerical computations were per-
formed only for R/L)0. 5, so that the results
presented here are applicable to cavities whose
heights are smaller than their diameters. This in-
crease in the coverage of the range of R/L is a
substantial gain over the coverage of the parallel
plate treatment, for which R/L should be greater
than 15.

The solutions given in Eqs. (9) and (10) should
each be written with another constant of inte-
gration which appears as a multiplying constant.
This constant is not written because the matching
condition may be satisfied by making the ratio
@'/P equal on both sides of the matching paint
r=b. The multiplying constant cancels in the

ratio. The resulting equation is a transcendental
equation for the breakdown field:

Hg&'& (ixo)
Xo

iHo&'& (ixo)

(6o —1

y
2o —1 ( 40 ) —1, (11)

(20 —1

, 1, y, )

40 )
where

xo ——nb/L.
and

yo= &&.

Equation (11) may be salved for kb as a func-
tion of kL. The results are most conveniently ex-
pressed by expressing (s/kL)' as a function of
b/L This plot is s.hown in Fig. 3. Parallel plate
breakdown requires that k=7r/L, so that the
ordinate approaches unity for large b/L. If the
tube is long or the slope of the ionization coeS-
cient curve is large, b/L is small and a larger value
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of k, and therefore electric field, is required for
breakdown, relative to what would be required
with a uniform field. Figure 3 may be regarded as
expressing an equivalent parallel plate separation
to give the same breakdown field as that of the
actual cavity.

APPLICATION TO EXTENDING THE IONIZATION
COEFFICIENT CURVES

These results may be used for computing
breakdown fields in the TAN]Q mode cylindrical
cavity from the curves giving the ionization
coefficient as a function of the experimental
parameters. They are used in this paper, however,
to extend the range of experimental values of the
ionization coef6cient from experimental break-
down data in longer cavities than are permitted
by the uniform field theory. ' The procedure is as
follows: The first approximation to the ionization
coe%cient curves is computed assuming a uni-
form field. The various constant pX curves are
drawn through the appropriate points. The slopes
of these preliminary curves then lead, with the
aid of Fig. 3, to correction factors which provide

the second approximation to the ionization coeS-
cient curves. The process is repeated until no
further correction is indicated.

Results on air in two cavities resonant at 9.6-
cm wave-length are shown in Figs. 4 and 5.
Breakdown fields, 8 volts (r.m. s.), were measured

by increasing the magnetron power gradually
until the transmitted power from the cavity
dropped suddenly, indicating breakdown. The
field was computed from the measured break-
down power and cavity parameters. Figure 4,
computed from experimental Z versus p curves,
shows the quantity (s/ZI. )' as a function of 8/p
for various cavity lengths. The diameters were all
the same and equal to that necessary to give a
resonant wave-length of 9.6 cm. If the field were
uniform, (w/BL, )2 would be equal to the high

frequency ionization coefficient. However, the
non-uniformity must be taken into account,
especially for the long cavity whose curve appears
at the bottom of the figure. Figure 5 shows pX

plotted as a function of E/p. The values of E/p
for various constant p) values may be transferred
to Fig. 4 and the constant pX curves drawn in.

l I l l IIII' I I Q I IIII I I I ll!II

IO

FIG. 6. Ionization

coefficient

as a function of E/p and p), ob-
tained from correction of curves
of Fig. 4 using Fig. 3.
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TABLE I. Values of the ionization coeScient g for air.

&/u

26
27
29
30
36
40
45
50
60
70
90

110
140
190
250
350
500
700

1000
2000
3500
5500

1.2 X10 '
4.5 Xio-s
1.1 X 10-4
1.3 X1O-4
2.2 X10-4
3.0 Xio '
3.9 X10 4

4.8 X1O-4
6.4 X10-'
7.8 X10 4

1.04X 10-'
1.24X10 3

1.5 Xio '
1.75X10 '

200,

1.2 X 10 s

5.7 X10-s
2.1 Xio 4

3.0 X10 '
3-9 X10 4

4.8 X1O-
6.4 xio-
7.8 X10-
1.04X10 '
1 24X10 '
1.5 Xio 3

1.75X10 3

100,

3-5 X10 '
1.5 X1O-'
2.5 X10 4

3.6 X10 4

5.9 Xio '
78 X10'
1 04X10 '
1 24X10 3

1.5 X10 '
1 ~ 75X10 '

50,

5.8 X 10-&
1.0 X10 4

2.5 X10 4

4.8 Xio 4

X10 4

1.2 X 10 '
15 Xio'
1.75x10 '

20,

6.2 Xlo '
1.2 X10 4

2.6 X10 4

5.5 Xio 4

89 X10 4

1.3 X10 '
1.54X10 '

10,

49 Xlo '
9.2 Xlo '
1.85X10 4

3.6 X10 4

5.9 X 10-4
90 X10 4

2.7X10 '
5.ox 10-s
9.5X10 '
3.4X10-4 9.5X10 '

2.0X 10-s
4.6X10 s

(These curves are not shown in Fig. 4 to avoid
confusing the diagram. ) The curves are then cor-
rected as described in the previous paragraph to
yield the final set of ionization coefficient curves
of Fig. 6. A curve connecting the bottom set of
points in Fig. 6 is the corrected version of the
lowest curve of Fig. 4. The line showing the limit
of diffusion theory is where the mean free path is
of the order of the tube size. The data of Fig. 6
represent a complete measurement of the ioniza-
tion coefficient for air, and are therefore given in
detail in Table I.

DlSCUSSION

The constant pX curves agree with the curves
of reference 1 with two exceptions. At low E/p,
and high pX, the curves dropped more steeply
than expected from the previous results. A
possible reason is that attachment balances
ionization at a value of E/p of the order of 30,

and this balance is very sensitive to uncontrolled
impurities in the air. When this value of E/p is
exceeded slightly, the curves agree until the low
values of pX at the high 8/p end are reached.
There the new data give curves of smaller slope
than those shown in reference 1.The former data
are very near the region where the difITusion

theory fails because the mean free path is of the
order of the cavity dimensions, and were given
tentatively until the range could be extended.

This paper has given a method of treating the
effect of the non-uniform field in the T3f010-mode
cylindrical cavity. With the high frequency ioni-
zation coefficient known, the breakdown field can
be computed from the theory. Experimental
values of the breakdown held were used to extend
the range of the ionization coefficient curves for
air by a factor of ten. This extension of the
breakdown theory to cylindrical cavities, which
has been illustrated by results for air, is generally
applicable to all gases.


