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A straightforward calculation along the lines of
the previous case leads to the following result for
the probability of photon emission in a direction
k into the solid angle dQ.

dP'~[e'p'/2] [1/(2v )'j
X [(nP —1)/~j[(a) &/(1+ ~) )dO. (100)

The conservation of momentum and energy
give for the angle n of the direction of the emitted
photon with the velocity v

If we calculate the total momentum transferred
to the electron per unit time, we find the ex-
pression

~k cosadP'

or for the ith component,

F; = [e'p'/4s. ][1/(1+c)]

X[(e'—1)/~v']v; "kdk. (101)

cosa——[vo/2mv jk —[1/(ae2) ~j
Thus for dQ we may write

d 0 = sinadady = (vo/2vm)dkdq.

This expression is identical with the classical
expression obtained in Eq. (77) for the static
self-force of an electron at rest in a moving
medium.
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The method introduced by Bethe and Peierls for treating
the problem of order-disorder in alloys is applied to the
problem of ferromagnetism. The method is first applied to
the Ising model of the spin in which case the treatment is
much the same as it is for the alloy problem, as has already
been pointed out by Peierls. The correct treatment of the
spin is used for spin values of $ and 1 per atom. The critical
temperatures of diferent types of lattices are investigated.
The method gives results in agreement with the rigorous
results of the Bloch spin-wave theory in that only three-
dimensional lattices are found to be ferromagnetic. The
values of the critical temperatures of these lattices are
found to lie between the values predicted by the two
Heisenberg approximations. The discontinuity of the spe-

cifiic heat at the critical temperature is computed for a
body-centered lattice and for the two values of the spin.
The magnitude of the discontinuity is larger than that pre-
dicted by Heisenberg's first approximation. The magnitude
for the spin 1 is 3.4 k per atom and compares favorably
with the experimental value for iron. The susceptibility is
computed as a function of the temperature above the
critical point. The variation of the susceptibility with tem-
perature does not obey the Curie-Weiss Law but displays
some curvature. This curvature explains qualitatively the
difference between the "paramagnetic" and ferromagnetic
critical temperatures and also helps remove some of the
discrepancy between the number of Bohr magnetons per
atom as measured at high and low temperatures.

I. INTRODUCTION

HE calculations described below are based
on the physical model of ferromagnetism

first introduced by Heisenberg. ' This model can
be described briefly as follows. Each atom in a
domain has a spin 8 which is the resultant of the

~ Some of the developments reported here are contained
in a thesis submitted in 1940 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at
Harvard University. These developments are also con-
tained in a review article, J. H. Van Vleck, Rev. Mod.
Phys. C7', 27 (194S).' W. heisenberg, Zeits. f. Physik 49, 619 (1928).

spins of individual electrons (or holes) residing
in an incomplete inner shell. The orbital moment
is quenched so that the magnetization arises en-
tirely from the spins and is, in the first approxi-
mation, isotropic. The exchange interaction in-
tegral is significant only when it refers to elec-
trons in neighboring atoms and is the same for
all such pairs of atoms of the domain. The ex-
change integral, J, is positive. The incomplete
inner sheII referred to is, in iron, nickel, and
cobalt, the 3-d shell and, in gadolinium, the 4f-
shell. It is also assumed in this model that a11



atoms are in the same atomic state so that the
same spin quantum number applies to all atoms.
Measurements at low temperatures on the satu-
ration intensity of magnetization show the num-
ber of contributing spins per atom to be non-
integral. The model, therefore, is not complete
but does have the virtue of simplicity from a
mathematical point of view.

The spin-dependent part of the exchange inter-
action can be shown to be, in vector form,

H= —2JQS, S;,

where J is the exchange integral, i and j refer to
neighboring atoms, and the summation is taken
over all N atoms of the domain. The solution of
this Hamiltonian for the energy levels is prac-
tically impossible, and consequently several ap-
proximation schemes have been tried. The most
notable of these are the two Heisenberg' approxi-
mations and the method of spin waves introduced
by Bloch.' The latter method, which is rigorous
at very low temperatures, shows that only three-
dimensional lattices can display ferromagnetism.
The criteria arrived at by the Heisenberg ap-
proximations can be expressed in the coordina-
tion number of lattice (the number of nearest
neighbors about any one atom). In the first ap-
proximation, which neglects entirely the spread
of energy levels, every lattice type becomes ferro-
magnetic at suKciently low temperatures; in the
second approximation, in which the energy levels
are distributed according to a Gaussian distri-
bution about the mean value, the criterion is
simply that the coordination number must be
equal to or greater than eight.

A di8'erent type of approximation is afforded

by the method introduced by Bethe4 and Peierls'
in connection with the theory of order-disorder
transformations in binary substitution alloys.
The method can be described in terms of the
present problem as follows. An arbitrary atom of
a domain, the central atom, and its immediate
neighbors 2e in number (2n=the coordination
number) are considered in detail. The exchange
energy (1) of this cluster which consists of only

«See J. H. Uan Uleck, Electr& and Magnetic SNscepti-
bih4ies (Oxford University Press, Teddington, 1932),
Chap. XII.' F. Bloch, Zeits. f. Physik 01, 206 (1930}.' H. A. Bethe, Proc. Roy. Soc. 150, 552 (1935).' R. Peierls, Proc. Roy. Soc. 154, 207 (1936).

a few atoms can be diagona1ized in a correct
fashion. The interaction of the neighbor atoms
with those outside the cluster and of the remain-
ing atoms with each other are replaced by an
internal field, H~, which acts on the atoms of the
first shell alone, and not on the central atom.
The internal field H& is determined by the condi-
tion that the average magnetic moment of the
central atom in an applied magnetic field Ho is to
be the same as the average magnetic moment of
an atom of the first shell in this field since, ac-
tually, there is no distinction to be made be-
tween the central atom and an atom in the first
shell. The two fields are in the same direction
since, in this approximation, directional e8'ects
are being neglected. The critical temperature is
determined as that temperature below which the
internal field does not vanish in the absence of
an externally applied field.

Conceptually, this is the first of a series of
approximations. At each stage an additional shell
is included in the part which is treated rigorously,
the remaining interactions being replaced by an
internal field which acts only on the outermost
shell. The second of this set has been carried
through in the problem of alloys and yields re-
sults only slightly di8'erent from the first. Pre-
sumably the series converges rapidly which may
be assumed to be true in the present problem as
well. It should be remarked that this approach
imposes the character of the transformation at
the critical point, namely, that of a transforma-
tion of the second kind, in which the specific heat
is discontinuous. On the other hand, the very
first approximation includes more properties of
the lattice than the coordination number because
the structure of the first shell has a direct bearing
on the exchange energy of the cluster. Moreover,
the results of this method are diferent from those
of the Heisenberg procedure since this method
yields different approximations to the higher
(than second) moments of the distribution
function.

II. THE ISING MODEL*~

The simplest application of the method lies in
the use of the Ising' model of the spin. In this

*~After this had been submitted, a paper by U. Firgau
(Ann. d. Physik 40, 295 (1941}}came to my attention.
This contains the results of Section II and uses a method
identical with that of Bethe and Peierls.

6E. Ising, Zeits. f. Physik 31, 253 (1925}.
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model the spin per atom is —,
' and the oR'-diagonal

elements of the matrix representatives of the spin
operators in (1) are equated to zero. This means
that each spin is oriented either parallel to or
anti-parallel to an applied field. Peierls~ has a1-

ready remarked that with this model of the spin,
the mathematical problem of ferromagnetism is
the exact parallel to that of order-disorder in

alloys. For this reason the mathematical develop-
ment of this section parallels closely the treat-
ment of Bethe. '

In the presence of the applied field Ho in the
z direction, the Hamiltonian is

H= —2JSp,Sg.—gPSp.Hp —gPSg.H). (2)

Here g is the spin g-factor (=2), P is the Bohr
magneton sip/2nac. Sp„S~, are the s-components
of the spins of the central atom and of the first
shell. So, has the values &-,' while S~, assumes the
values —(n), —(n —1) +(n) The. number of
states associated with a given value of S&, is just
the number of ways in which (S&,+n) spins
pointing parallel to Ho can be arranged on the
(2n) sites, or

statistical mechanics,

8 1 8
nao=Pxo InP and anq=P —xa InP, (7)

Bxp 2n Bxg

accordingly,

Pbo 1
I'—=Xo yX&+-

P yx&

mg 1 ta" '
P =xo—yxg+

P yxg

1
1,

pxg

(Sa)

1 q
'"—'

p y x&q
'"-'

I
yx~+ I

=»'I —+—
I

yxi) Ex, y )

1 y xata"—' xg y+ ———. (Sb)
x, x, y I y x,

H& is determined by setting

fSj.—VAO.

In the region below the critical point it is suffi-

cient to consider these quantities in the limit of
vanishing external field, x0=1. This yields

w(S~.) = ( 2n)! /( Sa+n)!(n —S~,)!. (3) which after some manipulation can be separated
to give

For convenience in writing we replaced gPHp and

gPH~ by Ho and Hq, jpT by T, and set
J - n a, -

exp—= sinh
T 2n —1T

n —1 Hi
sinh —. (11)

2n —1 T
Ho IIi J

xp ——exp —,xa ——exp —,y =exp . (4)2T' 2T' 2T

The partition function is

~y q
asks

P w(S&,) —
~

—
I

+x,(x,y)
—as ~ (5)

x, &x))

with the summation taken between the limits
Sa. —— nand —S~,=+n. The summation can be
performed and is

1 xg 1
P =——+— 1xp yxl+—

X(} p Xg /X'
(6)

7 R. Peierls, Proc. Camb. Phil. Sot:. 32, 477 (1936).

The average magnetic moments of the central
atom mo and of an atom in the first shell nsj, in

the direction of Ho are, according to the rules of

This is precisely the result which Bethe' obtains
in the case of binary alloys. As there, the critical
point is evidence by the fact that as the tem-
perature increases from very low values, where
Ha=(2n 1)I, t—he right-hand side of (10) ap-
proaches a minimum value of (n)/(n —1).At this
point H~ vanishes (i.e. , the intensity of mag-
netization vanishes) in the absence of Hp. The
temperature where this occurs is

I/T, = In2n/(2n —2) = Inn/(n —1). (12)

In the temperature region immediately below
the critical point the internal fie11 is given by

(H')'= 3 Jy
I

=—(2n —1)(n —1)( exp——exp—(. (13)
E 2TJ 2n T T,)

To the same degree of approximation, the rela-
tive intensity of magnetization

I =mo/0,
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is given by

or,

2n (H&)

2n —1 t.2T]

The energy for a pair which are similarly aligned
is ——,'J; for a pair which are oppositely aligned
+~J. The total energy is then

8= ——',J(¹n,+¹ng)+(1/4)¹J. (17)
2n 3—(2n —1)(n —1)

2n —1 2n

¹&and ¹&are determined by the intensity of
magnetization

J Jq
&&

(
exp——exp—~, (15)1 '1)

¹

= —',X(1+f'), Ng ———,'X(1 f)—

n& is given by

(18)

so that the saturation intensity of magnetization
increases below the critical point as the square
root of the temperature departure from the criti-
cal temperature. The complete expression for 1 is

1' = tanh(n/2n —1)(Hi/2 ), (16)

nq=

p2nq 1

~
exp—(J+H,)(k-n)(k) T

(2ni 1

~
exp—(J+Hi) (k n)—

Ek) T

(19)

as can be seen from the first of (8) and from (9).
Thus l' has the same behavior below the critical
point as does the long distance order, S, in
reference 5.

The consideration of the energy per atom is
somewhat diferent in the present case since there
is no convenient parameter which takes the place
of that which describes the local order in alloys.
This is to be expected since the numbers of the
two different types of atoms is fixed in the alloy
while here the numbers of the atoms parallel and
anti-parallel to the fields change as the tempera-
ture decreases from the critical point. In view of
this, it is rather surprising that, as will be shown,
the discontinuities in the speci6c heat at the
critical temperatures are the same in the two
cases for the same lattice types. The total energy
of a domain consisting of ¹ atoms can be ob-
tained as follows. Suppose there are ¹~spins
which point parallel to and ¹

=¹—
¹ spins

which point anti-parallel to a given direction. If
nj. is the average number of atoms neighboring a
parallel type which are also parallel, and if n&

is the average number of atoms neighboring an
anti-parallel type which are also anti-parallel,
then the total number of different neighboring
pairs which are aligned parallel to each other is

The limits in the suinmations are k =0 and (2n).
A similar expression obtains for n~ although here
the sign of H~ is reversed. The results are

J~H, q
», ~=n) 1+tanh

2T
(2o)

J+HgE= ——XJ (1+1)tanh
4 2T

J—Hg
+(1—l) tanh . (21)

2T

The energy per atom is Z/X= a. Above the criti-
cal point the energy is

so= —(n/2) J tanh(J/2'J ). (22)

On expanding the tanh functions in (H/2T) and
in using (11) and (14) the energy immediately
below the critical point is

2n'(n —1) f' H q
'

(2n —1)' (2T)

The discontinuity in the specific heat is

(23)

The total energy is, except for a term independ-
ent of P and H~,

(¹ni+¹n2)~
The total number of different pairs is ~~Vs and,
therefore, the number of different pairs which are
aligned oppositely to each other is

,'fKs (¹ni+¹ng)]. -—
( 8

~C/k=
( (.—..) I&az- ),=,.
3n'(n —1) p n

f
ln

(2n 1) E n ——1)

(24)
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HL ENERGY LEVELS OF THE CLUSTER

An advantage of the present method is that
the Hamiltonian of the cluster can be dealt with
in a correct fashion without invoking an approxi-
mate model of the spin as was done in the previ-
ous section. The Hamiltonian is

Hp ———2J Q S,"S;—Sp,Hp —Sg,Hg, (25)

where we have replaced gPHp by Hp and gPH&

by H~. The summation is taken ower the (2n+1)
atoms of the cluster and can be written as

matrix is

with

&8 A„y'

A„= JS~ m—Hg+ — (H& —Hp),
25(+1

4m2
8 =—1 —— (Hg —Hp).

2 (25'+ 1)'

Ao =J(sg+1) —mHg — (Hg—Hp)—,
2Sg+1

(28b)

(28c)

Sp Q S,+P S; S;=Sp Sg+Q S,"S,. (26)
s) 7' i&j

E , ,g +J(sg+ 1),———
&+exch =

S=Sg ——,',
s=s,+- "')

When the spin per atom is -,'and

E ,„g = +2J(sg+—1),
, ,i = —2J,

~+, ,i, = —2JS&,

S=Si.—1,
S=Sg,
S=Sj+1,

(27b)

Si. is the spin of the combined first shell; the
second summation takes account of interactions
within the first shell. This interaction is absent
in the linear chain, the quadratic layer lattice,
the simple cubic, and body-centered lattices. In
the hexagonal layer lattice, each atom of the
first shell has two of' its six nearest neighbors in
that shell; in the face-centered lattice, each atom
of the first shell interacts with four other atoms
of the first shell. The simplest cases are those for
which such interactions are absent and these
are considered first.

The vector model yields the energy values

The Hamiltonian is more complicated when
the spin per atom is 1. First, it is of third rather
than second order and second, there is a degener-
acy in the exchange energy when S&=1 for the
levels S=S~+1 and S=S~. Because of these
dif6culties, a discussion of this Hamiltonian is
reserved for an appendix.

The secular equation for the levels belonging
to the matrix (25) is of second degree and conse-
quently the expressions for the energy levels con-
tain a complicated square root of a sum of terms
involving J,Hi, and IIO. Numerical computations
of the intensity of magnetization are difficult to
perform when these expressions are used. The
internal field is small in the immediate vicinity
of the critical temperature and a series expansion
in terms of H/J is possible in this temperature
region. This expansion permits the computation
of the critical temperature, of the variation of the
susceptibility with temperature, and of the dis-
continuity in the specific heat. It is necessary to
include terms in the fourth powers of H/J al-
though the computation of the critical tempera-
ture and of the susceptibility require only terms
through the second degree in H/J. The lewels are,
for a spin of -'„

when the spin per atom is 1. A system of repre-
sentation is used in which the exchange energy
is diagonal. m is the magnetic quantum number
of the total spin S=SO+Sy. When the spin per
atom is ~ the leve1s are:

Wp(5)m) =A p+bpHg+ cg, (H~ Hp)—
+d& (H) Hp) '+ e p(Hg H—p)'—

+fg(Hg Hp) 4. (29)—
k = 1, 2 corresponds to the anti-parallel and
parallel alignments of the spins of the central

W= —Js&&p(25&H~+Hp), (28a) atom and of the first shell. A corresponding ex-
pression to be given in the appendix applies as

for m=&(5~+ p') and when jm~ &(S~—-,') the well for the case of a spin of 1. The coeScients
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TABLE I. Ratio of exchange integral to critical tempera- for a spin & and
ture (J/k T,) for different lattice types as computed by
diferent approximations. w(2n, Sa) =L($») —L($»+1),

with

Lattice

Linear chain
Quadratic layer
Simple cubic
Hexagonal layer
Body-centered
Modi6ed bodywentered
Body-centered

Number
of

nearest Spin
neigh- per
bors atom

6
6
8
8
8 1

1.000
0.500
0.333
0.333
0.250
0.250
0.0937

None
None
None
None
0.500
0.500

Heisenberg App.
I II

Present
method

None
None
0.540
None
0.3445
0.4620
0.1502

L($») =coeScient of X ~ in (X+1+X ')'" (33)
for a spin 1. The parts of the exponentials con-
taining the field strengths can be expanded in
power series, again preserving terms through the
fourth powers. The average magnetic moments
of the central atom and of an atom in the first
shell are found by

here are

Al +($1+1)y Ao +$1& bl b2

mo = gPT—
BHO

2 8
lnP. ma —— gPT——

2S BH1
InP. (34)

(2$»+ 1)
4nz2

d1, 2= ~
4J(2$a+1) 4 (2$g+1)')

m p 4m'

2J'(2$a+ 1)' E (2$»+ 1)')

16Jo(2$»+ 1)'
24m2 80m 4

(2$g+ 1)' (2$»+ 1)4)
+

1
P = P w(2n, Si) P exp ——Wi(Sim)

T

IV. THE CRITICAL TEMPERATURE

The partition function of the cluster is

(30)
(35)

one factor of H1 having been canceled from each
term. This indicates that Ha ——0 is one (an un-
stable one) solution. The quantities A and C are:

2 Ag' )

A = P P w(2n, Sa) Aao+
I 1 S1

Ak
)&exp ——, (36)

T

2
C= P P w(2n, Sg) C»'+ —C»'

k S1 T

The field Ho can be taken to be zero in the result-
ing expressions in the computation of the critical
temperature; both moments then have terms in
Ha and Ha». The consistency requirement (9)
yields the equation which determines II&

A+CHP =0,

1
+P exp ——Wo(S~m) . (31)

T

The first summation is over S1 from 0 to n; the
first of the inner summations is over ns from
m = —(Sa —-,') to m = +(5&—-', ); the second of the
inner summations is over m from m= —(Sa+-', )
to m=+(Sq+-', ). The multiplicities w(2n, 5&) of
the diferent S1 levels are obtained from the
branching rule expressed in the formula

(2n)!
w(2n, Sg) =

(n —Sg)!(n+Sa)!
(2n)!

(32)
(n —Sa —1)!(n+ Sa+ 1) !

1 1 ) Ag
+—C»'+—C»' ' exp ——,

T2 T3 T
'

A»'= P (—2d»),

(1+2n)A»' ——P }(ha+ca)'+2nca(ba+ca) },

C"=Z ( 4fa), —

(1+2n) CI,' =Q I2(1+2n)d»'+ (4+6n)cab»

+ 4(1+2n) e»c» },
—(1+2n) C»' ——Q I 2da(b»+ ca)'

+2nd»(ba+ ca) (ba+ 2ca) },
6(1+2n)C» ——P I (ba+ca) +2nc»(b»+ca) }.

(37)
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The sums are to be taken with {m {
& (Si——,') for

& = 1 and {iii{ & (Si+~~) for k =2. Only terms in
even powers of nz are involved because sums over
odd powers vanish. The summations can be per-
formed by using

1=2T+1;

+r j.
m4= —T(T+1)(3T'+3T—1).

m--r $5

(38)

The complexity of the expressions (36) and (37)
arises from the off-diagonal elements of the ma-
trix representatives of the spins. It is not possible
to perform the summations over S~ in closed
form and computation shows it is not possible to
neglect those terms which arise from the off-

diagonal elements. In fact, it is primarily these
terms which give results concerning the critical
temperature which are different from the Ising
model, and from the Heisenberg approximations.

The critical point is found by numerical com-
putation as the temperature for which A of (35)
and (36) changes its sign. Each lattice requires a
separate computation number. The critical tem-
peratures provided by Heisenberg's first and
second approximations for a spin of -,'

1- t' 4q ~

(J/T, ) i1/n, (J/T, )ii=- 1 —
~

1 ——{,(39)
n)

provide useful starting points. The results of the
computation for several lattice structures are
shown in Table I.

The hexagonal layer lattice and the modified
body-centered lattice contain interactions be-
tween atoms in the first shell. The exchange
energy for the configuration presented by the
first shell of the hexagonal layer lattice has been
solved by Serber. ' The levels in units of J along
with their multiplicities are:

Si =0 Si =1 Si =2 Si =3
—4.606 (1} —4.561 (2) —5,000 (2) —6.000 (1) (4Q)
—2.000 (2} —4,000 (1) —3,000 (2)
+2.606 (1) —3.236 (1) —2.000 (1)

—1.000 (2)
—0.4385 (2)
+1.236 (1)

R. Serber, J. Chem. Phys. 2, 697 (1934).

To these must be added the interaction of the
central atom with the first shell +(Si+1) and
—S~ for the anti-parallel and parallel alignments
respectively. The corresponding values of A„and
A,~ can be inserted into (36). The "modified"
body-centered lattice is an imaginary one in
which the eight atoms of the first shell are divided
into two groups of four; in each group all atoms
are nearest neighbors to each other but not to
any of the atoms of the other group. This is an
artificial lattice imagined in order to try to de-
termine the effect of the interactions inside the
first shell on the critical temperature. The ex-
change energy is

4

Hexqg= —2JSp'Si —2J P 8 8&

—2J Q Si 8;, (41)

A~ = —J{Si+Si'(Si'+1)+Si"(Si"+1)I,
A,„=+J{(Si+1)—Si'(Si'+1)

—Si"(Si"+1)I.
(42)

The summation over the S~ levels must be
taken as

4 81-81" 2

Q w(4, Si')w(4, Si") exp ——Ai, (43)
Si 81 Sl' T

with S~ ——Si.' —S~". S~'+S~".The m factors are
computed with (32) using 2n=4, as indicated.

The results as shown in Table I are notable in
that of the lattice types investigated only those
which are three-dimensional display a critical
temperature. This is in agreement with the
rigorous results of the Bloch theory and, perhaps,
attests the effectiveness of the present method.
Also, the critical temperatures found lie between
the two Heisenberg approximations, the second
of which is known to overemphasize the disper-
sion of the energy levels. The method also takes
into account in the 6rst approximation the inter-

W&x&g 2J50'Si JISi (Si +1) 3I

—J{Si"(Si"+1)—3 I .

Here S~', S~" are the total spin numbers of the
two groups of four atoms. The terms independent
of spin can be dropped; the energies are:
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action inside the first shell. In this respect, it
takes into account some terms which enter first
in the moment method only in the third power
of the energy. The critical temperature is found
to be lower in the modified than in the actual
body-centered lattice. The interaction inside the
first shell serves merely to increase the local order
and does not serve to increase the long-distance
order.

obvious. The numerical computation ol' the dis-
continuity in the specific heat have been carried
through for the body-centered lattice for the two
spin values 2 and 1. The expression (44) agrees
with the development in Section I I when the
specialization required by the Ising model of the
spin is made: S(S+1) and 5~(Sq+1) are replaced
by S' and 5&2 respectively. The ensemble averages
are, for the case of a spin value of -'„

V. THE DISCONTINUITY IN THE
SPECIFIC HEAT

The discontinuity in the specific heat at the
critical temperature is one of the properties of
ferromagnetics through which the theory can be
compared with experiment. Actually, this is com-
plicated by the fact that it is not certain, on the
basis of measurements of the specific heat, that
the transformation is one of the second kind.
Usually, the specific heat falls sharply on the high
temperature side of the critical point but not in
the fashion required for this type of transforma-
tion. This essential feature is easily obscured by
non-uniformity of temperature in the samples.
At any rate, the usual practice is to extrapolate
back to the critical point from the high tempera-
ture side and to measure the discontinuity from
this point to the maximum value of the specific
heat reached on increasing the temperature from
below the critical point.

The average energy of a domain of X atoms is,
since there are X central atoms

Z = -,'X( —2J)(50 Sg)A, ——-',XJI (5(5+1))g,
—(5,(5,+1))„„—5,(5,+1)I . (44)

The angular brackets denote ensemble averages
and the factor of 2 is inserted since otherwise the
interaction energy of each pair would be counted
twice. These expressions are valid for lattice
types in which the atoms of the shell do not
interact with each other; the modifications neces-
sary to take such interactions into account are

TABLE II. Values of the discontinuity in the specific heat
at the critical temperature per atom in units of k. The
computed values are all based on a spin of 1 per atom and
are for a body-centered lattice.

P((5(S+1)),—(5 (5 +1)),) = Q w(2n, S )
S1

X I(5& ——,')(5&+-,') —5&' —5&I Q

1
Xexp—W~(m, 5~)+P w(2n, 5&)1
X I (Sg+-..')(5&+2) —Sg' —5)I p

1
Xexp ——W2(m, 5)). (45)

T

In the neighborhood of the critical point, the
field dependent parts of the exponentials can be
expanded in series in H~. To terms in HP (45)
is, except for a constant term which can be
dropped,

P((5(5+1)).—(5 (5 +1)).)
1

I 2P0ep+H—'P—
S I, (46)J

with:

AI„-

2P,e, = g Q w(2n, 5~) Q Aq exp ——,
I- S1 m T

AI,
Po ——g P w(2n, Sg) P exp ——,

& S1 m T'

P3 ——g Pw(2n, Sg) Q
k S1

(&'(4+ ~~) ' J'A i AI,
X/ iA~ exp ——.

2T' '1 i T

To this degree of approximation, the partition
function P is

Heisenberg
approx. I Present

method

3.40

Experiment

3.6
H2

P =Po+—&2,
J2
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with

P2=Z E~(2~, ~~) E
k S1 tn

(J'(bl +cI,) ' J'd„) A,
X

~

—
( exp ——.(47)T) 2

The energy per atom is

1 H' )P3 P2q

2 J EPG PGj
(48)

numerical computation yields, for a spin of —,',
H'

e = ep —(0.0498)—.
J (49)

With the use of (35) one obtains, in this case,

H2 (J Jp
&T

(50)

hC/k = 1.71. (52)

The computation for a spin 1 follows the same
procedure. Here, however, the levels for S=S~
make no contributions to the quantities ep and

P~ in (46), so that in the summation over k, the
term with 0=2 must be omitted. One finds that

pHq' )I Jq
]
—

[ =404/ ——f,
&T T&

' (53)

corresponding to (50) and

)H.q
'

6 = 60 —
(

—
[ J(0.3740),

&2J)
(54)

corresponding to (49). The discontinuity in spe-
cific heat per atom is

DC/k = 3.40.

The experimental data on the discontinuity in

the specific heat is meager and not very con-
sistent for iron. Stoner' quotes the values 3.4,

'E. C. Stoner Magnetism and j/latter (Methuen and
Company, Ltd. , London, I934), p. 373.

The discontinuity in the specific heat per atom is,

hC/k = 2.05. (51)

The Ising model discussed in Section II yields
the numerical value

9'g~g r„
//

~ ~~s=~;

0.0

pig
Ql i.f 1.6 2.2

7.P

O.S5.C

z. e ~g s.a
/+c

Fir. 1.

VI. THE SUSCEPTIBKITY

The internal field is zero in the temperature
region above the critical temperature so long as
the external field is absent. In the presence of an
external field, however, the internal field is no
longer zero because of the exchange interaction.
It is because of this internal field that the Curie-
Weiss Law is not obeyed immediately above the
Curie Point. In fact, it is easily seen that the
susceptibility is increased there by the exchange
interactions and consequently the reciprocal of
the susceptibility is decreased. Moreover, the
ratio of the internal to the external field decreases
with increasing temperature so that the recipro-
cal susceptibility vs. temperature curve is convex
toward the temperature axis. The diR'erence be-
tween the "paramagnetic" and "ferromagnetic"
critical temperatures and the difference between
the low and high temperature magneton numbers
find a natural explanation in the present method.

It is legitimate to neglect saturation effects in
this region and therefore the expressions for mo

and m& as obtained from (34) need only retain
first power terms in Ho and H~. Now, however,
Hp is not permitted to be zero. H& is replaced by
H& ——Hp+H in the expressions for mp and m~. The

2.3, and 3.6 obtained by gneiss, Piccard, and
Carrard, by Umino, and by Klinkhardt, respec-
tively, and gives greatest weight to the value 3.6.
The computed value of 3.4 compares very favor-
ably with this. The Heisenberg first approxima-
tion leads to a value of 2.0 for hC/k. The results
are listed in Table II.
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internal field H is determined by the consistency
requirement to be

AIIo+&~= 0,

where A is defined by (36) and 8 is

(2n+ 1)TB= P P w (2n, S~) P
k=1 Sy

AI,
X {bj,'+ (2n+1)bgcpI exp ——.(56)

T

It is more convenient in computation to deal with
the moment of the entire cluster, m =m~(2n) +ma

than with the moment mo as obtained from (34)
m, o is then obtained by

m. = (1/2n+ 1)m.

The susceptibility is simply gPe0/Hp since satu-
ration eA'ects are being neglected. It is

Xp
TP, = Q Q w(2n, Sg) Q bp'

2n+ 1 gmP2 k Bq

Ag, H
Xexp ——+—g Q w(2n, Sg)

le S1

Ap
XQ b~(b~+ cl,) exp ——.(58)

T

A corresponding expression is obtained when

the spin per atom is 1. The computations have
been carried through for the body-centered lat-
tice for both spin values and the results are shown

in Fig. 1, where g'P'/XOT. is plotted as a function

of T/T, . The curvature is actually surprisingly
small and consequently the curve could easily be
taken as a straight line but with an intercept on

the temperature axis di8'erent from the Curie
temperature. This is called, generally, the "para-
magnetic" critical temperature. In the case of a
spin of ~, the relation between the two critical
temperatures is roughly T~=1.05', the para-
magnetic critical temperature is about 5 percent
higher than the ferromagnetic one. For a spin 1,
the curve gives T~=1.03Tf. If we ascribe a spin

per atom of 1 for iron, this leads to a paramag-
netic critical temperature which is about 30'
higher than the ferromagnetic one, a value which

is somewhat larger than that obtained experi-
mentally. From the slopes of the curves, one can

obtain ps, the number of Bohr magnetons per
atom. The values of ps would be 1.73 and 2.83
for the spins —,

' and 1 respectively. The experi-
mental value for iron" is higher than either of
these and seems to lie between 3.5 and 4.0. The
discrepancy has caused some concern since it
implies that the number of contributing spins is
different in the high and low temperature regions.
Some of the discrepancy is removed by the
present treatment, for the values of ps obtained
from the curves are 1.87 and 3.06 for spins —', and
1 respectively.

VIL CONCLUSION

The method, so far as it has been applied, is
seen to lead to very satisfactory results. Of the
various lattice types considered, only those which
are three-dimensional have been found to display
ferromagnetism. This is in agreement with rigor-
ous results of the spin-wave treatment. More-
over, in the three-dimensional lattices the critical
temperature is found to lie between the two
Heisenberg approximations in which the first
takes no account of this dispersion of the energy
about the mean value and the second overempha-
sizes this dispersion. The method applied to the
body-centered lattice with spin 1 per atom leads
to a value for the discontinuity in the specific
heat of 3.40 k per atom which is in fair agreement
with the experimentally determined value of 3.6 k
and in far better agreement than is the value
obtained by Heisenberg's first approximation. It
must be remarked, however, that the method
leads to a transition of the second kind at the
critical temperature although this has not been
established satisfactorily by experiment. Finally,
the method gives some explanation of the di8er-
ence between the "paramagnetic" and ferro-
magnetic critical temperatures as being due to
the persistence of local order of the spins above
the Curie Point, even though the long-distance
order is zero. The difference between the high-
temperature and the low-temperature magneton
numbers is partly explained in the same way.

The author is indebted to Professor J. H. Van
Vleck for suggesting the problem and for some
discussions concerning it.
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'o See reference (9), page 379.
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The system of representation of the Hamil-
tonian for a spin 1 used here is one which di-
agonalizes the exchange energy. When the mag-
netic quantum number hami &(Si—1) the Hamil-
tonian is

It A i I3 0
I3 Ap C

(0 C Ap) Sa=0, 8'= mHp,

When Sa=1, there is a degeneracy in the ex-
change energy for the levels S=Si and 5=Si+1
and this case must be considered separately. S
has the values 0, 1, 2 so that the Hamiltonian is
of third order for m=O, of second order for
m = ~1 and of first order for m = ~2. The energy
levels can now be obtained through the fourth
power terms in the field strengths and are

with

A i ——2J(Si+1)—mHi ——(Hi —Hp),
Sa

A, = 2J m—H, +— (H, —Hp),
Si(Si+1)

A p
———2JSi—mHi+ (Hi —Hp),

(Si+1)

i+ 1 SiP —m'
(Hi —Hp),

Si (Si+1)(25i+1)

Si (Si+1)'—m' &

C= (Hi —Hp).
Si+1 Si(25i+1)

Sa=1, m =0,
1

W=4J+ (Hi H—p)'—
9J
1

(Hi —Hp) 4, (63)
9/2 J'

+1
W= —2J~ (H, —H,)

(Hi —Hp)'
18J

(Hi —Hp)'
648J

C'i
C' (60)

Here, as in the text, the factors gP in the mag-
netic energy have been absorbed in Ho and Ha.
When m = ~Sa the matrix is of second order

+ (IIi—Hp)4, (64)
1944J'

(65)

S,=1, m=~1, W= —2J~H„
W= —2J+H„

with

Ap'=2 JWSiHi& (Hi —Hp),
(Si+1)

Sa
Ap' ——2JSiWSiHia (Hi —Hp),

(Si+1)

C' = (Si)&(Hi —Hp),
Sa+1

Si ——1, m= +2, W= —2JW(Hi+Hp).

When Sa&1 the energy values are

Wp(Si, i m) =A p+bpHi+cp(Hi Hp)—
+8p(Hi Hp)'+ ep(Hi Hp—)'—

+fp(Hi —Hp)', (66)
where

A i ——2J(Si+1), A p
———2J', A p

———2JSi, (67)
when m = &(Si+1),the matrix has the one term

A p" = 2JSiw (Sl+1)Hlw (Hi —Hp)
=2JSa+SaHaWHo. (61)

ba=b2=bs= —m) ca= )

Sa

(59), (60), and (61) hold for all values of Si except
Sa=0 and i. When Sa=O, the exchange energy

Cq= ep=+
Si(Si+1) Si+1
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(5,+1) ( m' i
2J(Sg+2) (25g+1) & SP)

1 Sg ( m'
¹

2J(25g+1) Sg —1 E (Sg+1)')

Sg+1 ( m')

Sg+2 & SP)

m2
1—

2 J(Sg —1)(25)+ 1) (Sg+ 1)'

1 ( m

8J'(Sg —1)(25g+1) ( (Sg+1)')
m2 SP

X
Sg(Sg+1)' (Sg —1)'(25g+1)

m' 1
xt 1 —

! +
(Sg+ 1)') 8J'(51+2) (25'+ 1)

m' ) (S +1)' ( m'i
x 5|') (5/+2)'(25$/1) ( SP)

m2

m
t's =+ I1-

4J'Sg(5)+2) (25i+1) E

m 'i
S, )

(5 +2)'(5 +1)
35'(Sg+ 1)

+
8J'(Sg —1)'(Sg+2)'(25)+1)'

m 1
82= ——

4J'(25', +1) Sg(5)+2) (
m 'i
5, )

1

(Sg —1)(5)+1) E

m '

(Sg+1)')

8g= ——
4J'(Si —1)(5|+1)(25i+1)

m'
X 1—

(5,+1)')

1 m'i

8J'(25g+1)(Si+2) ( Sin)

m2 (Sg+1)' (
(Sz+1)SP (Sg+2)'(25, +1) (

5|(5|+1) ( m'

(5|+2)(25)+1)' i (Sg+1)')

m 2 i
S)2)

m'i ( m'
X 1—5') E (S+1)')

—1 t'

8J'(Sg —1)(25g+1) &

m2

X +
I Sg(Sg+ 1)' (Sg —1)'(25)+1)

( m' ) 5&(5&+1)
X! 1- !+

(Sg+ 1)') (Sg —1)(25|+1)'

(xI1—
5, ) I

The. summations over m where indicated are

m= —(Si—1). +(Si—1) for S=Si—1,
m= —Si . . +Sj. for S=S~,
m=(Si+1) +(Si+1) for 5=5,+1,

and can be performed by use of (38). The enquire

procedure followed for a spin —,
' can be repeated

for a spin 1 using the energy values given here.
The multiplicities of the di6'erent Si levels are
given by (33).


