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In order to explain the properties of a barium titanate single domain crystal, a previous
theory of the ferroelectric effect in rochelle salt has been extended to the three-dimensional
structure of barium titanate. This involves six equilibrium positions and results in significant
differences from the single bond type of structure of rochelle salt. The theoretical features
considered are a calculation of the spontaneous polarization as a function of temperature, the
dielectric constants along the a=y and c=z axes as a function of temperature, the relaxation
of the dielectric constant at high frequencies, and the hysteresis loops. All of these features are
explained by the three-dimensional model considered here.

N a previous paper,! a theoretical explanation
was given for the ferroelectric effect in rochelle
salt, which depended on the motion of a hydrogen
nucleus between the two equilibrium positions of
a hydrogen bond. It is the purpose of this paper
to show that the principal features of the barium
titanate single domain crystal can be explained
by an extension of this model to the three-
dimensional structure of barium titanate in-
volving six equilibrium positions.

I. EXPERIMENTAL DATA

Barium titanate above the transition tempera-
ture of 120°C has the cubic cell shown by Fig. 1.
The barium atoms occupy the corners of the cell,
the oxygens the face-centered positions, while the
titanium is usually pictured as being in the center
of the cell. As a matter of fact, it probably makes
a covalent bond with one of the face-centered
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Fi1G. 1. Unit cell for barium titanate.

!'W. P. Mason, Phys. Rev. 72, 854 (1947).

oxygens and is displaced in the direction of that
oxygen by about 0.16A? from the center of
the cell. Above 120°C the thermal energy is
sufficient to cause any one of the six positions to
be equally probable and the cell appears to be
cubic from x-ray measurements. Below 120°C
thermal energy is nd longer sufficient to cause any
position to be equally probable, and most of the
molecules in a given region or domain line up
along one of the six directions, a dipole moment
develops in that direction and the crystal be-
comes ferroelectric. The axis along which the
titanium has been displaced becomes larger than
the other two, as shown by the x-ray measure-
ments of Miss Megaw?® (as shown by Fig. 2) and
the crystal changes from cubic to tetragonal
form.

The dielectric measurements of multicrystal-
line ceramics, multi-domain crystals, and single
domain crystals all show the presence of a
ferroelectric material below 120°C. Dielectric dis-
placement—electric field curves occur in the form
of hysteresis loops. The dielectric constant at low
field strengths for multicrystal ceramics,® as
shown by Fig. 3, rises to a high value at the
temperature of 120°C. Above 120 degrees, the
dielectric constant follows a Curie-Weiss law ap-
proximately, and the dielectric constant decreases
inversely as the difference between the tempera-

2 This value for the displacement of the titanium atom
from the center of the unit cell has recently been measured
by x-ray methods by Gordon Danielson, Phys. Rev. 74,
986 (1948).

3H. D. Megaw, Proc. Roy. Soc. 189, 261-283 (1947).

4 Von Hippel, Breckenridge, Chesley, and Tisza, Ind.
Eng. Chem. 38, 1097-1109 (1946).
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ture and the Curie temperature or
e=e+C/(T—Ty), (1)

where ¢ is the constant dielectric constant for
temperatures much higher than the Curie tem-
perature. C is a constant, 7" the temperature, and
Ty the Curie temperature. Below the Curie tem-
perature the dielectric constant decreases from its
high value to a value of about 350 near absolute
zero. The steady decrease is interrupted at two
temperatures 10°C and —70°C. At these temper-
atures no discontinuities occur in the axis length
and hence these points cannot be associated with
a change in dipole moment and hence with the
position of the titanium nucleus. It has been sug-
gested by Matthias and von Hippel® that these
are due to a change from octahedral bonding of
the titanium atom to a hybrid type of bonding
which may become more probable at the lower
temperature. Since this does not involve an ap-
preciable change in the position of the titanium
nucleus, this appears to be a reasonable sugges-
tion. As the result is a small second-order change
in the dielectric constant, it is neglected in the
theory presented here.

The dielectric constant for multi-domain crys-
tals is not too different from those for the multi-
crystalline ceramics. Figure 4 shows the measure-
ments of Matthias and von Hippel® for the a and
¢ axes. The dielectric constant along the ¢ axis is
higher than that along the ¢ axis. The lowering of
the Curie point is probably caused by the
impurities introduced. By introducing larger
amounts of mineralizers, single domain crystals
of a relatively large size have recently been grown,
and these show a very marked difference between
the dielectric constants along the two axes. As
shown by Fig. 5, the dielectric constant along the
¢ axis is less than that for a ceramic material.
When the dielectric constant along the a axis is
measured over a frequency range, a relaxation
occurs at about 15 megacycles and the dielectric
constant drops to about 1200 or less, as shown by
Fig. 6. A similar relaxation in the dielectric con-
stant of the ceramic occurs at about 10° cycles as
shown by the measurements of Nash® and Yager

5B. T. Matthias and A. von Hippel, Phys. Rev. 73,
1378-1384 (1948).

8D. E. Nash, Jr., J. Exper. Theor. Phys. Acad. Sci.
U.S.S,R. 17, 537 (1947).
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Data on Unit Cell Axes of Barium Titanate as a Function of
Temperature (Data from H. D. Megaw).
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(unpublished).? At 23.7-centimeter wave-lengths,
the former found a dielectric constant and tané of

€=1250 to 1420, tands=0.2, (2)

while at 1.25 centimeters Yager found a dielectric
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F1G. 3. Dielectric constant of barium titanate ceramic as
a function of temperature.

7 The dielectric constants of barium titanate ceramics
have recently been measured at 1.5 megacycles and 9450
megacycles over a temperature range from 20°C to 160°C
by J. G. Powles of Imperial College of Science and Tech-
nology. The results are described in a note sent to Nature.
From the variation of the relaxation frequency with tem-
perature, one can calculate that the activation energy is
3.65 kilocalories per mole in fair agreement with the value
found in Eq. (63).
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F1G. 4. Dielectric constants for the two crystallographic
axes for multi-domain crystals of barium titanate.

constant of approximately

€=250 to 320, tané=0.70. 3)

From these measurements it can be calculated
that the dielectric constant has a relaxation fre-
quency of about 6.2 X10° cycles.

The relaxation of the dielectric constant at
these frequencies shows definitely that the high
dielectric constant is due to a temperature
movable dipole rather than a high dielectric con-
stant of the type due to the near vanishing of the
factor (1—@y) in the dielectric equation

e—1 %
— = y (4)
4r  1—By

where v is the polarizability and 8 the Lorentz
factor, since the polarizability v due to electrons,
ions and atoms should not vary with frequency
up to the infra-red frequencies. Hence, a temper-
ature variable dipole of the type discussed in the
next section is required to give a relaxation fre-
quency as low as 15 megacycles.

II. SPONTANEOUS POLARIZATION AND
DIELECTRIC CONSTANT UNDER
EQUILIBRIUM CONDITIONS

The model considered here is the one shown by
Fig. 7. Here there are six potential minima in the
direction of the six oxygens which are displaced a
distance & from the center of the unit cell. If the
titanium nucleus is taken from a position such as
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1 to position 2 directly across the unit cell, the
form of the potential barrier may be as shown by
Fig. 8 in which AU represents the height of the
potential curve at the center with respect to that
at the minima. If the nucleus went directly from
position 1 to position 3, it would in general have
to cross a higher potential barrier than AU, but
equilibrium between the two positions can be
established by the nucleus jumping to a position
slightly to one side of the center in the direction 3
and hence it is thought that the potential barrier
determining the relaxation frequency fora 1 to 3
jump will not be much higher than for a 1 to 2
jump, namely AU.

For low frequencies, i.e., for frequencies well
under the relaxation frequency, equilibrium
values can be calculated by using Boltzmann's
principle that the equilibrium ratios of numbers
of nuclei in two potential wells are in the ratio

Nl/N2=8E/kT (5)

where E is the potential difference between well 2
and well 1, & is Boltzmann’s constant and T the
absolute temperature.

Suppose now that all the minima of Fig. 7 have
initially the same potential, which is set equal to
zero. Then if we apply a field E, in the z direction,
a polarization P, in this direction results. This
polarization causes an internal field F of the
Lorentz type given by the equation

F=E+BP (6)

where 8 is 4w/3 for an isotropic material but will
be much less than this when the titanium nucleus
comes close to the oxygen atom. The total
polarization consists of a part P, due to electrons
and atoms and a part P4 due to the dipole caused
by the displacement of the titanium nucleus from-
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the mid-position of the unit cell. The dipole
moment introduced by this change is

uw=4es, (7

since the valence of the titanium is 4 for the
structure, e is the electronic charge, and ¢ the
distance the titanium nucleus moves in going
from the center of the unit cell to the equilibrium
position. An addition to the dipole may also
result from a displacement of the oxygen in the
direction of the titanium. The electronic and
atomic polarization exerted will be proportional
to the local field F, so that

F=E+B[P.+Pi]=E+B[yF+Pi]

or
E+B8P,
F=
1-8y

(8)

where v is the polarizability per unit volume due
to all polarization except that of the titanium
dipoles. The polarizability v can be determined
from the dielectric constant ¢ measured at verv
low or very high temperatures, for since

(0—)1/4m=Pg/E=~F/E 9)

and for P;suppressed, F=E/(1—8v), hence

(fo— 1)

e—1 ¥

4r  1—By

and 4my= (10)

14+—(eo—1)
4

The dielectric constant e near absolute zero is
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MINIMA

F1G. 7. Theoretical model for barium titanate, showing
positions of oxygens and potential minima for the titanium
nucleus.

about 350, hence

1 B8
——=14+—(e—1)=14p(27.8). (11)
1—By 4r

This internal field caused by the applied field
E, causes a decrease in the potential at the
minima 1 and an increase in the potential at 2
equal, respectively, to

E.+BP.
-8y

E.+BP,
+(——~—)#-
1—By
The potentials for the other four wells are
unchanged by this field and hence,

U3= U4= U5= Us—-_—O.

(12)
U=

(13)

By Boltzmann'’s principle (Eq. (5)), the rela-
tive number of nuclei in the six potential wells, all
expressed relative to Nj are

-Ez+ﬁPz M
N,=N; exp[(———)——];
1—-8y /7 kT

E,4BP.\ u (14)
Ng:N"'exP-[(1 3 );7—‘];
—pY

N3=N4=N5=N6.
Then, since the total number of nuclei is equal to

N where N is the number per cubic centimeter,
we have

N=N1+No+N3+Ny+Ns+Ns.  (15)



1626 w. P.

POTENTIAL POTENTIAL

< \/tﬁ\/
i

DISTANCE 2 DISTANCE
a4
.

1
3\ /
5 e

N
\. -

YT TR
/

N 7

N4
POTENTIAL
WELL NUMBERS

POTENTIAL
WELL NUMBERS

F1G. 8. Potential distribution as a function of distance
from the center of the cell.

Substituting in the values from Egs. (14) we have

[ Ez+ﬁPz 1
el ()
1—8y 7 RT
]V1= ’
E,+BP,
2l2+cosh(—————)]
1—8y
I:(Ez+BPz) M ]
Nexp—|{——— )—
1—-8y / kT
Ny= H (16)

[ Ez+6Pz M ,
2 2+cosh(-——-—)———]
1—-8y / kT

N;;=1V4=N5=N6
N

EABP\ u 1
2 2+cosh(——————)—]
1—8y /7 kT

The polarization of a dipole nature excited

along the Z axis will be then
Pz = (Nl ~N2)#
_ Nusinh[(E.+BP.)/(1—By) Ju/kT
2+cosh[(E.+BP.)/(1—Bv)Ju/kT

17)

All the equilibrium values of spontaneous polari-
zation, coercive fields, dielectric constants, etc.
can be determined from this equation.

Let us first consider the condition for spontane-
ous polarization and the ferroelectric effect. This
can be obtained by setting E, equal to zero and
determining the conditions for which the polari-
zation P, is different from zero. Setting E, equal
to zero and introducing the substitution

A=[BNu*/(1—Bv)]1/kT. (18)

MASON AND B. T.

MATTHIAS

Equation (17) becomes

P, sinh(AP,/Nu)

= . (19)
Nu 2+4cosh(AP,/Nu)

Examining this equation, we see that P,/ Nu will
have a solution different from zero only if 4 is
equal to 3or greater. If 4 is greater than 3, P,/Nu
can have a positive or negative value lying be-
tween zero and 1. This represents a spontaneous
polarization along the positive or negative Z axis
due to the internal field generated by charge dis-
placements of the titanium nuclei from the
central position. In general any one of the oxygen
atoms can be considered as lying along the Z axis
and only chance determines in which direction
the spontaneous polarization occurs.

If we solve for P,/Nu as a function of 4, the
relation shown by Fig. 9 results. This is a very
much larger increase of P,/Nu with increase in 4
than occurs for a single bond of the hydrogen
bond type which is determined by an equation of
the type

P,/Np=tanh(AP./Ny). (20)

The relative increase for this type is shown by the
dashed line of Fig. 9 for the same percentage in-
crease in A. Some confirmation for this sudden
increase in polarization is obtained from the cell
dimensions shown by Fig. 2. The changes in cell
dimension, which are independent of the direc-
tion of polarization along the Z axis, can be re-
garded as due to the electrostrictive effect in
barium titanate. The electrostrictive effect for
the barium titanate ceramic has been investi-
gated in a previous paper? and it is there shown
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8 W. P. Mason, “Electrostrictive'eﬂect in barium titanate
ceramics,” Phys. Rev. (to be published).
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that the ceramic has an increase in thickness and
a decrease in radial dimension given by the strain
equations

S3s= QII(P2)2 )
where

01:=6.9 X107 (cm?/stat coulomb)?;
Q2= —2.15X 10712 (cm?/stat coulomb)2.

Su=Sn=+0n(P.)* (21)

While the value of Q11/Q:12 is not exactly equal to
—2 for the ceramic, a guide to the spontaneous
polarization is obtained from these values. At
20°C, S;; the longitudinal thickness strain is
equal to 6.7X1073 while the radial thickness
strain is equal to S11=S32= —3.3 X102 from the
measurements of Fig. 2. With these values and
the electrostrictive constants of Eq. (21), the
indicated spontaneous polarization for the two
effects is

stat coulomb
P,=31,500——m—
cm?

10.5% 10 ﬁcoulomb
= . >< =0

(long.),
cm?
(22)
stat coulomb
P,=39,000———M—
cm?
coulomb
=12.9X10~8———— (radial).
cm?
Taking the average of these
stat coulomb
P,=35250———
cm?
coulomb
=11.7X10- 60— (23)
cm?

This value agrees quite well with that measured
electrically by means of the hysteresis loops. For
this value Matthias and von Hippel® find a value
12 X108 coulomb/cm? while Hulm? finds a value
16 X10-% coulomb/cm?. This calibration allows
one to obtain the spontaneous polarization as a
function of temperature, and this is shown
plotted by Fig. 10. The very sudden rise in
spontaneous polarization just below the Curie

9 F. Hulm, Nature 160, 126 (1947).
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F1G. 10. Measured spontaneous polarization as a function
of the temperature.

temperature is evident, and this agrees quali-
tatively with that shown by Fig. 9.

To find if the spontaneously generated polari-
zation agrees quantitatively with that calculated
from Eq. (19) we have to evaluate 4 and p by
other methods. One method for doing this is to
measure the dielectric constants at low field
strengths as a function of temperature. The
calculated value can be obtained from Eq. (17)
by dividing the polarization P, into the spontane-
ous part Ps and a very small alternating part
Pgeiot. The applied field E.eit is assumed very
small and hence we have

. [(E,+6Po)e"““+BPs] "
sin —
1—By kT

. (Ez+BP0)ejwt 1
. smh[———]——— cosh( —
1—B8y kT 1—-By/ kT

(Ez“*‘BPO)ejM L 3Ps M
+cosh[~———]——— smh( )——-—
1—By kT 1—-6y/ kT
. (E.+BPo)etu AP

s APg
cosh +sinh
(1—=B7)kT Nu Nu

BPs \ k

(24)

Similarly,

[(Ez+BPo)6f”‘+3Ps M
cosh ]——=cosh
1—8y. kT

(E.ABPo)e™ 1 u
+[———————]—— sinh——.
1—8y

kT Nu
Inserting Eqgs. (24) and (25) in (17) and solving
for the constant and time variable parts, we ob-

APg
Nu

(25)
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tain Eq. (19) for the constant part, and for the
time variable part we have
Poeit  (E.+BPo)eit
Nut  (1—BykT
2 cosh(APs/Nu)+1
% { [2+cosh(4Ps/Nu) ]2}’

(26)

Solving for Py, multiplying by 47 and adding the
dielectric constant for electrons and atoms, the
dielectric constant for the z axis becomes

APg
2 cosh +1
4rA Nu
B APg
2+-cosh
Ny
=€+ (27)
" APg
2 cosh +1
APg Nu
2-+4cosh -4
Nu APg
2+cosh
Nu

Above the Curie point, the spontaneous polariza-
tion Pg disappears and this equation reduces to

(4rA/B) c
3-4 T T—T,

(28)

€= €
upon introducing the value of 4 from Egs. (18)
and (11), where

c 4w Np*[1+4B(eo—1)/47]
B 3k ’

(29)

BNu?

To = #
3k

{1+[B(e0—1)/4rT}.

The single domain crystals have so many im-
purities in them to prevent the breaking up of the
crystal into multi-domains that they do not
revert to a cubic crystal above the Curie point.
This is shown by the different dielectric constant
for the two directions above the Curie point. The
same is true to a lesser extent for the multi-
domain crystals, but the ceramic pieces show a
pronounced maximum and a Curie region above
120°C, much in agreement with Eq. (28). Since
above the Curie temperature the crystal becomes

W. P. MASON AND B. T. MATTHIAS

cubic and all directions equivalent, it is thought
that the best values for C and T, will be obtained
from a dense ceramic piece. From the dielectric
constant above 120°C of Fig. 3, we obtain the
values

C=40,000; T,=393°K (30)
and from low temperature measurements
& =350. (31)

Taking the ratio of C/T, of Eq. (29) we find
B=(4nT,/C)=0.124 (32)

upon inserting the experimental values. Then,
since the number of dipoles per cubic centimeter
(as determined from the size of the unit cell) is
N=1.56X10%2; k=1.38 X107, we have

47(1.56 X10%2)u2[140.124(350/47)]
3% 1.38X10-16

C=40,000=

or

p=4.34 %10, (33)

This value of u agrees fairly well with the value
one would obtain from the recent x-ray observa-
tions that the titanium atom is displaced by
0.16A from the center of the unit cell. If the
oxygen atom moves an equal distance to meet it
(which could not be determined by x-ray obser-
vations), the dipole moment would be

(4e+2€)(0.16 X 10-8) = 6 X 4.8 X 1010

X0.16X1078=4.6X10718. (34)

If all the dipoles pointed in one direction, the
total polarization would be

Np=1.56X102X4.34X10"18=67,500 e.s.u.

=22.5X107% coulomb cm?. (35)

The measured value of approximately 35,500
e.s.u. is 53 percent of this. If all the quantities
entering Eq. (18) for A were independent of
temperature except 7', the absolute temperature,
the value of 4 for 27°C =300 K would be 3.94,
and from Fig. 9 the theoretical value of the
polarization Pg/Nu should be 0.90, rather than
the measured value of 0.53, which corresponds to
a value of 4 =3.090. This result indicates that
some of the quantities in the expression for 4
decrease as the temperature is lowered. A similar
result is also required for the variation of dielec-
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tric constant with temperature. A value of
A4 =3.090, Pg/Nu=0.53, and B set at 0.096 (in
order to give a value of 4 =3.090), and all the
other quantities unchanged, results in a dielectric
constant of 1390 which agrees well with the
dielectric constant for a ceramic or for a multi-
domain barium titanate crystal. The variation
may be ascribed to 8 or to ¢ because the measured
temperature expansion coefficients indicate that
N and u should be relatively constant. From the
x-ray data of Fig. 2 it is seen that from 120°C to
0°C, N should increase by 0.15 percent. Since the
titanium atom is tightly bound to the oxygen, the
distance between the center of oxygen and
titanium should not change appreciably because
of temperature contraction, and hence u also will
not change much with temperature. The value of
&, however, may be different for the a and ¢ axes
since the ¢ axis decreases while the ¢ axis in-
creases. Hence, ¢, may be smaller and e, larger
than ¢. The Lorentz factor B8, also, may vary
considerably depending on the condition of the
surrounding electrical charge configurations. For
isotropic conditions, the theoretical value is
47/3=4.19. For the case of the titanium sur-
rounded closely by the oxygens the experimental
value is only 0.124. As the temperature is de-
creased, all the oxygen atoms come closer to-
gether and hence a decrease in 8 is to be expected.
Assuming all the variation due to 8, the values to
agree with the dielectric constant measurements
are shown plotted by Fig. 11. With these values
of B (assuming all the other quantities in 4 are
independent of the temperature), 4 can be
evaluated as a function of temperature and the
theoretical values of spontaneous polarization
can be determined from Eq. (19). These are
shown plotted by the dashed line of Fig. 10, and
these agree closely with those determined from
the electrostrictive effect. Hence, two inde-
pendent sets of data are satisfied by the 8-curve.

III. DIELECTRIC CONSTANT ALONG a AXIS

Measurements for the dielectric constants
along the @ axis for single domain crystals show
that the dielectric constant along this axis is very
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y=a axes as a function of temperature.

much larger than that along the ¢ axis. To de-
termine the dielectric along the @ axis, according
to the model shown by Fig. 7, with a field applied
along the Y axis, and a spontaneous polarization
occurring along Z, the potentials for all six wells
are

B1Psu 61Psﬂ
U,= —( ) ; 2= ’
1—Bw 1-B1y
[Eu'{"ﬁ?Pu]I-‘ (Ey+ﬁ2pv) (36)
= =N\ )&
(1"/32‘7) 1—Byy
U5= U5=0.

We assume that B, along the Y axis may be
different from B, along the Z axis. Applying the
Boltzmann principle and relating Ny, N,, N3 and
N4 to Ny= N we find

BIPS I
e (222) 2]
1-B1y/ kT

B1Ps I3
N2=Nsexp—[( )——],
1—By/ kT

Ng= .
2[1+cosh[[(8:1Ps)/(1 —Bry) Ju/kT+cosh[(E,+B2P,) /(1 —Bxy) Ju/kT]

(37)
Ev‘*‘ﬁzPy M
N3;=N; exp| ——— |—;
1—Byy 1ET
Ev+62py M
N4=N58Xp— e NG=N5.
1—Byy kT
Since
Ni+N;+N3+Ny+Ns+Ne=N (38)
we find for Nj, the value
N
(39)
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Inserting the value of Nj, Ny, and Njin the expression for the polarization along the Y axis, we have

Ny sinh[ (E,+B:P,)/(1 —Bxy) Ju/kT

P,=(N;—Ny)p= . (40)
[14-cosh[(81Ps)/(1 —Byy) Ju/kT+cosh[(E,+B2P,)/(1 —Bxy) Ju/kT]
To determine the dielectric constant along Y for small fields, we can replace
E, +62P E,+8,P, E,+B3:Py\ n
sinh ) ( cosh(————“)—é 1. (41)
1—'ﬂz‘Y kT 1—Byy 1—Byy / kT
Then
[N#2/kT][(E +8:P,)/(1=B)]  [Nw?/kTIL(E,+B:Py)/(1—Bv)] 42)
2+-cosh[(8:Ps)/(1 —Bw)]#/kT 2+cosh(4 Ps/Nu)
where
NuBiy 1 Nu®
1= (o) “
-6y kT

Solving for the ratio of P, to E,, multiplying by 4, and adding ¢ the dielectric constant due to other
sources than the dipole moment, the dielectric constant along ¥ becomes

kT(4rNu*/(1—Bxy)]

e, =€+

2+cosh(A Ps/Nu) —[Nu28s/ (1 —Bay)kT]

(44)

Now, since the crystal becomes tetragonal due to the distortion caused by the electrostrictive effect, vy
may increase along the @ axis and cause ¢ to become larger. As before, however, we assume all

variation to occur in 8; and write

1 Ba(eo—1)
= . (45)
1—Byy 4r
Inserting this value in Eq. (44) for the dielectric constant
ArAr1+(Bs/4m) (60— 1)]
81 L1+(81/4m) (0~ 1)
e =eot : (46)
APs  Bof 1+ (Bs/4m)(e0—1)
2+cosh —A—
© L1+ (81/47) (60— 1)
At the Curie temperature where the crystal additive effects and that, in general
changes from tetragonal form to cubic form the 285+ 61= 38, (47)

value of B, must be equal to 8; and hence the
dielectric constant along the ¥ axis will have a
Curie temperature at the same temperature as
the one along the Z axis. For other temperatures,
B2 will not, in general, equal 8, on account of the
shift in charge due to the electrostrictive effect.
One might expect, however, that the shift in
charge might to a first approximation produce

where B is the Lorentz factor for the cubic
crystal. The factor of 2 is used for 8 since the
charge along the X and Y axis is only half that
along the Z axis.

According to Eq. (46) the very high dielectric
constants along Y shown on Fig. 5 have to be
accounted for by the near vanishing of the de-
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nominator of Eq. (46). The values of 8; to make
the denominator vanish, with the experimentally
determined values of 8; are shown by the dashed
line of Fig. 11. These values would agree with the
above speculation if the average value of 8 fell off
with temperature according to the dot-dash line.
Another verification of the near vanishing of the
numerator is the very low value of the relaxation
frequency for the dielectric constant along the ¥
axis, shown by Fig. 6. As shown by the next
section, this can be accounted for by the same
potential barrier for both ¥ and Z directions,
provided that the denominator of Eq. (27) for the
dielectric constant along the ¢=Z axis is about
100 times as large as that of Eq. (46) for the V
axis.

IV. RELAXATION FREQUENCIES FOR THE
DIELECTRIC CONSTANTS

To determine the high frequency behavior of
the dielectric constants that is predicted by the
model of Fig. 7, one can no longer use the
Boltzmann equilibrium relation of Eq. (5) to de-
termine the relative number of titanium nuclei in
the various potential wells. Instead, one has to
relate the time rate of change of the number in a
given potential well to the probability of transi-
tion for a given time from one potential well to
another. a1, ; the probability of a nucleus in well 1
jumping to well 2 per unit time is, according to
Eyring’s reaction rate theory,

oy, 2= (kT /h)e AUIKT (48)

where % is Planck’s constant, 2 Boltzmann'’s con-
stant, and AU the difference between the maxi-
mum height of the potential barrier and the
potential of well 1.

The time rate of change of the number N; of
nuclei in wells of type 1 is obviously

dN,
?= —Nl(a1,2+0£1. 3+0£1,4+0£1.5+0¢1. 6)
+N2a2,1+N3a3, 1+N40£4,1
+ Nsas, 1+ Neas, 1. (49)
Similarly,
dN,
_:lt—= —Na(as, 14as, 3+ as aFas 5+ ase)

+N10!1.2+N30£3, 2+N40t4,2

+ Nsas, o+ Neag, 2. (50)
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Hence, the rate of change of the polarization
along the Z axis is

dP, d(Ni—N)u
i dt
= —N1(2ay s tar st ot oy s+ayeu
+No(2a, 1tz stz s tas s tas 6)u
+ Nip(as 1 — s 2) + Napos, 1 — . 2)
+ Nsu(os,1—as 2) +Neu(as 1 —as2). (51)

When a field is applied along the Z axis, the po-
tential minimum U, is lowered, and U, raised by
amounts shown by Eq. (12). Hence,

kT (Ez'*‘BIP:)
a1,2=——exp—[AU+ p]/kT;
h 1—-B8yy
(52)
kT (Ez+61Pz)
ag,,=—-—exp-—[AU—— p.]/kT.
h 1-81y

By the discussion of Section II, it appears that
the highest potential barrier in going from 1 to
the 3, 4, 5 or 6 potential wells is also nearly AU.
Hence,

(53)
(54)

a1, 2= 01,3 =), 4= X1, 5= Y, 6.

Also,

a2, 1= 02, 3= 2, 4= A2, 5= (2, 6-

In going from potential wells 3, 4, 5 or 6 to any
of the other wells, the highest potential barrier is
AU, since these minima are not changed by a
field along Z and hence

kT
O3, n =04, n =05 n=0gn=""€

h

—AU kT
’

(55)

where 7 has all values from 1 to 6 except the one
which makes the second index equal to the first.

Therefore, introducing these values in Eq. (51),
the time rate of change of polarization along the
Z axis becomes, for a simple harmonic field,

johP,

kT

Ez+61Pz) M ]
1-81y kT

Ez+BXPz M
-N, exp[ - (-———)——] } (56)
1—-B1y kT

AUIRT — 6#{ N, exp[(
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If w is zero, this reduces to the Boltzmann condi-
tion for determining the ratio of Ny/N.

Since we are dealing only with infinitesimal
fields, the sum of N, and N; can be taken equal to
their equilibrium values given by Eq. (16). Since
Eq. (56) can be written in the form

JwhP,

kT

eAU/kT

AND B. T.
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this becomes
jwhP,eAUIKT
6kT cosh[(E.+B1P:)/(1—Bry) Iu/kT
=[Nu sinh[(E.+B1P.)/(1 —B1y) Ju/kT _p J
2+cosh[(E.+B1P.) /(1 —B1y) Ju/kT

(58)
Introducing the relations of Eqgs. (24) and (25)

and solving for the time variable parts of the
polarization, P,, noting that

. E.+8,P, M
=6p. (N1+N2) smh _— aPz
1-By / kT = jwPoei?,
ot
E, P, . . .
—(N1—N») cosh (_ﬁi__)i]y (57) we find for the dielectric constant as a function of
1—Byy / kT frequency, the equation
474 (2 cosh(APg/Np) +1)
B1 \ 2+cosh(APg/Ny)
=€+ (59)
APg 2 cosh(APg/Nu)+1 2+4cosh(APg/Nu)\ jwh
(2+cosh ) —A( )+( SO0 psurer
Nu 2+cosh(APs/Nu) cosh(4APg/Nu) /J6kT

When the last term in the denominator equals the sum of the other two, the dipole dielectric constant
has equal resistance and reactance values and the corresponding frequency is the relaxation frequency.

This frequency f, is given by

6k Te‘A”/"TI‘ APgs
fo= cosh (
27h I. Nu

For 27°C=300°K, we found 4 =3.090; Ps/Nu=0.53. Introducing these values and the values

k=1.38X10716;
we find for fy, the value

fo=1.6X1012e-AU/T

A(2 cosh(APg/Nu)+1) ] (60)

(24cosh(A Ps/Nu))? ) ‘
T=300; h=6.56, 10727, (61)
(62)

From the data of Egs. (2) and (3), the relaxation frequency of a ceramic (which probably coincides
with that for the ¢ axis direction) is 6.2 X 10? cycles. From this one obtains a value for the potential

maximum? of
eAUIRT = 26() ;

AU =3.35 kilocalories per mole.

(63)

This value represents the amount of energy to remove the titanium nucleus from its equilibrium posi-
tion to a position in the center of the barium titanate unit cell.

The data of Fig. 6 show that the dielectric constant along the a axis is relaxed at a frequency of
about 15 megacycles at room temperature. Applying the same process to calculating the dielectric

constant along the @ axis, one finds

41rAI'1—}— (B2/4m) (e0— 1)]
8 L1+(8:/47) (e —1)

e =€+

(64)

2+cosh
Nu

APg Aﬂzr1+(62/4ﬂ')(éo—1)] (2+cosh(APS,/Ny) Jwh
B, L1+ (81/4m) (00— 1)

pAUKT
C

cosh(APs/Nu) /J6kT
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To obtain a dielectric constant of 150,000 at 27°C =300°K, the real part of the denominator has to be
0.0028. Hence, the indicated relaxation frequency for this temperature is

APS Aﬁz 1+(Bz/41l’)(60—'1) A.Ps
[2+cosh — ( )] cosh
2T n Ne B \+(y/4m) (0 1) Nu
" 2mh [2+4cosh(4Ps/Nu)] '

Introducing the numerical values,
eAURT =645 or AU =3.9 kilocalories.

Thus the indicated activation energy for going from the 1, 2 wells to the 3, 4, 5 or 6 wells is only
slightly higher than that between opposite wells such as 1 and 2. This calculation also checks the facts
that it is the near vanishing of the denominator of Eq. (64) that causes the very high dielectric con-
stant along the a or X =Y axes.

V. COERCIVE FIELDS ALONG a AND ¢ AXES

The coercive fields along the @ and ¢ crystallographic axes and the interaction between a field along
¢ and a polarization generated along a can be calculated from Egs. (36) and (40), giving the polariza-
tions along the ¢=Z direction and the a= Y direction. In terms of complete fields and polarizations
along the two directions these equations become

Ny sinh[(E,4B1P.) /(1 —Bry) Ju/kT

P: = ) (66)
1+4-cosh[(E.+8:P;)/ (1 —Bry) Ju/kT +cosh[(E,+B:P,) /(1 —Bxy) Ju/kT

. Nu sinh[(E,+8:P,) /(1 ~Bry) Ju/kT o
" 1+cosh[(E.+B.P.)/(1—Bry) Ju/kT+cosh[ (B, +B:P,) /(1 —Bxy) Ju/kT

From these two equations and the constants The calculations show that it takes considerably

evaluated previously, the coercive fields for the more of a negative field along Z to reverse the
two directions can be approximately calculated. sign of a domain along Z than it does to change
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. FI1G. 13. Hysteresis loop showing relation between polar-
ization along Z and field along Z for a single domain barium
titanate crystal.

the direction from Z to Y. To show this, let us
assume that no field or polarization exist along Y.
Then Eq. (66) can be written in the form

P, sinh[(AEz/BNu)+(AP2/Nw]
Nu  24-cosh[(AE,/8Nu)+(AP,/Nu)]

(68)

Now, since A Ez/BNyu is going to be a very small
quantity for any field that can be applied, this
can be written as

sinh(AP,/Nu)
2+cosh(4P,/Ny)
P, A E," 2 cosh(AP,/Nu)+1
AT AR —f—cosh(AP,/Nu))?]' (©)

If the applied field E, is zero, this equation re-
duces to that for the spontaneous polarization.

If we plot the left hand side of Eq. (69) as a
function of P,/Nu (assuming 4 =3.090 for room
temperature) the curve of Fig. 12 results. The
left hand side is larger than the right, up to a
value of P,/Nu=0.534 when the two are equal,
and this represents the theoretical value of
spontaneous polarization for no applied field. If
the applied field is positive, a larger ratio of
P./Nyu is required to satisfy Eq. (69). Since at
room temperature, 4 =3.090; Nu=67,100 e.s.u.;
$=0.096; cosh(AP./Nu)=2.68, the coefficient
multiplying E, is 1.24 X104, It takes, then, a
very high field to increase sensibly P,/Nu. For
example, a field of 30,000 volts per cm =100 e.s.u.,

MASON AND B. T. MATTHIAS

will cause the polarization to increase from 35,600
stat coulombs/cm? to 41,500 stat coulombs, an
increase of 16 percent. This agrees quite well
with the increase measured by Hulm?® who found
an increase of about 13 percent for this case.

If we put on a negative voltage along the axis
the ratio P,/Nu will decrease steadily until the
difference between the left hand side of Eq. (69)
and P,/Nu reaches a maximum. This occurs for
P./Np=0.405, and it requires a negative field of

E,=74 e.s.u./cm=22,200 volts/cm. (70)

This is the theoretical field strength to switch the
direction of a domain along one direction of Z to
that along the other. Single domain crystals have
been observed to switch at around this value of
field strength.

A true single domain crystal, however, will
have a hysteresis loop for a considerably smaller
field strength than this. For such a crystal a
typical field strength polarization curve is as
shown by Fig. 13. When the voltage is in the
direction of the spontaneous polarization, the
curve has a tail toward the right hand side that is
considerably different from the rounded relation
on the left hand side. This dissymmetrical type of
curve occurs down to field strengths of the order
of 1000 volts per centimeter and appears to result
from the fact that on the application of a nega-
tive field along Z, parts of the domain can be
spontaneously polarized along Y. To see that this
is possible one can examine the conditions for
spontaneous polarization along Y given by Eq.
(67). Here we set E, equal to zero and solve for
the conditions that will give a finite value of P, in
the presence of a field E,, and a spontaneous
polarization P,. The onset of P, will be de-
termined when P, approaches zero, and thus we
can replace the hyperbolic sinh by the argument,
and the hyperbolic cosh by unity. Then the
equations to solve are

P, (82)/(1—Bav) (u/kT)P, o
Nu 2+cosh[(E,4B.P.)/(1—Bry) Ju/kT

If E.=0, this reduces to the case

AP,) _ Am{ 1+ [Ba(ea—1)/47]
8 L1+ [Bues—1)/an1)" "

P,,(Z +cosh
Nu
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The difference between the left hand side and the right hand side is the denominator of Eq. (44) for
the dielectric constant along the Y axis. This denominator is small (about 0.0028 for room
temperature) but is always positive, hence no spontaneous polarization can exist along YV as
long as there is no static field —E,.

For the addition of a static field, Eq. (71) takes the form

AE, AP;)]_@|1+[62(60_1)/4W]
8.Nu ' Na 8 L1 +[Bi(eo—1)/an7)

P,,[Z +cosh( (72)

A positive field E, in the same direction as P, makes the left hand side still larger than the
right, and no possibility exists for polarization along Y. If, however, a negative field E, is
applied, the left hand side can be made equal or less than the right hand side, and spontaneous
polarization can exist along Y. Since AE,/B1Nu is a small quantity, this equation can be written
in the form

[ AP, ABz(14(Bs/4m)(e0—1)

2+cosh - }]

AE, L Nu  B1 U14+(B1/4m)(e0—1) (73)
8.Nu sinh(4P,/Ny) '

Since for room temperature the numerator is equal to 0.0028, the denominator to 2.53, the field E, to
cause a domain to switch to the Y direction is

0.0028 0.108X 67,100
E,=— X =2.6 e.s.u./cm =780 volts/cm,
2.53 3.090

(74)

which is considerably less than the voltage required to shift a domain along Z.

The question arises as to why the whole domain does not go over in the ¥ direction. This appears
to be owing to the fact that when parts of the large domains change direction, they exert an E, field
on the remainder of the domain that is still directed along Z. Then the term cosh[ (E,+82P,)/(1—82v)]
X (u/kT) can no longer be replaced by unity, and the equation for the field to produce a spontaneous
polarization along ¥V becomes

AP, E,+B2Py\ 1 Bz (14 (B2/4m)(e0—1)
[1+cosh——+cosh(—)———A—{ H
AE, 3 Nu 1—Byy /kT B1l14(B1/47)(e0—1) 75)
B:iNu sinh(4 P,/ Nu)

and the field E, becomes larger. There is no
definite saturation for the effect which accounts
for the rounded shape of the left side of the
hysteresis loop of Fig. 13. When a positive E,
voltage is applied, all the ¥ domains revert back
to the Z direction, which accounts for the tail-
like shape of the right hand side of the curve of
Fig. 13.

When a field is applied along YV, the relation
between P, and E, is very linear and shows no
hysteresis effects up to a field strength of 300
volts per centimeter, at which field the crystal
usually breaks down because of the high conduc-

tivity along the a axis. Up to that voltage, no
domain shift in the Y direction has occurred. To
obtain the field for the shift requires that both
Egs. (66) and (67) shall be solved simultaneously
for the P, and P, polarizations and this is not
attempted here.

V1. SPECIFIC HEAT ANOMALY OF BARIUM
TITANATE

The specific heat anomaly of barium titanate
ceramics for the 120°C transition has been meas-
ured by Harwood, Popper and Rushman,!® and

1® Nature 160, 58 (1948).
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Blattner and Merz.!! The former obtain a value
of 0.14 cal./gram whereas the latter obtain 0.2
cal./gram. It has been shown by Mueller!? that
the specific heat anomaly is related to the spon-
taneous polarization by the equation

Q=B/2Pa2

where Q is the specific heat anomaly in ergs/cc,
B is the Lorentz factor and P, the spontaneous

(76)

it Helv. Phys. Acta, Vol. XXI, Fasciculus Tertius et
Quartus (1948).

12 Annals New York Academy of Sciences, Vol. XL
(Art. 5), page 353.
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polarization. Since the specific heat anomaly
was the integrated increase from about 100°C to
a temperature above the Curie temperature we
have from Fig. 10, that P,=27,000 c.g.s. units
of charge per square cm. Q, the specific heat
anomaly, is 0.2 cal./gram=1.2 cal./cc=5 X107
ergs/cc. This gives a value of 8 determined by
the specific heat anomaly of

8=0.138 (77)

which agrees reasonably well with the value
given in Eq. (32), obtained from dielectric meas-
urements.



