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we get ot t,1=2.5 10~~ cm' but, as we have seen, the
result depends strongly on the value of p chosen.

A more detailed account of the work will soon be pub-
lished in the Communications of the Danish Academy of
Science.
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Fro. 2. Angular distribution of photo-protons.

to the different energies of forward and backward directed
protons could have been expected, but the limited statis-
tical material and the mentioned spread in pulse sizes did
not allow their separation. In fact, for small values of 8 the
position of the peak was not very well defined, and there-
fore the number ne of pulses higher than 40 mm (see
Fig. 1) was counted for the various values of 8. The result
of the measurements, in which '4Na was used as a y-ray
source, is given in Fig. 2, where the full-drawn curve
correspon. ds to the formula

ng/ng p =a+b sin'8 =0.18+0.82sin28.

The ratio a/(a+b) is found to be 0.18&0.03, the ratio a/b
to be 0.22 +0.04, in good agreement with the value
0.26&0.08 given by Graham and Halban. ~ The present
experiments give o /0, =0.33 and (r /trt t,1=0.25. The
dotted curve in Fig. 2 corresponds to 0 =0, and the 6gure
clearly shows that there can be no doubt that both the
photomagnetic and the photoelectric effect exist for the
p-energy concerned.

When determining the absolute cross section it is neces-

sary to know the absolute strength of the y-source and the
range p of the protons. The author is indebted to Mr.
Koefoed-Hansen for measuring the absolute strength of a
weak sample of 24Na by means of a special counting ar-
rangement. Unfortunately, p is not known very accurately
and, hence, the result may be given as follows, where a
correction of +20 percent resulting from the absorption of
the y-rays and a correction of -20 percent resulting from
the foot on the pulse-size distribution curve are included:

9p2
~topi =0.8.10 ". cm2&20 percent,
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where p is the range in cm deuterium. Putting p=1.5 cm

&QO CO

F(t, y, 8) =— G(t, x', f) exp{i(xy+f8))dxdf, (2)

cO 00

G(t, x, g-) = — F(t, y, 8) expj —i(xy+g-8) jdyd8, (3)

to (1) we are led to the equation for G(t, x, g},

BG BG
at ay 8'2{t)

After introducing the two new variables

S=~+|-/x,

Eq. (4) becomes:
OG x2{g—t')'
a&' 8 (t') {6)

The solution of (6) is

' {s—~)'
G=II(&) exp —x2 „dgS"(g)

ERMI' has found the distribution function for the
lateral and angular displacernents of charged particles

which undergo multiple elastic scattering in passi ng
through a layer of matter. In his treatment the energy loss
which the particles suer due to ionizing collisions is
neglected. In this note we show that energy loss can be
taken into account to a good approximation, and that this
leads to a simple generalization of Fermi's distribution
function.

The diffusion equation for the distribution function
F(f, y, 8) is, in Rossi and Greisen's notation and units,

8F 8F 1 82F—= —8—+——
Bt 8y 8'2 882 '

where W=2PP/E, . TVe assume that P and P are functions

of t, i.e., we neglect the fact that a particle at t has traveled
a somewhat greater distance than t due to the deviations
caused by scattering. For the multiple scattering of high

energy particles these deviations will be small and the
approximation will be a good one. In (1) then we assume
that TV' is some known function of t;, although not neces-
sarily one for which there is an analytic expression. If we

apply the Fourier transforms



LETTERS To THE ED ITOR i535

where II(&) is the "constant" of integration, and for con-
venience we have taken the lower limit in the integral to
be some fixed number X. The boundary condition is that
at k =0 there is one particle incident normally at y =0, i.e.,

F{0,y, e) =S(y)s{e).

The condition on G is then from {3)

G{0,x, g) = 1/2~.

If we write out (7) in terms of the original variables x, g, t,
we get

G(t, x, g) =H(t+f/x) exp —x' ~, dg . (10), '{~+g/x-~)'
IV2(g)

From {9)we see that

angular deflections at any intermediate thickness con-
tribute equally to the total angular deflection at t.

In general the integrals Ai, Ai, A2 which determine the
distribution can be obtained by simple numerical integra-
tions using the range vs. momentum curves given, e.g. , in
Rossi and Greisen's article. In some special cases the A' s
can be found by direct integration. If, for example, we

consider particles with energy much greater than their
rest energy, it is a good approximation to assume the rate
of momentum loss is independent of the momentum and
that P=1. Then the momentum p of a particle at depth t
radiation lengths is pp —«t, where e is the constant momen-
tum loss per radiation length. Then IV'(t) = $4(pp «t}'/E.2j
and the A's become:

II(g/x) =—exp x' ~2 dg ~
, '(six-~)'

Equation {11)gives the functional form of H, and therefore
G is completely determined from (10) as

G(t, x, g) =—exp —x' dg . (12)1, ' {t/x+t-rt)2
2~ o M q)

A, (t) =
4Pp(P p

—~t)
'

g2 Pp «t
Ai(t) =—', ln

4c2 Pp —et Pp

EI82 P& (Pp et) Pp
A2(t) =—,2&———2 ln

4e Pp f Pp —ct

(17a)

(17b)

(17c)

If we define three new functions of t by

f't dg
A p(t)

f"t (t —rt)drl
A i(t)

~'(t —n)2
A2(t) =J ~2( )dq,

we can write G in the simple form

G($, x, p) =—exp| —(A pf +2Aifx+A2x )).1

2'

(13a)

(13b)

(13c)

It is interesting to note that if one wished to take energy
loss roughly into account using Fermi's original distribution
function by taking some mean value for W2(t) that this
mean value could not be simultaneously correct for
both (15) and (16), i.e., for both the angular and radial
distributions.

It is a pleasure to thank Dr. Max Krook for a discussion
on the first part of this work and Professor R. E. Peierls
for criticizing the manuscript.

' B. Rossi and K, Greisen, Rev. Mod. Phys. 13, 267 (1941).

This expression for G can be put into {3)and the integra-
tions with respect to x and g carried out, with the result

1 tPA2 —2&Ai+y2A p
F(t, y, 8) =

)) exp — A~, (14)

where B($}=ApA2 —Ai'. If we assume that tV2 is constant,
it is easy to see that (4) reduces to the Fermi solution as
given by Rossi and Greisen. If we integrate over y, we get
for the angular distribution irrespective of displacement

fCO 1 g2
F(t, y, 8)dy=

&
exp — . (15)

Similarly, for the lateral distribution independent of angle

F(t, y, 9)d9=
&

exp —
4A

. (16)

We can gain a little insight into our formula by comparing
(15} and (16}.The angular distribution defined by (15)
depends on t through Ap, i.e. , through Jp' (dq/8"(g}),
whereas the radial distribution (16) depends on t through
Jp' I (t—q)2/W (q) jdg. Because of the factor (t —g}2 large
values of t —rI are weighted more heavily in the last integral
than in the preceding one. This is caused by the fact that
a given angular deflection produces a larger radii displace-
rnent at t the farther from t that it occurs, whereas all
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&HE spectrum of Ne II was excited in an alumnum
hollow cathode discharge tube which was filled with

neon of a few mm Hg pressure. It was found that, when
the neon was quite free from impurities, the energy of the
discharge was spent mainly in exciting the spectrum of the
cathode material and only a very weak spectrum of Ne II
was obtained, so the experimental arrangement which was
finally adopted contained a purifying equipment that ab-
sorbed impurity gases only loosely. Under this condition
the doublet spectrum' was strong, while the quartet spec-
trum was relatively weak. The fine structure was examined

—)3378

—X3393

Fic. 1. Enlargement of interference patterns of Ne II M3378 and
3393 taken with a quartz Lummer plate of thickness 4.4 mm.


