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The quantization of the phenomenological field is carried through with the presence of
charged particles described by a Dirac Hamiltonian. The elimination of the longitudinal field

presents some features which are qualitatively diferent from the vacuum case. In the first
place the Coulomb energy has an angular dependent term. Further the elimination procedure
introduces an additional term in the interaction Hamiltonian which is proportional to the
medium velocity. The physical significance of this term is clarified in the discussion of the
Cerenkov radiation which is carried through in the two coordinate systems: medium at rest,
particle moving and particle at rest, medium moving. The result for the total radiation emitted
is in agreement with the corresponding classical calculation.

VXE= —8, VXH=D+s,

v B=o, v D=&,

(1)

(2)

(3)

A. CLASSICAL FIELD WITH CHARGES

' "N the first part we have developed the classical
~ ~ and quantum theory of the pure radiation
field in a refractive medium. In this part we
shall study the interaction of charges with the
field. In classical field theory the charges and
current density together form a four-vector
density which we may call j&. Here j'= p is the
charge density and j"=s~ (k=1, 2, 3) is the
current density. Maxwell's field equations are
now in rationalized units of the charge (such that
e' =4s /137)

field where e and p, entered only in the com-
bination e'=op. In order to have the radiation
field only dependent on e' we have defined the
tensor +„different from the usual way' by
multiplying it with p. For the radiation field the
equations for Q,„are thereby not changed since
they are homogeneous. However, when sources
are present the p shows up explicitly either in
the definition of the G~„or on the right-hand side
of (6). We have maintained here the definition
of the G~„ for the pure radiation field and cor-
respondingly find the inhomogeneous field equa-
tions in the form (6) and therefore in the fol-

lowing all the expressions for the energy will

occur multiplied with p. The continuity equation
for charge and current density is then

0
Charges and currents are connected by the con-
tinuity equation Equation (5) is the same as for the radiation

field and permits the introduction of the vector
(4) potential pqj+V j=0.

Introducing the tensors F"I" and G"& of Part I Fxp ~xfp, ~fx. (9)
Eqs. 4 and 5, Part I we may write Eqs. 1,

(2), and (3) in the form
The field equations for the potentials are then
from 6:

8),F„„+8„F„g+B„Fg„=0,

B„G""= p,j",

Gap = +ig+ ii(+iw&z —~i e~p)&'.

(5) ( Bl'8„+B„i—i"B.s )4"=pj". ' (10)

(6) Here we have used again the subsidiary con-
dition

X=8l'$ —aV 8 qual'V =0,
It is seen that in Eq. (6) the constant p enters ' See, for instance, W. Pauli, Encyklopadie der muth. IViss.
explicitly in contradistinction to the radiation (B.G. Teubner, Leipzig, 1921), V. 19, p. 655.
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and for 0" we have, as in Part I,

gX @X Keir@ P)

B. LAGRANGEAN FORM OF THE FIELD
EQUATIONS

(12)

and the Hamiltonian is then

IZ = ~3Cd'x

with
(20)

(21)

where EP is the expression given by Eq. (25),
Part I, and

If we consider the current density vector j&
VVe may decomposite it into the two

as a given space-time f'unction, then the classical
field equations (9), (10) can be derived from the H =H'+H',
variational principle.

where

Ldx'=0

L =L'+L' = Zd'x.

(13)

(14)

(22)

The Eqs. (7), (9), and (17) are then equivalent
with the Hamiltonian equations

L' = Z'd'x, (15)

' =+vi.4" (16)

The Euler-Lagrange equations which follow
from (13) are

Jo is given by Eqs. (15), (16) of Part I. For I.'
we have

11„= Ia/Sy, —j = SH/&II„ (23)

Since this Hamiltonian differs from the Hamil-
tonian FP of the radiation field only through the
presence of the interaction term H' (22), we may
find an explicit expression for it in exactly the
same way as the expression (30) in Part I was
derived. Thus for the Maxwell case (that is, sub-
sidiary condition X=O (11) satisfied) we may
write

01

il"(8/88"~) —(8/8&») =0

~'(gx ~u'») x = wj». (17)

1
~0

2 1+Kvo'
II 11+2iivo(vXW II)

(II v)'+~(vX(vXW) W)
1+K

These equations are identical with (10). If we
impose the subsidiary condition (11), they
become identical with (6). From (17) and the
continuity equation (8) follows

+ ', W W+II Vy, . (24-)

(a"a& K~"»a~—„)x =0,
The last term may be transformed in the fol-

(18) lowing way. We have

exactly as for the radiation field. Just as in the
latter case one concludes from this that the sub-
sidiary condition (11) is identically satisfied if
it is valid together with its time derivative at a
given value of the time t =0.

C. HAMILTONIAN FORMALISM 7 ~ II= i' +2 ( i')v'X. — (25)

11 V'4o=w (II4o) —(V II)yo.

Here the first term is a space divergence and may
be omitted from the density func'tion since it
contributes nothing to the integrated Hamil-
tonian. For the second term we get from (19) and
(17)

BZII„=—
~(~o4")

= G„o—(g„'—iii ov„)X (19)
(26)H =Ho+Hy,

The canonically conjugate variables II„are
Since the last term is zero, if 11 holds we may
replace the last term in (24) by y joooo. For the
total Hamiltonian density we obtain thus
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ttII,= - II Ir+2~p(vXW 11)

+ (II v)'+»(v&((vXW) W d'x
1+~

+~p t W Wd'x, (27)

(28)

D. QUANTIZATION

The quantization procedure for the field with
charges can be carried through in exactly the
same way as for the radiation field. For the
charge and current we shall assume here that
they are described by the charge and current
operators of the Dirac theory for particles of spin
~. Furthermore, we shall introduce the Hamil-
tonian for the particles alone. In order to simplify
the procedure and also to avoid the wel1-known

divergence difFiculties of the hole theory, we
describe the particle system in configuration
space.

For' the charge and current density operator
we have in the Dirac theory

+(x) =(2v)—I
i,

d'kQ(1t)e'~ *

II(x) =(2)r)—I ~dPkP(k)e '" *
~J

(34)

In order to distinguish the longitudinal and
transverse components we introduce again the
special coordinate system e~, e2, e3 for each k
defined in Eq. (61) in Part I.

written

HQ(g; I7), I7p, t) =iQ(g; g&, &7p, t) (33)

with H defined by Eqs. (32), (31), (30), and (27).

E. ELIMINATION OF THE LONGITUDINAL
FIELD

The elimination of the longitudinal com-
ponents of the field in ordinary quantum electro-
dynamics leads to the Coulomb interaction
potential between the charged particles. We
shall now carry out the analogous calculation for
the field in a refractive medium. To that end we

go into momentum space with the transformation
formula

p x) =Q„e 8(x—x„),j x) =P„e„e„b(x—x„). (29)
P =P('&e&+P(P) ep+P(P&ep

1

Q —Q(&)e&+Q(P) ep +Q(P) e P
(35)

Hp =H""~+H"

with

Here the index n is the particle number with the The Hamiltonian for the field may then be
charge e„. I„is the Dirac matrix vector and I„is
the position vector of the nth particle. With these
expressions we obtain for the interaction Hamil- (36)
tonian (28)

H, = —p g„e„e„y(x„). (30)

For the particle Hamiltonians we have the mell-

known expressions

(31)

H=Hp+Hg+H . (32)

The Schrodinger functional depends now besides
the field variables g also on the particle variables
which we symbolically denote with g&, g2,gI„.Thus the Schrodinger equation may be

and for the total Hamiltonian of the system we
write therefore

IPr a ~day ~(»+~(i)
1+»vp

~v' sin'np
+&(p)+&(p)

I
1+ 11

1+» j1
»'v' cos'n

+gpss 1— IQ(&)+Q«)

»v'
1Q(»+Q(p)

1+xvp']

—2»jv'(v k)(Q('&P("+Q("P('&), (37)
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II)ong
1+gvo'

gv' cos'a
P(g)+P(»t 1+

J (46)p(k) =(2s) & P e.e'g'g".

Eq. (29) and therefore for p(k) we obtain from

(40)

—2.ivokv
t
slna

t
Q&»P(»

tN2
(P(&)+P(&)+P (g)+P(&))

1+K

Inserting this in (44) we obtain

p
Hg P e„e„

~

2(2s)&) 1+gv&)' . ' ~ k'

g (v k)'~
X

t
1+ ! exp[ik. (x„—x„)]. (47)

g+1 k'
This expression may be transformed with the

help of Eq. (25) which may be written (since These integrals can be evaluated if we drop the
xQ= 0) divergent self-energy terms and we find thus for

(~ 11+pp)II=0 (39) the Coulomb energy

If we develop p(x) into a I ourier series according
to the formula,

1 e„e„ K

II,= P — 1+—

p(x) = (2w)
—

& d'kp(k)e-'* "

Eq. (39) may be written

I
—iP (» (k)k+ p p(k) t 0=0, (41)

which must hold for all values of k. This means
that for a Maxwell field we get an equivalent
II'"g if we replace everywhere P&"(k) according
to the equation

VKP,

H2=
v2(1+ gv&)') &

v k
d'k

t
sina

t

— —Pv'k
P k(g+1)

(vX(x.—x. ))'
X (48)

tx.—xn t' 1+gvo'

The second term in (43) given by expression

(45) is a non-static interaction term. We write
it by introducing the emission and absorption
operators (Eq. (70), Part I)

P "(k) =i(p/k) p(k) (42) X [&) (k) p(k)+() +(k)p'(k)], (49)

II""~=H +H,
1 1 ( gv' cos'a)

!II, = — d'k{—1+
21+gv'~ L g+1 )

(43)

p'p+(k)p(k)
X (44)

k~

Hm ——
1+np2 &

sin&
I d'k pp(k)

i(v.k)
P &')+(k) —kv'Q&" (k) . (45)

k(g+1)

In this way me obtain for H""& an expression
which me conveniently separate into tmo parts
as follows:

0"=SQ (50)

where P is given by Eq. (73), Part I.
This result differs in two respects from the cor-

responding result in the vacuum theory. Equa-
tion (48) shows that the Coulomb law for two
particles at rest in a moving medium is modified

by the presence of an angular dependent term.
The second difference is the appearance of an
additional interaction term H2 which depends on
the medium velocity and goes to zero with the
latter. The physical significance of this term mill

be discussed in connection with the problem of
the Cerenkov radiation.

The elimination of the longitudinal field can
now be completed by introducing the Schrodinger
functional

The expression H. is the generalization of the
Coulomb energy for moving media. For the
density corresponding to point charges we have

p
S=exp — —Q&')(k) p(k)d'k . (51)
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8p,
4'=(22r) '

I e'"*d»k.
k' —K(v. lt) ' (59)

In order to evaluate the integral we assume first

The transformation operator 8 has the property From (57) follows then for F(k)
that it commutes with all the variables which
occur in H", H', H, H», and H2 except with the
particle momentum y„which occurs in H, the
Hamiltonian for the particles. One verifies easily
that this momentum operator satisfies the com-
mutation rule

[P 8]= —e iig" '(x.)S, (52) w2( j.. (60)
where P" ' is defined as

p" K(X) = (22r)
—

& ' e3Q&31(k)e'k %3k.

Writing further

(53)

By a convenient choice of the coordinate system
we may assume the direction of velocity to be
the 3-direction. Introducing further the new
variables

kl k1 k2 k2 k3 k3(1 Ks )
1—

We obtain finally for the Schrodinger equation we obta, „fo„(59)
for 0,

HO" =zQ",

H=H"+H'+H +H +H

@0 (22r)-3[e+/(1 K&2) $] 7eik' 2'/k12$3kl.

(55) or
@'= (1/42r) [eii/(1 —Ks') &](1/ {

x'
{). (62)

With the exception of H» the various terms are
defined in Eqs. (37), (44), (31), and (49).

H» is now given by

For a general coordinate system this may be
written

Hi —i3 g e„e——.p"(x„). (56) e'=(eii/42r) {x'(1—Kit')+K(x V)'} & (63)

{—V'+K(v. V)2}&=ep,b(x).

We write the solution as a Fourier integral,

+'= (22r)-3 I F(k)e"%3k (58)

F. THE CLASSICAL FIELD OF A POINT-
CHARGE AT REST

In the following sections we shall discuss a few

applications of the theory so far developed. As a
first example we shall study the classical field
around a particle at rest in a moving medium.
Since the classical equations hold also for the
expectation values of the field quantities, we

may consider the Eqs. (9)—(12) as the differential
equations for the problem.

Let e be the charge of a particle at rest located
at the origin. The density function is then
j' =eh(x). The currents j» vanish (k = 1, 2, 3).We
want stationary solutions of the differential
equations (1) which vanish at infinity. They are
of the form 4'~=0, &~0. & is the solution of

giks'x8'

I= Idk'
J ki'2+ k2'2 —k3'2

(64)

There are two diferent solutions possible which
are real according to whether we displace the
path in the upper or lower half-plane around the
two poles k3' ——&(ki"+k2'2)&. ln the rest system
of the medium these two solutions correspond to
the advanced and retarded potentials, respec-
tively. The principle value, on the other hand,
gives a linear combination of these two solu-
tions. Just as in the case of the advanced poten-
tials, we must exclude the first solution on
physical grounds. We obtain in this way for E

On the other hand, if eo'&1 the integrand of
(59) has two poles for real values of lr. We shall
again choose the notation (61) and carry out
first the integration over k3'. In order to make ks'

and xs' real they are now defined as

k3' ——k3(Kv2 —1)&, x3' ——x3/(Ks» —1)&

and the integration over k3' gives
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with the residue theorem

0 for xp'(0]
+2pr(sinkxp'/k) for xp')0]

with k = (kiP+kpP) &, and, consequently,

8p
+P = (2pr)

—'
(Kv' —1)& ~

r e'" x sinkx3'
} d'k

Integrating over the angles first this gives

P = (et'/2 pr) [1/(Kv' —1)&]

(65)

(66)

G. THE SELF-FORCE ON A PARTICLE AT REST
IN A MOVING MEDIUM

We consider now, still in the classical case, the
net force which the field exerts on a particle at
rest when the medium is moving. In vacuum
electrodynamics this force is, of course, always
equal to zero since the field is spherically sym-
metrical around a point particle. However, this
is, no longer the case when the particle is at rest
in a moving diffracting medium.

According to Lorentz the four-vector density
of the force is given by**

X Jp(kr) sinkxp'dk, (67)

(r = (xip+xpp) &) .

fy tiFpvj '

For a particle at rest this reduces to

f;=t F,pv, fp=0

(72)

(73)
The last integral can be evaluated with the help

The total force on the charge is then

Jp(at) sinbtdt =
1/(b' —a') & b) a

F; =tJ, Fpp( x)
d' x. (74)

,t, , t th In order to evaluate this expression we assumeHence after transforming the result back to the
a charge distribution p(x) with the Fourier

general coordinate system,
expansion

for x v(vr(«v' —1)&

(et'/2pr) I }x~'(1—«v')+K(v x)'} & . (68)

f
p(x) = (2pr)

—& d'k p(k) e—"*. (75)

for x v) vr(«v' —1)'. The field strengths are then by the obvious
generalization of Eqs. (59), (71) for a continuous

where except inside the cone ~ven by charge 'stn ut'on

x v=rv(«v' —1)&.

On the cone itself the solution (68) becomes
infinite. * From (68) and with the help of Eqs.
(12) and (9) it is easy to obtain the field strengths.
Since

vp' }(2pr)
—'p d'k

1+K

k,p,
2

e'"'*-"'t (y)
O'-K(v k)

C'= 4'"+ [K/(1+ «) j+ v.v",

C * = LK/(1+ K) jvp%'v',
C ' =O'L1+ (K/(1+ K))v'vp j,

the field strengths are given by

(70)

and hence for the force (74),

( K ) t k~ti
F, =} vp' —1 }p ~ d'k

&1+» ) ~ k' —«(v k)'

F,, = LK/(1+ K)]vp(8,v, —B,v;)4 P,

F;p ——8,% pL1+ (K/(1+ K))v'vp j. (71)

2See G. N. Watson, Theory oj' Bessel Functions (Cam-
bridge University Press, 1922).

*We notice that the expression (68), insofar as it is
diferent from zero, is twice as large as (63). This means
that the field simply "folds over" to the inside of the cone
(69) for velocities e larger than x &.

Xv( )p( —k). (76)

Since the integrand in this expression is odd, we
see that Ii; =0 if the denominator has no singu-
larity, that is, if m' & 1. In the other case

**The explicit appearance of the factor p. in Eq. (72)
comes from our definition of energy and momentum of the
field.
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(m')1), we must evaluate it again with the
path of integration chosen according to the
solution (68). In this way we obtain again with
the residue theorem the expression:

2x2 xv' —1

1+~ ~v'
('77)

4
p

kdku'p(k) p( —It)

for spherically symmetrical charge distribution.
For a point charge p(k) =e(2s.) I, independent

of k and the integral (78) is divergent. This
means in a medium with constant e and p, a
point particle can never be accelerated to a
velocity such that av'&1. The situation is dif-
ferent, however, in a dispersive medium. In that
case the factors in front of I will be frequency-
dependent and will therefore go under the
integral sign. The integral is then always con-
vergent provided ~—+0 for k—+~.

'P. A. Cerenkov, C. R. Acad. Sci. U.R.S.S. 2, 4S1
(1934); 3, 413 (1936); 14, 99, 103 (1937); 20, 651 (1938);
21, 116, 319 (1938); Phys. Rev. 52, 378 {1937).G. B.
Collins and U. G. Reiling, Phys. Rev. 54, 499 (1938).H. 0.
WyckoE and J. E. Henderson, Phys. Rev. 64, 1 (1943).

4 I. M. Frank and Ig. Tamm, C. R. Acad. Sci. U.R.S.S.
14, 107 (1937). Ig. Tamm, J.Phys. U.R.S.S. 1, 439 (1938)."A quantum mechanical treatment of the Cerenkov
radiation has also been given by V. L. Ginsburg, J. Phys.
U.R.S.S. 2, 441 (1940).However, the relativistic invariance
and the ebmination of the longitudinal ield are not dis-
cussed in this paper.

H. THE CERENKOV RADIATION

%'ith Cerenkov radiation one denotes the
radiation emitted by a charged high speed par-
ticle traversing a refractive medium with a speed
so high that xv'&1. This radiation is essentially
different from and must not be confused with the
bremsstrahlung. It was discovered experimen-
tally by Cerenkov in 1934 and subsequently
studied by other workers. ' The classical theory
of the radiation was given by Frank and Tamm. 4

We shall here develop the quantum-mechanical
theory of' the radiation by using the two repre-
sentations: medium at rest, particle moving and
medium moving, particle at rest."

In the first case the interaction Hamiltonian is
given entirely by the term H~ in Eq. (55). We
consider an electron of rest mass m and mo-
mentum p, such that p'~)m. This electron can

carry out a transition to a state with momentum
p' under emission of a photon of momentum and
polarization it, r and energy k/n Th. e probability
per unit time for such a process is given by
quantum-mechanical perturbation theory as

dP =2nd p p(j Hi
i

')A„. (79)

Here ( ~
H~

~
')A, is the square of the matrix element

of H& for the transition in question averaged over
all the spin states of the initial and final states of
the electron. dpi' represents the density of the
final states, per unit energy range for photons
emitted into the solid angle dQ. By denoting the
spinor amplitudes of the plane ~aves of the
electron with u(p) and u(p') for initial and final
states, respectively, we obtain from Eq. (56) the
following expression for the matrix element

with

A(p = (a p)+Pm+E„]/2E,
) yP "+E,f/2E, (81)

E =+(p'+m')& E =+(p"+m')I.

We obtain then for this sum

S=-,' Zlu'(p)( e.)u(p')I'

=g'trL(e e,)A„(n e„)A„j (82)

(p p')+2(p—e.)' —m').
2E„'E„

In the applications the only case of importance
is that for which the photon quanta have mo-
mentum very much smaller than the momentum
of the particle k«p. For this case (82) may be
developed in powers of k/p In this way we
obtain for the sum (82)

S=(1/E, )(p e„) . (83)

From this expression it may be seen that the
Cerenkov radiation is polarized with the electric

(~H&~ ')A = Le'u'/16m'k(1+a) &]

X-,' Q lu*(p)(e e,)u(p')
~

'. (80)

The summation in this expression extends over
all the spin states of the initial and final state of
the electron with positive energy. This sum may
be evaluated in the following way. We introduce
the annihilation operators



1492 J. M. JAUCH AND K. M. WATSON

~= (1/E,') I p' —[(u k)'/k'3 I

For the density of final states we have

(84)

dp p k'(d—k—/dEp)dQ. (8~)

vector in the plane of the vectors p and k. The
total photon-emission probability is then propor-
tional to

[u =s/(1+s')&1:

dEp/dk [k/2E, j[~/(a+1) j,
dP p 2kEp[(A+1)/~]dQ,

S~u'[1 —(1/n') u']

and therefore from (79)

(93)

(94)

(95)

The conservation of energy gives for the final
energy the expression

Ep = (k/n)+ [(p —k)'+m')&.

From this we get

(86)

E„=E„+(1/n)k (89)

The sum of the squares of the first two equations
gives

p" =p'+k' —2pk cos8

and the square of the last

(9o)

p" =p' (2/n) kE + (1—/n') k'. (91)

Equating the last two expressions gives

cos8 = [Ep/pn]+ [~/(~+ 1)j[k/2p j, (92)

which is the desired relationship between 8 and k.
We mention here that in the classical theory4
only the first term occurs on the right-hand side
of Eq. (92). That the quantum theoretical
treatment leads to the additional term on the
right was pointed out before by Cox.' Inserting
(84), (85), (87), and (92) in (79) gives us the
desired cross section for the photon emission per
unit time into the solid angle dQ.

We shall carry out the discussion of the result
in the approximation k«p which was already
used to get the result (84). In this case we obtain

dEp/dk = (1/n)
+ (k —p cos8) [(y —k)'+m'1 —

&, (87)

where 8 is the angle between p and k. This angle
is entirely determined by the conservation of
momentum and energy. For we obtain for the
parallel and perpendicular components of mo-
mentum the equations

p =p„+k cos8, 0 =p~+k sintt, (88)

and for the energy

dP = Ep[(~+ 1)/A:][e'tA'/4s'(1+ K) ~j
Xu'(1 —(1/u'n')). (96)

The emission probability as a function of the
angle is then obtained by expressing k as a
function of 8 by Eq. (92).

In order to obtain the total energy radiated
per unit time dw/dt we write

dQ=sin8d8dq = —dqr[A/(~+1) j(dk/2P), (97)

dui/dt = dP (k/n)

= (e'/4 )s~( kd k/n') tA'[1 —(1/n') u'$. (98)
J

It is seen that this expression diverges if no dis-
persion is assumed. It can be made finite with
any kind of dispersion law which assumes only
n—+1 for k—+ ~. Incidentally, the expression (98)
is identical with the classical expression given by
Frank and Tamm. 4

We shall finish the discussion of the Cerenkov
radiation by considering the same problem in the
coordinate system for which the particle is at
rest. In this case H& does not contribute anything
for k&&m since the matrix element s of a are
proportional to k/nt. At first hand it seems,
therefore, that no radiation will be emitted.
However, the part H2 given in Eq. (49) will now
contribute the necessary interaction terms. We
recall that H2 was introduced into the Hamil-
tonian by the process of eliminating the longi-
tudinal part of the field. Since in ordinary
quantum electrodynamics this term does not
appear, its physical significance was not im-
mediately obvious. We see now better what its
physical implications are.

The probability for the emission of a photon
of momentum k and a corresponding change of
the electron momentum from 0 to —k is then
given by

' R, T. Cox, Phys. Rev. 66, 106 (1944). dP'= 2m pp(i HA
i

')A, . (99)
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A straightforward calculation along the lines of
the previous case leads to the following result for
the probability of photon emission in a direction
k into the solid angle dQ.

dP'~[e'p'/2] [1/(2v )'j
X [(nP —1)/~j[(a) &/(1+ ~) )dO. (100)

The conservation of momentum and energy
give for the angle n of the direction of the emitted
photon with the velocity v

If we calculate the total momentum transferred
to the electron per unit time, we find the ex-
pression

~k cosadP'

or for the ith component,

F; = [e'p'/4s. ][1/(1+c)]

X[(e'—1)/~v']v; "kdk. (101)

cosa——[vo/2mv jk —[1/(ae2) ~j
Thus for dQ we may write

d 0 = sinadady = (vo/2vm)dkdq.

This expression is identical with the classical
expression obtained in Eq. (77) for the static
self-force of an electron at rest in a moving
medium.
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The method introduced by Bethe and Peierls for treating
the problem of order-disorder in alloys is applied to the
problem of ferromagnetism. The method is first applied to
the Ising model of the spin in which case the treatment is
much the same as it is for the alloy problem, as has already
been pointed out by Peierls. The correct treatment of the
spin is used for spin values of $ and 1 per atom. The critical
temperatures of diferent types of lattices are investigated.
The method gives results in agreement with the rigorous
results of the Bloch spin-wave theory in that only three-
dimensional lattices are found to be ferromagnetic. The
values of the critical temperatures of these lattices are
found to lie between the values predicted by the two
Heisenberg approximations. The discontinuity of the spe-

cifiic heat at the critical temperature is computed for a
body-centered lattice and for the two values of the spin.
The magnitude of the discontinuity is larger than that pre-
dicted by Heisenberg's first approximation. The magnitude
for the spin 1 is 3.4 k per atom and compares favorably
with the experimental value for iron. The susceptibility is
computed as a function of the temperature above the
critical point. The variation of the susceptibility with tem-
perature does not obey the Curie-Weiss Law but displays
some curvature. This curvature explains qualitatively the
difference between the "paramagnetic" and ferromagnetic
critical temperatures and also helps remove some of the
discrepancy between the number of Bohr magnetons per
atom as measured at high and low temperatures.

I. INTRODUCTION

HE calculations described below are based
on the physical model of ferromagnetism

first introduced by Heisenberg. ' This model can
be described briefly as follows. Each atom in a
domain has a spin 8 which is the resultant of the

~ Some of the developments reported here are contained
in a thesis submitted in 1940 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at
Harvard University. These developments are also con-
tained in a review article, J. H. Van Vleck, Rev. Mod.
Phys. C7', 27 (194S).' W. heisenberg, Zeits. f. Physik 49, 619 (1928).

spins of individual electrons (or holes) residing
in an incomplete inner shell. The orbital moment
is quenched so that the magnetization arises en-
tirely from the spins and is, in the first approxi-
mation, isotropic. The exchange interaction in-
tegral is significant only when it refers to elec-
trons in neighboring atoms and is the same for
all such pairs of atoms of the domain. The ex-
change integral, J, is positive. The incomplete
inner sheII referred to is, in iron, nickel, and
cobalt, the 3-d shell and, in gadolinium, the 4f-
shell. It is also assumed in this model that a11


