THEORY OF VACANCY DIFFUSION

Equation (13) can be written:
p=2(R*—0)[v/2]},

R=14'/u.

where

From the condition at the initial boundary
Ry~ A1'(00)/Ai(6,) can be easily calculated. 6,
can be found then from the table. For the end
boundary, 6,=600+I[v/2]} we can similarly
calculate R, =u'(02)/u(82) from p,. Since

u'(02)/u(8:) =[ A1’ (8:)+ (B/A)Bi'(6:)]/
[Ai(62)+(B/A)Bi(62)],

taking the values of A%(6.), 44'(68,), Bi(6,), and
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Bi'(6,) from the table, the value of B/A is
readily calculated. The term involving B/A4 is
significant only in the immediate neighborhood
of the end boundary. It serves to adjust the
boundary value of p. Since it becomes negligible
for small values of A@=0,—0 a large p. results
only in a sharp rise of p near the very boundary.
The density of electrons over most of the layer
is not much affected by the value of p, (all this
is for large v). The dashed lines joining the curves
of v at the end boundary in Fig. 2 is calculated
by neglecting the term involving B/A. We see
that for ¥>40 neglecting this term will involve
little error.
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The theory of diffusion in alloys is discussed on the
basis of the migration of lattice vacancies in an attempt to
interpret the experiments of W. A. Johnson on diffusion in
gold-silver alloys. It is assumed that the lattice network
preserves its identity during the diffusion even though there
is a resultant vacancy current passing through any region.
It is also assumed that two types of atom, designated as 4
and B atoms, are present in the lattice. The diffusion coef-
ficients are expressed in terms of a function p(#s1, 7a2)
giving the probability that a vacancy in jumping from one
atomic plane (designated as plane 2) to a neighboring
plane (designated as plane 1) will interchange places with
an 4 atom if there are 7,1 A atoms per unit area of plane 1
and 7.2 A atoms in plane 2. It is found that the chemical

I. INTRODUCTION

HE experiments of W. A. Johnson! on the

diffusion in 50-50 gold-silver alloys have
raised an interesting question concerning the
theory of diffusion in alloys. Johnson investi-
gated the rate at which radioactive silver and
gold atoms diffuse in the alloy as well as the rate
at which a minor gradient in composition is
made uniform. The system studied is rather an
ideal one because the constituent atoms combine
substitutionally over the entire range of com-
position in the face-centered cubic system and do

!'W. A. Johnson, Trans. A.ILM.M.E. 147, 331 (1942).

diffusion coefficient is related to the function p in a very
different way from the diffusion coefficients for radioactive
tracers if the latter migrate when no chemical gradient is
present. Models of increasing complexity are employed to
derive explicit expressions for the function p. It is found
that Johnson's experiments can be explained only with the
use of models that are more complex than those commonly
used, The theory of vacancy diffusion is also employed to
interpret the experiments of Smigelskas and Kirkendall
concerning the relative displacement during diffusion of
fiducial markers placed at the interface between copper
and brass. An experiment which could provide an absolute
test for vacancy diffusion is proposed.

not seem to exhibit the development of long
range order at particular compositions, as in the
copper-gold system. The specimens on which
measurements were made contained planar
gradients of the diffusing atoms, so that only one
Cartesian variable enters in the diffusion equa-
tion.

Figure 1 shows the measured diffusion coef-
ficients when plotted as functions of temperature.
As is conventional in the field, the logarithm of
the diffusion coefficient is plotted as a function of
the reciprocal of the absolute temperature. The
upper curve represents D,, the diffusion coef-
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Fi16. 1. The diffusion coefficients in the 50-50 silver-gold
system (after Johnson). D, is the chemical diffusion coef-
ficient; Dag and Da, are the coefficients for diffusion of
radioactive tracers of silver and gold measured in a system
in which there is no chemical gradient. The logarithm of the
diffusion coefficient is plotted as a function of the reciprocal
of the absolute temperature.

ficient that governs the rate at which a gradient
in chemical composition is smoothed. In deter-
mining this Johnson used in conjunction speci-
mens of two alloys in the 50-50 range of com-
position having about 14 percent of difference
in concentration of the constituents. The second
and the lowest curves depict the diffusion coef-
ficients for migration of radioactive silver and
gold, respectively. The coefficients were measured
by using pairs of specimens which had identical
chemical composition ; however, one member con-
tained a radioactive tracer.

Johnson found that the best straight lines
which would fit the experimental points cor-
responded to the relations:

D,.=0.14 exp(—41,700/RT) cm?/sec.,
Dag=0.39 exp(—44,700/RT) cm?/sec., (1)
Dyy=0.12 exp(—44,100/RT) cm?/sec.

The activation energies appearing in these equa-
tions are expressed in cal./mole. R is the gas
constant. The fact that the activation energies
are not quite equal implies that the best straight
lines passing through the points of Fig. 1 are not
quite parallel.

If we were to assume that all three activation
energies actually are equal, and arbitrarily chose
the common value to be that for gold, namely,
44,100 cal./mole, the corresponding functions
would be

D,=0.41 exp(—44,100/RT),

Dag=0.30 exp(—44,100/RT),  (2)
Dau=0.12 exp(—44,100/RT).
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Thus the measured value of D, is approximately
1.4 times larger than the value of D, and
approximately 3.5 times larger than D,,. It is
evident from Fig. 1 that this conclusion is quite
independent of the question of whether the
activation energies are equal or slightly different.

It is difficult to visualize, at first glance, the
circumstances which might make it possible for
the chemical diffusion coefficient to be larger
than those for radioactive tracers, yet it is not
apparent that this could not be the case. This
topic has been discussed by several investigators,?
most notably Darken.3

Darken has assumed that each atomic con-
stituent of the lattice has its own characteristic
diffusion coefficient and that the structure
manages by an unspecified form of mass motion
to keep the density of atoms per unit volume
constant in spite of the fact that one type of
atom may be diffusing in or out of a given region
of the specimen more rapidly than other atoms
diffuse out of or into it. If, for example, the
system is a binary alloy and if 4 atoms are dif-
fusing out of a given volume more rapidly than
B atoms diffuse into it, the volume would con-
tract in such a way as to maintain constant
density. This type of contraction or expansion
would impart a material velocity v to any atom
or object in the lattice which does not participate
in the diffusion. Since the local velocity of flow
must be such as to compensate for the net dif-
ference in flow of atoms by diffusion, Darken is
able to relate the velocity v to the diffusion cur-
rents. If D, and D, are the diffusion coefficients
for the two constituent atoms, the velocity of
flow at a given point in the specimen is

f.

v=(Da —Db)?—:, (3)
ax

where f, is the fractional concentration of A
atoms. It is assumed that the concentration
gradient is along the x axis. The axis of reference
is chosen so that the velocity vanishes at regions
of the specimen where the concentration gradient

2 C. E. Birchenall and R. F. Mehl, Trans. A.I.M.E. 171
(1947); J. C. Fisher and J. H. Hollomon, Metals Tech.,
Tech. Pub. 2344 (1948).

3L. S. Darken, Metals Tech., Tech. Pub. 2311 (1948).
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is zero. Darken’s diffusion equation is

Ofa

a e
_'_—[(faDa-l"fbDb) ——]’ (4)
dt Ix ax

so that
D = (f,Dy+ fsDs) (5)

plays the role of the chemical diffusion coefficient.

The key assumption of Darken's treatment is
that the metal can swell or shrink in a more or
less plastic manner to compensate for unbalanced
diffusion, maintaining constant atomic density
thereby. If diffusion occurs by the migration of
vacancies in the alloys of interest, it is conceiv-
able that shrinking could occur by condensation
of vacancies in a local region to form small
plate-like voids which draw themselves together
and disappear by inducing plastic flow in the
surrounding metal in much the way that voids
can be closed by pressing a ductile substance. In
a polycrystalline mass the vacancies could “‘con-
dense” at grain boundaries. If diffusion occurred
by migration of interstitial atoms, a swelling
could be induced in a region by precipitation of
interstitial atoms which have diffused to the
volume. The precipitate might induce a plastic
expansion to compensate almost exactly for the
volume of precipitated matter.

In tentative support of his viewpoint, Darken
calls attention to a very interesting set of experi-
ments of Smigelskas and Kirkendall.# These
investigators studied the migration of the
boundary between 70-30 alpha-brass and copper.
An accurately shaped rectangular bar of brass
was plated with a thick coating of copper on all
four lateral surfaces in such a way that a number
of small molybdenum wires were imbedded at the
interface between the metals. It was found that
after diffusion had been allowed to take place the
spacing between wires on opposite rectangular
faces was smaller than before diffusion by a much
larger amount than could be accounted for by
normal change of lattice parameter with com-
position. The change in spacing when plotted as
a function of the square root of the time of dif-
fusion is shown in Fig. 2. Smigelskas and Kirken-

4A. D. Smigelskas and E. O. Kirkendall, Trans. Am.
Inst. Min. Met. Eng. 171, 130 (1947). The earliest experi-
ments of this type of which the writer is aware were carried
out by W. Shockley in 1938. Shockley observed a displace-
ment of the type found by Smigelskas and Kirkendall.
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dall noted that the original boundary between
the two metals was clearly marked by non-
metallic inclusions which, like the molybdenum
wire, presumably did not enter into the diffusion
process. These inclusions moved with the
molybdenum wire. The experiments also show
that the amount of zinc on the copper side of the
boundary after diffusion is greater than the
amount of copper that has diffused into the
brass side by just about the amount needed to
explain the contraction if the atomic density
remained constant.

From Darken’s viewpoint, Smigelskas and
Kirkendall’s results are to be explained by
assuming that zinc diffuses out of the brass more
rapidly than copper diffuses into it. In conse-
quence, the brass core shrinks in the manner
described above, pulling the molybdenum wires
and other fiducial marks at the initial grain
boundary with it. Darken has shown that his
equations give an adequate description of the
effect if proper values for the diffusion coef-
ficients for copper and zinc are assumed.

The purpose of the present paper is to attempt
to shed more light on Johnson’s experiments
with the use of a more explicit mechanism of
diffusion than that employed by Darken. It will
be assumed that all of the measurable mobility
in the silver-gold alloy is the result of vacancy
diffusion, that is, that a given atom can move
from one site to another only when a vacant
lattice site appears among its neighbors and the
given atom jumps into this vacant neighboring
position. The calculations of Huntington® and
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F1G. 2. The contraction of the region within the fiducial
markers of molybdenum in the experiments of Smigelskas
and Kirkendall. The contraction is plotted as a function of
the square root of the time.

5 H. B. Huntington and F. Seitz, Phys. Rev. 61, 315, 325
(1942).
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the writer on this topic for the case of copper
seems to leave little doubt that the vacancy
mechanism is strongly preferred over the “‘direct
interchange’’ or interstitial diffusion mechanisms,
at least in the case of the metals having large
inner shells. In any case, the vacancy mechanism
is at least as complex as the other two and hence
should permit as intricate processes as the other
two. In fact it offers a greater range of permis-
sible phenomena than the direct interchange
mechanism, since the latter does not permit a
net flow of atoms across any boundary.

We shall see that it actually is possible to
envisage a model in which the chemical diffusion
coefficient is larger than the diffusion coefficients
for radioactive tracers. On the other hand, it is
not possible to explain Johnson's results with the
more obvious models of a binary alloy that
might be employed to simulate an actual case.

To simplify the situation we shall assume that
the concentration gradient, whether a chemical
gradient or that of a tracer, depends only on one
Cartesian variable which will be taken to be the
x coordinate. Without loss of generality we may
also assume that well defined crystallographic
planes separated by distance \ lie normal to the
x axis. Since we shall be primarily interested in
cases of very high symmetry, we shall assume
that neighboring crystallographic planes of this
well defined type are symmetrically equivalent,
that is, can be sent into one another by means of
one of the symmetry elements of the lattice.

Whenever we discuss a practical diffusion
experiment, it will be assumed that the specimen
consists of two halves which individually have
uniform concentration at start; however, the
initial concentration in each half will differ. The
two halves of the specimen will meet at an
essentially infinite plane that coincides with the
plane x=0. It will be assumed that the specimens
extend for a very large distance along the x axis,
so that all surfaces other than the two in contact
can be treated as if at infinite distance. If the
concentration of migrating atoms satisfies the
conventional diffusion equation

dc 9 Oc
—=—D—, (6)
at Jdx Jdx

the solution appropriate to the boundary con-
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ditions described above for the hypothetical
experimental specimen consisting of two infinite
halves in planar contact is

(ca—c1) pa/2(Drp
c(x, t) =C1+W Lw exp(—a )da, (7)

when D is a constant. Here ¢; is the initial
uniform concentration (¢=0) for the half of the
specimen lying on the negative side of the
x axis, and ¢, is the initial concentration on the
positive side of the axis. This solution depends
on x and ¢ only through the combination x2/Dt,
a fact which remains valid in the case of planar
symmetry even when D in (6) is a function of
concentration.

II. THE DIFFUSION CURRENTS

Let us designate the chemical species present
in the alloy by 4 and B, and assume that in any
given crystallographic plane there are #,4 atoms
and B atoms per unit area. If there are =
atomic sites per unit area of the plane we shall
have the relation

na+nb+nv=ny (8)

where 7, is the number of vacant sites per unit
area. We shall assume that #, is very small com-
pared to %, and s, so that the relation

my=n—"mng %)

can be used to determine the density of B atoms
from the density of 4 atoms if the latter is given.
This assumption is justified by the fact that the
density of vacant lattice sites is probably small
even at the melting point. The calculations for
copper indicate that the energy required for
formation of a vacancy is of the order of 1.8 ev.
In any case the fraction of vacant sites probably
is not larger than 10~3 at the melting point in
the metals of interest to us.

Let us focus attention on a region of the alloy
in which there is a small gradient in concentration
of A atoms (and hence of B atoms) or a gradient
in a radioactive tracer. We shall assume that
there is a uniform current of vacancies through
this region, the direction of flow being the same
as the direction of the concentration gradient,
namely, the x direction. The mobility of vacan-
cies is so much greater than the mobility of atoms
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that a concentration gradient in vacancies that
exists in a specimen in which diffusion is being
studied will tend to decrease much more rapidly
than a concentration gradient in the distribution
of atoms. As a result, the vacancy current which
exists in any region of the specimen after a
period of time will be the result of flow of vacan-
cies from relatively widely separated regions in
which differences in concentration exist. In this
connection it is to be noted that when two
specimens of an alloy, which are individually
uniform but contain slight differences in com-
position, are brought together the thermo-
dynamic potential of the vacancies in each
specimen will be equal if the specimens are
individually at equilibrium. As a result there
would be, at least initially, no reason for a
vacancy current to flow. As the chemical diffusion
takes place there may be a tendency for vacancies
to diffuse to or away from the zone in which
chemical interdiffusion has occurred, because the
equilibrium density of vacancies in this region
may be different from the density which existed
there initially. This flow will presumably be small
because the total number of vacancies involved
will be small if the zone of interdiffusion is small.
It seems safe to conclude that a large vacancy
current will be present only if the vacancies are
not at equilibrium initially in one or both halves
of the specimen, in which case there will be a
stream of vacancies moving through a large part
of the system.

Consider two neighboring crystallographic
planes which are normal to the x axis. We shall
call the plane on the negative side number 1 and
the plane on the positive side number 2 (Fig. 3).
The density of 4 atoms in each plane will be
designated by 7,; and #,,. Now suppose that v,
vacancies are jumping from plane 1 to plane 2
per unit area in unit time, and that a number »s;
are jumping in the reverse direction. The vacancy
current in the positive x direction will then be
via—va1. If p(#a1, na2) is the probability that a
vacancy in jumping from plane 2 to plane 1 will
jump into the site occupied by an 4 atom, and
if p(#a2, ma1) is the probability that a vacancy
will replace an A atom in a jump in the reverse
direction, the current of 4 atoms between planes
is

(10)

Ia = V2lp(na1, naz) - VIZP('”'G% nal)-

DIFFUSION GRADIENT —

A

| 2

F1G. 3. Two consecutive planes in the direction normal
to the diffusion gradient. The density of atoms in the planes
is designated by #. X is the spacing between planes.

Since 7, and 7, are nearly equal, we shall
expand p(¢, ) in the manner

0p Ong N 0P ang A
p(naly na?) =P(na1 na) i _ y
dE 0x 2 97 9x 2

0p Ong N dp O N

D (Maz, Na1) = p(Ma, Na) +— — ——— — = ‘
Ot 0x 2 dn Ox 2

(11)

Here n,= (n,+mn.2)/2 is the average density of
A atoms in the two planes. The derivatives
dp/d¢ and dp/dn are evaluated for £ =n=mn,, and
\ is the separation of the two planes. When the
relations (11) are substituted in (10) we obtain

A O,
In=—1,p(ns) — (vi2+va1)—(a—B8)—, (12)
2 dx
where
ap ap
P(ﬂa) EP(”M na), aA=—, =-—
H an
(=n=mn,). (13)

Since the volume concentration of 4 atoms in
the neighborhood of the two planes, c,, is 7./A,
I, may be expressed in the form

dCq
Ia=—I1)P(na)—Da ’ (14)
x
where
)\2
Da=<1’12+V21)7(a_5)- (15)
Now B
9cq dp(ng) One, 9  9cq
=—diVIa=I'v +_Dc ) (16)
ot dn, 9dx OJx OJx

provided I, is independent of position (but not
necessarily of time) in the region considered. If
the variation in concentration is relatively small
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in the specimen, dp(n,)/dn, may be treated as a
constant. We note that this equation may be
transformed to the form

dc, 0 Oc¢q
=—D, 17)
dt dx Ox
by means of the transformation
'=x+ot, ¢ =t, (18)
where
v=I,Np(n,)/dn,, (19)

provided I, is independent of time as well as
position, so that v is a constant. Thus the motion
of the 4 atoms is a superposition of a drift with
uniform velocity v given by (19) in the negative
x direction and diffusion with the diffusion coef-
ficient D,, when I, is constant.

A similar analysis of the migration of B atoms
shows that the current of B atoms, I, satisfies
the equation

ac,
Iy= "'Iu(l_P(na))’*"Da_—r (20)
ox

where (1 —p(n,)) is the probability that a vacancy
will jump into the site occupied by a B atom when
the planar density of A atoms is the same in
neighboring planes and has the value #,. Since
divly,= —divI, when I, is constant, it is clear
that (20) may be transformed into (16). More-
over, since the time and space derivatives of ¢,
are the negative of those of ¢;, the volume con-
centration of B atoms, it follows that the migra-
tion of B atoms is also governed by the super-
position of a uniform velocity » in the —x direc-
tion and diffusion with diffusion coefficient D,.

Consider next the migration of radioactive 4
atoms. We shall assume that the specimen has
uniform chemical composition except for the
fact some of the normal 4 atoms are replaced by
radioactive atoms. If #,* and #,.* are the con-
centrations of radioactive atoms in the two
neighboring planes described above, the current
of radioactive atoms is

* *

Na1 Na2
I*=vyp(n.) —v12p(a)
Na Na
ot o (21)
= —-I,,p(n,.)——Da* ’
n ax
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where : pn)
A2 p(n,

D* = (v1a+va1)— ,
2 n,.

(22)

and ¢;* is the volume concentration of radio-
active atoms. It follows that the migration of
the radioactive atoms is the superposition of a
uniform motion with velocity v*=I\p(n,)/n,
and diffusion with the diffusion coefficient D,*
when I, is constant. The corresponding diffusion
coefficient for radioactive B atoms is

A (1—p(n,
Dy*= (912+ V21); (—P‘(ﬁl)‘,

Ny

(23)

where #, is the planar density of B atoms.

It is evident from the form of (14) and (20)
that D, is the quantity that should be designated
as the chemical diffusion coefficient and may be
called D, in the following.

III. MIGRATION OF DIFFUSION BOUNDARY

Before considering the differences between the
diffusion coefficients derived in the previous
section, it is fruitful to contemplate the effects
of a steady vacancy current in somewhat more
detail.

If the mathematical framework of lattice
points between which the atoms jump could be
regarded as rigidly fixed, fiducial inclusions, such
as the molybdenum wires employed in the experi-
ments of Smigelskas and Kirkendall, which do
not participate in diffusion would remain fixed
relative to the framework and provide an origin
for the stationary x coordinate. We shall keep
this possibility in mind in the ensuing discussion.

The fact that the diffusing atoms experience a
uniform drift as well as Brownian migration
when there is a constant vacancy current is not
surprising. If this current is present, the initial
boundary plane between two specimens will
cease to be the plane at which the concentration
is just half-way between the initial values in the
two halves of the specimen when D is constant
(see solution (7)). Instead, this intermediate
plane will be displaced by a distance #¢ at the end
of time ¢ in the case of chemical diffusion or by
v*¢ in the case of radioactive diffusion.

If the initial difference in composition of the
two halves of the specimen is relatively large,
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dp(ns)/dn, in (19) will not be independent of
position, and the drift motion of the atoms
resulting from the vacancy current will be a
function of position. We shall consider this case
in conjunction with that in which I, varies with
time.

Suppose that the vacancies in the two halves
of a specimen have different chemical potentials
so that a vacancy current flows across the
boundary when diffusion begins. We shall assume
that the vacancies diffuse in accordance with
Eq. (6), D being replaced by the appropriate
diffusion coefficient in each half of the specimen,
and ¢ being the concentration of vacancies. We
shall assume that the diffusion coefficient for
vacancies is several orders of magnitude larger
than D,, D,*, or Dy*, so that a uniform vacancy
current is established in the boundary region
where chemical or radioactive diffusion occurs
before appreciable chemical or radioactive dif-
fusion has taken place. This current, though
uniform throughout the interesting region of
space, will not be constant in time. It may
readily be shown that the interesting solution for
the concentration of vacancies depends upon
position and time through a factor x/(£)}, so that
the vacancy current varies as 1/(f)* at the
boundary where chemical or radioactive diffusion
is occurring. In this case, the equations of the
form (16) and (21) may be written as

dac udc a9 ac
e 3 (%)
a (H)¥x ox\ ox

As previously ¢ is the concentration of the dif-
fusing atoms, D is the appropriate diffusion coef-
ficient and u is a quantity independent of time
and postion. Both D and x may depend upon the
composition. They may be treated as constants
in radioactive diffusion if the two halves of a
specimen have the same chemical composition.
Their dependence on composition is important in
chemical diffusion if the initial difference in com-
position of the halves of the specimen is suf-
ficiently great. The (¢)* appearing in the de-
nominator of the first term on the right arises
from the dependence of I, on time described
above.

Equation (24) may be expected to possess a
solution that satisfies the boundary conditions of

(24)
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interest to us and is purely a function of the
variable s=x/(¢)}. The corresponding function
c=f(s) satisfies the ordinary equation

L o
ds/)’

25
2 ds ds (25)

in which D and x may be functions of f in the
general case.® The interesting solution of this
equation when D and p are constants is

b —a?)da
f=a+ (62_61)1"'/2(0) M (26)

— (m)}

in which s’=s42u and ¢, and ¢,, as previously,
are the initial concentrations in the two halves
of the specimen. We see that the point at which
the concentration is (c1+4¢2)/2 is at the position
where s’ =0 or at x=—2pu(t)} at time 2. Relative
to a moving origin chosen at this point, the
diffusion is exactly as if there were no net
vacancy current.

In the more general case in which D and p
are functions of concentration, f(s) will range
between ¢; and ¢ as s varies from —  to 4 .
As long as the concentration difference is not
large we may expect to find a value of s for which
f=(c1+c2)/2. If D and u were constant so that
the solution (26) were valid, this point would be
s=2u. Moreover, the function df/ds would be
symmetrical about this point, so that d%f/ds?
would be zero when s=2u. In the general case
in which neither D nor u are constants we may
expect none of these simple relations to hold:
usually the df/ds curve will not be symmetrical
about the point for which f=(¢1+c¢3)/2, nor will
d2f/ds® vanish there.

At infinitesimal times after the start of dif-
fusion, the point at which the concentration is
(c1+c2)/2 will be at the initial interface. Relative
to the initial lattice network, it will be at a
position x;=s;3(f)* at time £ It is clear that the
coefficient s; will depend both upon the concen-
trations ¢; and ¢; and upon the accidental dif-
ference in initial concentration of vacancies in
the two halves of the specimen.

6 The solutions of (25) may be classified in the following
manner: Given f=¢ and df/ds=>b for a specified value of s,
Eq. (25) may be integrated to obtain values of f(+4 © )=c2
and f(— « )=c;. These values of ¢; and ¢; may be regarded
as functions of @ and b, which can in turn be inverted to
yield @ and b in terms of ¢; and ¢3.
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The initial interface, for which x is zero and
which, at least in principle, may be marked by
fiducial material, corresponds to the point s=0.
The concentration at this point remains constant
as diffusion proceeds according to the present
treatment of the problem. This result, which
agrees with the experiments of Smigelskas and
Kirkendall, was also obtained by Darken on the
basis of his formulation of diffusion, and evi-
dently depends only on the fact that the concen-
tration can be expressed as a function of x/t}.

The shift of the fiducial markers observed by
Smigelskas and Kirkendall in the copper-brass
remains to be discussed. If the mathematical
formulation given in the preceding section were
strictly correct, there would be no room for a
displacement of the type found by these inves-
tigators, apart from the effect of change in lattice
parameter with composition. Each atom which
moves out of the central core within the initial
copper-brass boundary would be replaced either
by another atom or by a vacancy, which would
have almost the same atomic volume as one of
the atoms of the alloy. As a result the fiducial
boundary would remain fixed, or two such
boundaries on opposite sides of the core would
not move relative to one another by more than
the distance associated with change in lattice
parameter. In order to explain the observed
results with the use of vacancy theory, it ap-
parently is necessary to adopt the following view-
point: vacancies diffuse from the electroplated
copper into the brass, permitting a net flow of
zinc and copper atoms across the boundary
separating the brass from the copper. It is
possible that the copper, being an electroplated
deposit, contains a high density of voids and
hence of vacancies at start. In any event the
vacancies could diffuse from the vacuum inter-
face if needed. The vacancy current should vary
as 1/tt at least initially, for reasons described
earlier, so that the total number of vacancies
which would have flowed past the boundary at
the end of time ¢ would vary as #}. As long as the
vacancies in the brass remain atomically dis-
persed, the fiducial lines do not shift relative to
one another. However, as the specimen is cooled,
the vacancies condense to form voids. These
voids close, at least in part, as a result of the
action of surface tension forces and plastic flow,
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and the fiducial markers are drawn together. If
the contraction in volume compensates for the
vacancies which have diffused, this contraction
should vary as ¢}. Since free energy is to be gained
by having zinc migrate into the copper to form
a more dilute alloy of brass, it is conceivable that
the vacancy current would supersaturate the
brass during diffusion and that the condensation
of vacancies with the consequent sintering would
actually occur during diffusion.” These two cases
could be distinguished, at least in principle, by
observing whether the displacement of the
boundary occurs during diffusion or subse-
quently.

The preceding picture of the displacement of
the boundary does not appear at first sight to be
substantially different from Darken’s. Actually,
there are several differences. Darken’s formula-
tion explicitly assumes that the contraction takes
place in the region where the chemical concen-
tration gradient is greatest. That given here
permits the contraction to occur over the entire
zone through which vacancies migrate. If the
diffusion coefficient for vacancies is 10® times
larger than that for atoms, this zone may be
thirty times larger than the zone in which chemi-
cal diffusion has occurred. Thus the contraction
within the region where the chemical gradient is
large may be a negligible fraction of the whole.

In this connection, Smigelskas and Kirkendall
state that after diffusion ‘‘the brass to the right
of the interface is particularly susceptible to
pitting. This is the side from which the zinc is
diffusing to the left faster than the copper is
diffusing to the right.”” They conclude the pitting
is associated with voids induced during diffusion.
Presumably these voids are the condensed gas of
vacancies. Unfortunately the experimenters do

"In the discussion of the paper by Smigelskas and
Kirkendall, C. S. Smith has suggested that the volume
changes accompanying diffusion create cracks in the brass
core which run normal to the interface and which promote
diffusion by permitting zinc to migrate from the brass by
gaseous diffusion. It is postulated that these cracks sinter
together at a later period of time and thereby account for
the loss of volume of the core. Although this suggestion
does not explain the way in which the zinc succeeds in
migrating into the copper to cause the stresses which are
assumed to exist, it is possible that the presence of zinc
vapor and the gradual sintering of voids would have the
effect of inducing vacancies to diffuse continuously from
outside the specimen, thereby creating a continuous va-
cancy current,



THEORY OF VACANCY DIFFUSION

not describe the width of the zone in which the
pitting occurs.

Smigelskas and Kirkendall found that the con-
traction of the inner core of the diffusion speci-
men represented about one percent of the linear
dimensions at the end of 56 hours of diffusion at
785°C. The zone of chemical diffusion then repre-
sented about 20 percent of dimensions of the
core. It follows that approximately one percent
of the atoms of the core would have been replaced
by vacancies, according to the picture presented
here. It is hardly likely that all of these vacancies
would have initiated in the electroplated copper
—most must have come from the outer interface
of the specimen. One might expect vacancies to
have diffused throughout the core before 56
hours have elapsed and hence to observe a
deviation from the rule that I, varies as ¢~} The
fact that this deviation does not seem to be
observed (Fig. 2) remains to be explained if the
vacancy mechanism is correct.

Another difference between the interpretation
based on vacancies and that implied in Darken’s
theory is made clear by considering an experi-
ment identical with Smigelskas and Kirkendall’s,
except that the copper and brass are inter-
changed. If Darken’s viewpoint is correct the
copper core should swell, since zinc atoms would
diffuse into it more rapidly than copper diffuses
out. On the other hand, if the vacancy mechanism
of diffusion is valid the fiducial markings about
the core should either remain unchanged if the
vacancy current is zero, or should pull together,
much as in the experiment in which there is a
brass core, provided the only source of vacancies
for an extended amount of diffusion lies outside
the specimen. It would be highly interesting to
see the results of an experiment of this kind.

IV. COMPARISON OF DIFFUSION
COEFFICIENTS

Equations (15), (22), and (23) represent the
diffusion coefficients of interest for Johnson’s
experiments. The following points are worthy of
note:

(a) The diffusion coefficients will be influenced
by any deviation of the density of vacancies
from the equilibrium value for the pure alloy.
This effect, which will influence vi2+ a1, is well
known from the studies of electrolytic conduction
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in the salts in which the density of vacancies may
be suppressed or raised by additive agents.

(b) The expressions for D, and for the radio-
active diffusion coefficients are intrinsically dif-
ferent in form. The first involves derivatives of
the coefficient p(%, 1) which determines the
probability that a vacancy will land on an 4
atom in jumping from one plane to the next,
whereas the second involves p(n,, n,) alone. In
the case of 50-50 composition (n,=n,=1—n,)
the sum of D,* and Dy* is

)\2
D j*+Dy*= (V12+ sz)—,

Na

27)

which does not involve p.

The writer has not been able to derive relations
between p(n,) and the derivatives @ and 8 which
are independent of special models that are used
to describe diffusion. It appears that there are no
general rules governing the behavior of p(§, %)
other than that it be equal to unity when ¢=n,
where # is the density of atoms in a plane normal
to the gradient, and be zero when £=0.

In principle, p(n,) could be determined as a
function of #, by measuring the diffusion of radio-
active 4 or B atoms for various compositions. A
determination of this type would require knowl-
edge of (vi2+v21); however, let us assume that
this offers no problem. Three conceivable forms
of p(n,) are shown in Fig. 4. These are selected
somewhat arbitrarily to indicate possible situa-
tions. Curve I, which is a straight line, could
occur if 4 and B atoms were almost identical

pln,)

o !

ﬂ./“

F1G. 4. Schematic representation of p(n.) in three inter-
esting cases. Case I is that which would be valid in an ideal
two-component alloy in which the atoms behaved as if
chemically identical. Case II is a hypothetical one in which
the slope is very steep in the 50-50 range of composition,
whereas Case III is one in which the slope is small. The
abscissa is 7a/n, the fraction of 4 atoms in each plane. The
curves are constrained to pass through the points zero and
unity at the two ends by definition.
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chemically so that p(n,) =n,/n. Now the slope
of any of these curves at a given point is
readily seen to be a+p for {=n=mn,. Suppose
that B is very small compared with «, a situation
that need not occur generally, but which will
obtain if the 4 and B atoms are very similar. In
this case the slope of the p(n,) curve in Fig. 4
determines « and hence determines the quantity
(a—p) appearing in D, (Eq. (15)). A straight-
forward analysis of the three curves under these
simplifying assumptions shows that in the
vicinity of 50-50 composition D.=D,* in case
I, D.>D,* in case II, and D.<D,* in case III.
D, may be larger than the sum of D,* and Dy*
for the 50-50 composition if the slope of the
p(n.) curve is greater than 2, as is possible in
case I1.

V. A SIMPLE MODEL OF A DIFFUSING
SYSTEM

It is interesting to consider the workings of a
simple model of a system in which diffusion is
occurring in order to visualize a case in which the
radioactive and chemical diffusion coefficients
are not identical. The results obtained from a
specialized model evidently will lack generality.
This disadvantage is compensated for by the fact
that they are explicit.

Let us consider a case in which there is a con-
stant gradient of concentration in the x direction
and in which a given atom in one of the planes
perpendicular to the x axis has only one neigh-
boring site in the adjacent plane into which it
could jump by vacancy diffusion. This would be
the case in a simple cubic lattice if vacancies
could jump only along the directions of the cube
edges. We shall assume that the atoms interact
in pairs and that the probability that an 4 atom
in a given plane, which we shall designate the 1
plane, will have a vacancy in the neighboring site
in an adjacent plane, designated the 2 plane, is

Ny
Pu(1,2) =Cuzexp(— Vo/kT)—,  (28)
n

in which Ci; is a coefficient which depends upon
the composition, V, is an energy parameter repre-
senting the average relative change in energy of
a lattice induced by placing a vacancy next to
an 4 atom, ., is the density of vacancies in the
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2 plane, and # is the density of atoms in the
planes normal to the x axis. Similarly, we shall
assume that the corresponding probability for a
B atom in the 1 plane is

N2
Py(1,2)=Crexp(— Vi/ET)—.  (29)
n
From the condition

nalPa(ly 2)+nb1Pb(1; 2) =Ny, (30)

we find
n

Cia= . (31)
a1 €xp(— Vo/kT) +np1 exp(— Vo /kT)

It is readily seen that under these assumptions
P,(1, 2) and Py(1, 2) involve the energies V, and
Vs only through the factor

f=exp(—(Va—V3)/kT). (32)

If vy, vacancies are jumping per unit time per
unit area from plane 2 to plane 1, and if
(a1, ma2), as in Section II, is the probability
that a given vacancy will land on an 4 atom, we
obtain the relations

1'21?('”'011 naZ) = VanaIPa(ls 2)! (33)
v21(1 = p(%a1, Ma2)) = wmnnPs(1, 2),  (34)

in which », is the probability per unit time that
a vacancy which is next to an 4 atom will change
places with it, and », is the corresponding prob-
ability for interchange of a vacancy with a
neighboring B atom. By adding (33) and (34)
we obtain

Ny
V1= C12_2(Vanal exp(— Va/kT)
n
+Vbn1,1 exp(— Vb/kT)) (35)

which, when substituted in (33), leads to the
relation
Vallarf

Valarf+ vsne:

P (a1, Ma2) = (36)

that is of fundamental interest to us. The quan-
tities »,, 5, and f appearing in this will generally
be functions of both 7,; and #,.. For simplicity
we shall assume at the start that they are in-
volved only through the combination

Ng= (na1+”u2)/2o
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With the use of this form of p(£, n) we readily find that when ¢=7n=n,
p(na) vaf
= , 37)
Na Va”uf‘*' VoMp
af
vaustf + 3 vavsnats——-+ 3nans f(vova' — vaws')
a= (38)
(Vanaf+ Vbnb) 2
Ny f composition
—p=— (39)
(vattaf~+vsms)? D. =2 i , (41)
Da* D * 2

Here »," and »/ are the derivatives of v, and » iy which +De (+9)

with respect to #,. From (37) and (39) we readily X=vanaf, Y =vehs. (42)

find
D, a—@
D G* 4 (na) / Na (Vanaf + Vbnb) ‘

When f is very large, so that vacancies prefer
to be near 4 atoms, the ratio (40) is nw/v.n.f.
This is 2v,/v,f in the case in which n,=7/2.

In the opposite case in which fis small, so that
vacancies prefer B atoms, the ratio is #/#,, which
is 2 for 50-50 composition.

Similarly, we find that in the case of 50-50

nvy

(40)

NVq be+ nanbfvb"’ (

a—f=

This ratio attains the maximum value of 3 when
x=17. Thus in the case of the simple model which
we have employed, D, can never be larger than
half the sum of the radioactive diffusion coef-
ficients.

The results (38) and (39) are definitely de-
pendent upon the simplifying assumptions made
in determining « and 8 from p(#,1, 7,42), as given
by (36). If we assume that »,, », and f do not
involve 7, and 7., merely through the quantity
7a= (Na1+142)/2, we have in place of (39)

or or of of
——— +va1'b(——-——)
9§

a1 CIL

. (43)

(Vanaf + Vbnb) 2

where 7 =v,/ .

As we have noted in the introduction, John-
son’s experiments indicate that D, is almost
exactly equal to D,*+ Dy*. This result is not in
accordance with the version of the foregoing
model which leads to (41). On the other hand, it
could arise from the extended version which leads
to (43), provided the combinations of derivatives
of » and f appearing in Eq. (43) are assumed to
take the proper values. It is interesting to note
that Johnson’s results imply considerable in-
equality between the behavior of silver and gold
atoms in the 50-50 alloy. This in turn suggests

that they should show® pronounced short-range
order, even if long-range order is absent.

The writer is particularly indebted to Pro-
fessor R. J. Maurer for several valuable discus-
sions of this paper. Maurer was apparently the
first to appreciate that the problems of chemical
and radioactive diffusion are basically different
if radioactive diffusion takes place in the absence
of a chemical gradient.

8 The writer is indebted for conversations on this point
to members of the NRC symposium group, which met at
Cornell during August, 1948, to discuss ‘““Phase changes."”



