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Theory of Rectification of an Insulating Layer
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The problem treated is the rectification by a blocking layer of low inherent conductivity.
The potential distribution is determined by the space charge due to free, current-carrying

charge instead of by that due to fixed charge. The difference between this case and that
treated by previous theories is pointed out. The theory is applied to copper oxide rectifiers.
The result is found to agree with experimental results better than the previous theories. The
applicability of the theory to other cases is also discussed.

INTRODUCTION

ECTIFICATION at the contact between
diAerent solids depends upon the existence

of a blocking layer, which may be classified into
two types: natural and artificial blocking layers.
A natural blocking layer is one that is produced
as the result of the contact. A metal and a semi-
conductor brought into contact may give rise to
such a blocking layer in the semiconductor even
when the semiconductor is homogeneous to begin
with. If one of the two materials in contact has
inherently a layer of diA'erent properties or if a
thin layer of entirely different material exists at
the boundary, then we may have an artificial
blocking layer.

A conducting material in its normal state has
a certain density of free charge (electrons or
holes) which is balanced by an equal density of
fixed charge of opposite sign. If the layer of
substance playing the role of the blocking layer
has a conductivity lower than its normal con-
ductivity, then it must have a lower than normal
density of free charge. This is true for all natural
blocking layers. For efKicient rectification the
density of free charge in the blocking layer must
be greatly reduced below its normal value and,
therefore, becomes negligib1e in comparison with
the density of fixed charge. The potential dis-
tribution in the blocking layer is determined by
fixed space charge. We have then a simple prob-
lem of electrostatics. Most rectifier theories deal
with such cases.

In the case of artificial blocking layers the
density of free charge need not be lower than
its normal value. If the layer is inherently a good

*On leave of absence from National Tsing Hua Uni-
versity, Peiping, China.

insulator, it may acquire a much higher than
normal density of free charge when it is put in
contact with two conducting materials. Mott' is
first to treat artificial blocking layers. He as-

sumes a straight line potential distribution
neglecting space charge due to both free and
fixed charges. Such an assumption cannot be a
good approximation over a wide range of cur-
rent. The theory of artificial blocking layers is

of practical interest. A number of practical
problems involve such layers. Copper oxide recti-
hers are known to have near the contact a layer
of much lower conductivity than that of the bulk

of the oxide. ' ' Certain oxide cathodes have been
shown to possess a layer which is of different
composition, has much lower conductivity, and

shows rectification. ' De Boer and van Gee14

and Hartmann' have shown that a layer of good
insulator (e.g. , shellack, mica, sulfur) put be-

tween two conducting materials gives rise to
rectification. It cannot be readily decided
whether blocking layers in all these cases have

higher than normal density of free charge
throughout the range of operation. It is certain,
however, that all artificial blocking layers have

excess free charge density for large currents in

the direction of easy flow. It is our purpose to
treat the problem of blocking layers with excess

density of free charge where the influence of the

fixed charge on the potential distribution is
negligible in comparison. It is immaterial for the

' N. F. Mott, Proc. Roy. Soc. A171, 27 (1939).
'W. Schottky and E. Spenke, Wiss. VeroS. Siemens-

Werke 18, 225 (1939).' A. Eisenstein, Phys. Rev. 71, 473 (1947);W. E. Mutter,
Phys. Rev. 72, 531 (1947).

4 J. H. de Boer and W. Ch. van Geel, Physica 2, 309
and 321 (1935).

'W. Hartmann, Physik. Zeits. 37, 862 (1936).
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treatment whether we have conduction by elec-
trons or by holes. To be definite we shall assume
conduction by electrons.

THEORY

Under equilibrium condition the blocking
layer has a definite density of free electrons at
each boundary determined approximately by the
difference between the inner potential X (energy
of the bottom of the conduction band) of the
layer and the work function of the material in
contact at that boundary p. When the work
functions of the two materials in contact with
the layer are different, the layer will have dif-
ferent densities of free electrons at the two
boundaries. With a fraction of one ev's difference
between the work functions the ratio of the elec-
tron densities n~/n2 ——expL(pq —p~)/kT] becomes
very large. It is usually assumed that the block-
ing layer has a constant density of free electrons
at each boundary independent of the current if
the material in contact is a good conductor.
Actually we have the bottom of the conduction
band at the boundary of the blocking layer at a
constant level (p —X) above the Fermi level of
the conductor. This is because when two ma-
terials of different conductivities are in contact
there is comparatively little potential variation
in the better conducting material caused by the
contact. ' With constant (p —X) the boundary
density of electrons will not, however, be con-
stant, with changing current. Ig. equilibrium the
electron current crossing the boundary in either
direction is the same and equal to'

eeo(k T/2n rl) ~,

where eo is the boundary density of electrons in
the blocking layer when i =0. When a net cur-
rent of electrons i is crossing the boundary into
the blocking layer, the electron current crossing
the boundary from the blocking layer is

en;(kT/2mm) &,

where n; is the boundary density of electrons at
current i With con. stant (p —X) the electron cur-
rent coming from the other side is the same as

' H. Y. Fan, Phys. Rev. 52, 3SS {1942).' R. H. Fowler, Sfatisficc/ Mechanics (1936), p. 347.

in equilibrium. Therefore

i = ema(k T/2am) & en—,(k T/2n m) &,

n,;=n 0 (i—/e) (2n m/k T)&.

Consequently our boundary conditions are'

&z = ego —(i&2/e) (2sm/kT) &,

n, =n20+ (i&2/e) ( 2x m/kT) &.

For large i, n~ reduces to zero and we have
saturated emission from the conductor j.. For a
given system we are given e&0, n20 and the thick-
ness of the layer L,. We can easily calculate e&

and n2 for each value of the current. Our problem
then is to determine the potential drop across
the blocking layer for given e&, n2, I, and i.

The Poisson equation is

dE/dx = (4ne/e) n, .

where ~ is the dielectric constant of the blocking
layer. We shall assume that the motion of elec-
trons can be determined in terms of diffusion
coefficient D and mobility b. In the case of
natural blocking layers, sometimes the layer is
so thin that it is comparable with the electron
mean free path or the electric field is so high that
the energy gained per mean free path is higher
than the average energy exchange per collision. '
For such cases diffusion coe%cient and mobility
lose their meanings. For artificial blocking layers
we are not likely to have such troubles. The cur-
rent is then given by

i = nebE eD(dn/dx). —

We shall take i to be the electron current and 8
the force on unit negative charge. Then e and b

are positive and the potential is given by
V= J'Edx. Schottky and Spenke' have shown
that these equations can be simplified by ex-
pressing the factors involved in a system of ra-
tional units:

p = rl/N, y =i%0, e =E/Eo,
s= V/V0, g=x/xo, (2)

where the unit of density of electrons N is arbi-

8 After these results had been dreived the author came
upon the work of R. G. Sachs, NDRC Div. 14 Report 129
(1942) who arrived at the same results by a more elaborate
analysis.

9 H. A. Bethe, RL Report No. 43-12 (Nov. 23, 1942).
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trary and the other units are

ip = 2ebN&(pres T/K) &,

Zp =2Ãi(sr' T/K) i,
Vp=kT/e,
xp = (1/2e) N &(«k T/sr) l.

(3)

All the units depend upon the unit of density N
chosen, except the unit of potential which de-
pends upon the temperature only. %'e shall take
X to be the smaller of the two boundary values
n~ and take the origin x =0 to be at this boundary.
With the relation fs/D =e/IeT the Poisson equa-
tion for current reduce to:

d /pd$=p,
pp (dp/—d5) =v

p = ("/2) v(h+—C)

So the boundary conditions are

(13)

Putting v =0 at &=0 we have

—-', v =In [Ai(8)+ (B/A) Bi(8)]
ln—[Ai(8p)+ (B/A)Bi(8p) $. (11)

The constants of integration B/A and C in-

volved in H and 80 are to be determined by the
boundary values of p. The field intensity is

p =dv/d &
=dv/di = (2—/ss) (du/di )

= —2(v/2)'([Ai'(8)+(B/A)Bi'(8) 3/
[Ai(8)+(B/A)Bi(8)7]. (12)

Equation (6) gives

The boundary conditions are p =1 at &=0 and

p=ps ——sss/ssr at )=I/xp ——I. Integrating we get
pr =1=L"(8p)/21 —vC
ps ns/n——s [p'(——8s)/2] v(l+—C)

(14)

or
(de/d&) —(p'/2)+v]+const. =0, (5)

(«/dk) —(p'/2)+v($+ C) =o. (6)

Let I=(+ C nad

~=exp[- pJ'@a=exp[-kJ'@H =exp( -pv).

%e get
d'ss/di's = ,'vgu-

For y&0, i.e., for electron current from the
boundary of low electron density, p=1, to the
boundary of high electron density, p =ps, we get

d p/d$ = (p'/2)+ (K'/2). (15)

The determination of the integration constants
would involve laborious calculation. Fortunately,
the properties of the functions Ai(8) and Bi(8)
are such that for large values of e a great simpli-
fication results. Since the unit of v, IeT/e, is very
small, we shall be interested primarily in large
values of e. The details of the method of calcula-
tion are given in the appendix.

The solution (7) is inapplicable for v=0 be-
cause then we cannot go from (5) to (6).Equation
(5) can in this case be written

d'ss/d 8' = 8ss,

8=I [v/2]l=(&+C)[v/2j'

(7)
The solution is obtained by straightforward
integration:

p = K tan(K/2) ($+Ks),

p = K'/2 COS'(K/2) (p+ Kr).

cos (K«r/2) = «'/2,
cos'(K/2) (I+ K~) = «'/2ps.

For comparison with experimental results, the
slope of v versus y curve at y=0 is often im-
portant. This resistance can be calculated in the
following manner. From the second of the general
equations (4) we get, upon integration,

I=AAi(8)+BBi(8). (9)

The values of Ai(8) and Bi(8) can be found else-
where in tables. "The potential is given by

—spv=lnA+ln[Ai(8)+(B/A)Bi(8) j. (10)

For y &0 it is more convenient to treat it as a (16)
current v'&0 Rowing from a boundary p~' ——1 at

The integration constants are determined by
quantities are now rationalized with N =n, .
Equation (7) is known as Stokes equation. When
the quantities involved are all real, it is conveni-

(17)
ent to express the solution in terms of Airy
integrals:

"Brilisk Association 3Ealkemagcal Tables (1946), Part-
Volume B.

v =v (d(/p)+»(ps/pi).
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It follows that
~l

dvld7 = dk/p (18) «'»d «/d (. (23)

v. In fact, comparing (19) and (5) we see that
the approximate solution will apply if

To obtain dv/d r at r
—0 we }iave on]y to use Mott and Gurney taking for the average value

d«/df «/I get from (23) the following condition
for the applicability of the approximate solution:

APPROXIMATE SOLUTION @~le))1. (24)
When the current due to diffusion is very

small compared with the current due to the field,

j dp/d$
~
((

~
«p j, this term can be neglected in

(4) and (5) becomes

«'/2 =y$+const. (19)

Denoting the boundary value of electron density
at &=0 by po, we get

«= L2~t+(v/p. )*7',
p =~07k+(~/po)'7 ' (20)
v = (v'/3) L(21+ (v/po') ) ' —(v/po') '7

This is essentially the solution given by Mott
and Gurney. "They also pointed out that for

y/P«3«21 or y(&2/PII' y = (9/8) (v'/P); (21)

for

y/P«'»2l or p»2lPII', p =vPII/l. (22)

We note that the solution contains only one
boundary value of p, i.e. , the boundary from
which the electrons flow. As is shown in the
appendix, for large v the influence of p at the end
boundary on v becomes small. The approximate
solution will thus be expected to apply for large

This condition may be too lenient since, strictly
speaking, (23) should be true for all g. On the
other hand, for the assumption and the result of
the approximate solution to be consistent, we
should have, by substituting (20) into (23),

L&v 5+ (v/po)'7'»v (25)

This will be true for all $ if it holds for (=0, i.e. ,

y» pp~.

This condition may be too stringent. If l is not
too small, then for very large p«(25) may be
satisfied for most part of the layer even though
(26) is not satisfied. Let us denote qadi

——PII& and
yc«=2IP«3. Provided (24) is satisfied, we may
expect that for y&yci (20) may not be good
approximation, for yc &y&(A@2 the solution
should be closely represented by (21) and for
y&pc~ and y))A@2 the relationship between the
current and the potential drop should be very
nearly a straight line (22).

RESULTS OP CALCULATION

Figures j. and 2 show the calculated electron
density p, electric intensity «and potential drop

l'3
p ~ I

V«a

p s I

P: IV@0

23

0

FiG. i.
"N. F. Mott and R. W. Gurney, Electronic Processes in

Ionic Crystals (1940).
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v for the equilibrium condition, y=0, and for
two values of current, y=i and y=5, flowing
in the direction from the boundary of p~ ——1 to
the boundary pp=1000. It is seen that as the
current increases, large p, due to its large value
at the boundary toward which the electrons are
flowing, is restricted to a smaller and smaller
region. For currents in the reverse direction we
will have just the, opposite situation. For large
currents, when the approximate solution becomes
justified, the electron density over most part of
the layer depends only upon its value at the
initial boundary. This is basically the cause of
rectification in this model. The field intensity at
the initial boundary may be negative for small
currents (see curve for y =0). It becomes positive
for large currents and will increase with current.
It mill, however, always be the lowest in the
whole layer because d p/d$= p &0. The sharp rise
of e at the end boundary is required to balance
the large gradient of electron density in this
region. Although it may be quite large even at
y =0, it increases very slowly with current. The
potential is not greatly aAected by the sharp
rise of e at the end boundary as this is restricted
to a small distance.

Figures 3, 4, and 5 show the relationship be-
tween current and potential drop in the blocking
layer. These curves are calculated for constant
p& and pp. The more correct boundary conditions
(1) can be written

copper oxide rectifiers below we shall see when
the variations in p~ and pp become important in
an actual case. For not too large y when p~ and

p2 are approximately constant we have general
curves for different values of pp/p~ independent
of the absolute value of nip. Curves of Figs. 3—5
are so calculated. They show general character-
istics under this approximation. In interpreting
these curves it should be borne in mind that the
values of / and y are relative only since their
units depend upon nj. The values of v are definite
for a given temperature, its unit being IpT/e. It
should also be pointed out that v is the potential
drop across the layer. The applied voltage is
v,p. =v —v~=p. The values of v~=p is In(pp/p~),
thus for Pp/Py=1000, v& p=6.9.

It is interesting to compare these curves with
the approximate solution (20). The values of
pc~ and yc2 for these curves are given in Table I.
We see from this table that in all three figures
the curves for the direction of high resistance

pg = 1—yprbngp&(2np/z) l,
pp ——ppp+yprbngp&(2np/E) &,

(27)

taking N=sj, p. When the values of ni. p and n2p

are known, we have no difficulty in applying
these boundary conditions. In the discussion of FIG. 5.
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Tmz.E I. Values of yacc and yC'g.

Flg Curve

Direction of high resistance 1
3 Direction of low resistance pg 10 31.6

Direction of low resistance p~ 1000 31600

3
300

3X108

Direction of high resistance
4 Direction of lour resistance pg 10

Direction of low resistance p2 1000
31.6

31600

10
1000

10T

Direction of high resistance
5 Direction of low resistance p2 10

Direction of low resistance pg 1000

1 40
31.6 4000

31600 4X 10'

should agree well with the approximate solution.
The points shown by circles in the enlarged
plots are calculated by using (20). We see that
they actually check we11 with the curves. Most
of the curves in Figs. 3 and 4 are for y&yc2,
they are accordingly approximately straight
lines with slopes I/po=L The curve in Fig. 5
approximates the square law (21) since it is in

the range ya~&y&yc'2 for the most part. In the
direction of low resistance the approximate
solution should hold for the curves p~ = 10.
Points calculated by using (20) are shown by
circles. They do agree well with the curves.
According to Table I, solution (20) may not be
good approximation for the curves pq = 1000.The
points calculated according to (20) are shown by
crosses. The agreement with the corresponding
curves are not very good. In the case of Fig. 3
the deviation is quite large.

It is interesting to note that according to (22)
for su%ciently large currents the ratio of re-
sistances in the two directions becomes p&/p~,
independent of l. But comparison of the calcu-
lated curves shows that the larger the thickness
the poorer is the rectification at small voltages.

DISCUSSION

The essential point of our theory is that it
takes into account the space charge due to cur-
rent carrying charge, whereas the fixed space
charge is considered negligible in comparison. As
pointed out in the introduction, this theory
should apply to all artificial blocking layers, at
least for sufficiently large currents in the direc-
tion of easy Row. A natural blocking layer should
disappear with the current approaching infinity
(resistance approaching zero) as the applied
voltage approaches (kT/e)ln(nI/nq)P which is

usually around a few tenths of one volt. Mott's
theory of artificial blocking layers, ' which like-
wise neglects the free space charge, also predicts
that when tne voltage applied to the layer in
the direction of easy How approaches (kT/e)
In(n~/n~), "the resistance of the contact (layer)
should drop to a value comparable with a slab
of the semiconductor having the same thickness
and should thus be independent of the field. "
Mott was referring to an artificial blocking layer
of the same material as the bulk semiconductor
only with fewer impurity centers; i.e. , the density
of free charge carriers n2 of the blocking layer
at the boundary with the semiconductor is the
same as the normal eo of the bulk semiconductor.
If the layer is of a di8'erent material, the n2 is
not necessarily the same as no, but the conclu-
sions of this theory will be essentially the same:
when voltage applied in the direction of easy
flow approaches (kT/e) In(n~/n~) the resistance
of the blocking layer should drop to a value
corresponding to the normal resistance of a slab
of material, with free charge carrier density e~,
having the same thickness as the layer, and
should thus be independent of the field. Accord-
ing to our theory the resistance of the layer
should also reach such a stage as is shown by
(22), but not necessarily at V,~. = (k T/e)
In(n2/n&), which is only a fraction of a volt.
Equation (22) becomes valid only when y)) 2lpom.

In fact, all our curves for p~=1000 in Figs. 3—5
cover ranges of y far below 2/pp, although the
voltages reached are considerably above (kT/e)
In1000 (0.1'H volt at room temperature); as high
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as 800kT/e in Fig. 5. This essential difference

between the results of our theory and those of
previous theories brings out the efFect of the free
space charge.

Thermionic oxide cathodes with coating con-

sisting of Bao and nickel core containing a small

percentage of Si have been found to form a
layer of Ba2Si04 between the core and the
coating, ' having a much higher resistivity than
the coating. Such a layer exhibits rectihcation. "
In the direction of easy How for voltages as high
as several hundred volts across the layer (inter-
face), its resistance continues to decrease. Such
behavior cannot be explained by the previous
theories but can be understood in the light of
our theory.

Copper oxide recti6ers have been found to
have a high resistance layer near the contact due
smaller concentration of excess oxygen near the
contact than in the bulk oxide. This is a case for
the application of our theory. Figure 6 repro-
duces the data given by Brattain. "The capacity
C is given to be of the order of 2)(10 ' micro-
farad/cm'. From this the thickness of the block-

ing layer can be estimated:

I.=k/4zC=5. 3X10 ' cm,

taking ~=12.' The curve shows that for the
direction of high resistance the resistance be-
comes practically constant for V 1 volt (dashed
curve). This, in the light of our theory, is the
value given by (22). In terms of ordinary units

&T =I./ebnT.

~%'. E. Mutter, Quarterly Progress Report, Research
Laboratory of Electronics, M.I.T. (April, 1947).

'8%; H. Brattain, Bell. Lab. Record 19, 153 (1941).

Taking b = 80 cm'/sec. volt' and R =1.5 ohm for
one cm' from the curve, we get ni=2. 83&10'
cm ' at the contact with copper. The value of
n2 at the other boundary will be the same as
that of the bulk oxide, the resistivity of which
is given to be of the order p=2X10' ohm cm.
In terms of units rationalized with respect to ni
the thickness is l=2.22)(10 '. We shall take
ni=3X10' per cm', e2=3)&10" per cm' and
l=3X10 '. These values give I =7.16X10 'cm,
Rg=i.87X10' ohm for one cm' and p=2.98
X10' ohm cm.

The resistance at zero applied voltage, V,~. =0,
is calculated by using (18). It comes out to be
1.63)&10' ohm for one cm'. Referring to the ex-
perimental curve (Fig. 6) we see that this is of
the correct order of magnitude, This result is
reassuring. The relationship between current and
potential drop across the layer for the direction
of low resistance is calculated by the rigorous
solution (11).Figure 7 gives the calculated curves
of i versus V and logi versus log t/. It would be
interesting to carry the calculation to smaller
values of i, especially for the logarithmic plot.
Unfortunately, we are limited by the range of
the table of Airy integrals, for the direction of
high resistance (20) is used for the calculation.
This should be good approximation for the range
covered (for o)ln(nT/nT) or V, .)(kT/e) In(nT/
nT) =0.292 volt). Figure 8 gives the semiloga-
rithmic plot of the calculated resistance of the
rectifier against the applied voltage. A constant
resistance of two ohms per cm' corresponding to
the resistance of the bulk oxide, as estimated
from the experimental curve, is added to the
calculated resistance of the layer itself, which,
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as shown by the dashed curve, divers appreci-
ably from the total resistance only for large
currents in the direction of easy How. Comparing
this curve with the experimental curve (dashed
curve in Fig. 6) we see the general satisfactory
agreement. In the direction of low resistance,
which is the imyortant region for the test of our
theory, the calculated curve drops too fast. The
previous theories would, however, give an even
faster drop, since they make the resistance of
the layer drop to the low value Rr „(shown in
Fig. 8) at a voltage V (kT/e) ln(np/n~) =0.292
volt. In fact, the slope of our calculated curve R
at V„.=O corresponds to

d lnR/d V= (1/1.91)(e/k T),

where Mott's theory gives at V p, =0

d lnR/d V=e/kT.

Thus our theory gives better agreement with
experiment than the previous theories. The re-
maining discrepancy may be due partly to some
error in the choice of constants for the calcula-
tion. The thickness of the layer is determined
from the given representative value of the
capacity. The actual value may vary from speci-
men to specimen. Furthermore, the capacity
really gives a measure of only a part of the block-
ing layer, which has low charge density. Only
with sufficient voltage applied in the blocking
direction will the low charge density extend to
almost the whole of the layer (see Fig. 1). There-
fore, depending upon how it is measured, the
capacity may correspond to a much smaller
thickness than the true thickness of the layer.
Still there may be other more fundamental
causes for the discrepancy between theory and
experiment, such as non-uniformity of the block-
ing layer as suggested by Mott. '

Our curves are calculated for constant n» and
n2. More accurate calculation should take into
account their variations according to (1). Actu-
ally the current values for the range calculated
makes little change in n2. But I» should change
according to the curve shown in Fig. 8. Although
in the direction of low resistance n» varies greatly,
the ratio n, /n, remains suSciently large for the
eA'ect of this variation on the results of calcula-
tion to be small. For the direction of high re-
sistance n» remains sensibly constant up to

V p ~1 volt. Then it begins to drop. The re-
sistance should then rise steeply. However, as
shown by Mott for copper oxide rectifiers with a
blocking layer thickness of 10 4 cm, the e8'ect of
mirror-image force becomes appreciable at ap-
plied voltages 1 volt. This eAect increases n»

and decreases the resistance. We shall not go
into the effect of the mirror-image force which
has been treated in a number of previous works. "

Schottky" has shown that selenium rectifiers
with evaporated electrodes show straight line
relationship between 1/C' and the applied volt-
age, which indicates according to his theory
uniformity of impurity (Storstellen) concentra-
tion or the absence of artificial blocking layers.
According to the same author selenium rectifiers
with electrodes deposited by cathode sputtering
have layers (of the order of 3X10 ' cm in thick-
ness) of reduced impurity concentration. For
such cases our theory should apply, at least
when the voltage applied in the forward direc-
tion approaches (kT/e)ln(np/nr).

In conclusion we wish to point out that be-
sides the various existing cases of application of
our theory, of which copper oxide rectifiers
have been discussed in detail, there is the possi-
bility of development of rectifiers with an arti-
ficial insulating layer between two good con-
ductors. Such rectifiers should have certain ad-
vantages, as pointed out by Torrey and Whitmer
(see reference 14, p. 70). Our theory will be help-
ful for such development.

APPENDIX

The functions Ai(8) and Bi(8) are oscillatory
for 8(0. Only for 8)0 do we get large values of
v. For 8&0 the function Ai(8) decreases toward
zero and Bi(8) increases continuously. For v&0
we have

Ai(8p)+(B/A)Bi(8p) &Ai(8p)+(B/A)Bi(8p),

(B/A)/Bi(8o) Bi(8o)]&Ai(—8o) Ai(8o) &—Ai(8o).

Since Bi(8) increases very fast with 8 we have

Bi(8o)&)Bi(8p),
(B/A)Bi(8o) &Ai(8p),

(B/A)Bi(8 p) «Ai(8o).

'4 H. C. Torrey and C. A. Whitmer, CrystaL Rectifiers
(1948).

'~ W. Schottky, Zeits. f. Physik 118, 539 (1942).
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Equation (13) can be written:

p = 2 (R'- 8) Ly/2]&,

R =u'/u.

From the condition at the initial boundary
Rp Ai'(80)/Ai (80) can be easily calculated. 80

can be found then from the table. For the end
boundary, 8~ = 80+ lL7/2]~, we can similarly
calculate R2 ——u'(82)/u(82) from p2. Since

(82)/+(82) = LA~'(8~)+ (B/A)»'(82) ]/
[Ai(82)+(B /A) Bi( 82)],

taking the values of Ai(82), Ai'(8, ), B~(82), and

Bi'(82) from the table, the value of B/A is
readily calculated. The term involving B/A is
signi6cant only in the immediate neighborhood
of the end boundary. It serves to adjust the
boundary value of p. Since it becomes negligible
for small values of 68=82 —8 a large p2 results
only in a sharp rise of p near the very boundary.
The density of electrons over most of the layer
is not much affected by the value of p2 (all this
is for large s). The dashed lines joining the curves
of v at the end boundary in Fig. 2 is calculated
by neglecting the term involving B/A. We see
that for v&40 neglecting this term will involve
little error.
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The theory of diffusion in alloys is discussed on the
basis of the migration of lattice vacancies in an attempt to
interpret the experiments of W. A. Johnson on diffusion in
gold-silver alloys. It is assumed that the lattice network
preserves its identity during the diffusion even though there
is a resultant vacancy current passing through any region.
It is also assumed that two types of atom, designated as A
and 8 atoms, are present in the lattice. The diffusion coef-
ficients are expressed in terms of a function p(n, ~, n~2)

giving the probability that a vacancy in jumping from one
atomic plane (designated as plane 2) to a neighboring
plane I'designated as plane 1) will interchange places with
an A atom if there are n ~ A atoms per unit area of plane 1
and n 2 A atoms in plane 2. It is found that the chemical

diffusion coefficient is related to the function p in a very
different way from the diffusion coefficients for radioactive
tracers if the latter migrate when no chemical gradient is
present. Models of increasing complexity are employed to
derive explicit expressions for the function p. It is found
that Johnson's experiments can be explained only with the
use of models that are more complex than those commonly
used, The theory of vacancy diffusion is also employed to
interpret the experiments of Smigelskas and Kirkendall
concerning the relative displacement during diffusion of
fiducial markers placed at the interface between copper
and brass. An experiment which could provide an absolute
test for vacancy diffusion is proposed.

I. INTRODUCTION

'HE experiments of W. A. Johnson' on the
diffusion in 50—50 gold-silver alloys have

raised an interesting question concerning the
theory of diffusion in alloys. Johnson investi-
gated the rate at which radioactive silver and
gold atoms disuse in the alloy as well as the rate
at which a minor gradient in composition is
made uniform. The system studied is rather an
ideal one because the constituent atoms combine
substitutionally over the entire range of com-
position in the face-centered cubic system and do

' 9/. A. Johnson, Trans. A.I.M.M.E. 147', 331 (1942).

not seem to exhibit the development of long
range order at particular compositions, as in the
copper-gold system. The specimens on which
measurements were made contained planar
gradients of the diffusing atoms, so that only one
Cartesian variable enters in the diffusion equa-
tion.

Figure 1 shows the measured diffusion coef-
fIcients when plotted as functions of temperature.
As is conventional in the 6eld, the logarithm of
the diffusion coefhcient is plotted as a function of
the reciprocal of the absolute temperature. The
upper curve represents D„ the diffusion coef-


