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It is pointed out that those phenomena concerned with
Geiger counter operation which are well understood are
those associated with the motion of the positive ion sheath
while those awaiting explanation are associated with its
development. A theory of this development is presented
and used to calculate the following phenomena:

(i) The relation between starting potential and counter
variables.
(ii) The amount of charge generated in the discharge.
(iii) The shape of the plateau curve.
(iv) The velocity of propagation of the discharge down
the wire.

Good agreement is obtained at all points.

The curve connecting the charge generated and the
overvolts is shown to consist of two parts, each a straight
line, their slopes bearing a ratio of 2:1. The plateau curve
is shown to climb more steeply to its constant value, the
greater the number of electrons liberated in the counter
by the ionizing particle, and the effect is confirmed experi-
mentally. The velocity of propagation is shown to vary
roughly linearly with overvolts but to tend to a finite value
at zero overvolts. All forms of counter behavior are shown
to depend strongly on the ratio of charge generated in the
counter to that originally on the wire.

INTRODUCTION

ROADLY speaking, those aspects of Geiger

counter behavior which are well understood
are those which are concerned with the radial
motion across the counter of the positive ion
sheath formed in intimate contact with the wire
by the discharge. Of these, the most important
are:

(i) The form of the voltage pulse as a function
of time.
(ii) The dead-time phenomena.

The first has been elucidated by the work of
Ramsey! and Montgomery and Montgomery,?
and in more detail by van Gemert, den Hartog,
and Muller? and by Alder, Baldinger, Huber, and
Metzger.* The second has been treated by van
Gemert, den Hartog, and Muller,® and by
Stever.®

These phenomena, however, occur after the
end of the discharge proper, which has been
quenched by the action of the positive ion
sheath—all avalanche activity has ceased and
the starting point of the discussion is the ‘‘burnt

1'W. E. Ramsey, Phys. Rev. 57, 1022 (1940).

2 C. G. Montgomery and D. D. Montgomery, Phys. Rev.
57, 1030 (1940).

3 A.G. M. Van Gemert, H. Den Hartog, and F. A. Muller,
Physica 9, 556 (1942).

4 Alder, Baldinger, Huber, and Metzger, Hel. Phys. Acta
20, 73 (1947).

5 A. G. M. Van Gemert, H. Den Hartog, and F. A. Muller,
Physica 9, 658 (1942).

6 H. G. Stever, Phys. Rev. 61, 38 (1942).

out” positive ion space charge sheath which
remains. There are several important phe-
nomena, however, which depend on the growth
of the discharge itself, and to explain which, one
has to enquire more closely into the actual
mechanism of formation of the space charge
sheath. The most important are:

(i) The relation between the counter starting
potential (V,) and the counter variables.
The quantity of charge generated in the
discharge (¢) and its dependence on
counter overvolts (V—V,), filling gas
pressure (p), and counter geometry.

The shape of the plateau curve.

The velocity of propagation of the dis-
charge down the counter wire (v) and its
dependence on counter variables.

(ii)

(iii)
(iv)

It is the object of this paper to discuss these
four phenomena, and to attempt to explain the
facts concerned with them.

THE DEVELOPMENT OF THE DISCHARGE

The characteristic feature of the Geiger dis-
charge is that it spreads the whole length of the
counter wire, and so there must exist some
mechanism which enables the first electron
avalanche to breed others and so on. This mech-
anism, in the case of the ‘‘self-quenching”
counters at any rate, is the emission of photo-
electrons from molecules of the gas under the
action of photons proceeding from excited mole-
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F1G. 1. a/p versus X /p for pure argon (after Kruithof and
Penning). Solid line: experimental values; dotted line:
linear approximation,

cules or ions formed in the first avalanche. This
is shown by the beaded wire experiments of
Stever®7? and others. It is the self-quenching
counters which are considered here. We may
assume a constant probability e per ion of an
avalanche that a further avalanche should arise
by this mechanism. Then, if the first avalanche
contains N(1) ions, the condition for the Geiger
discharge is
N(1)e>1

the threshold V, being given by
N(l)e=1. (1)

(Straggling effects in N(1) are neglected, and will
not influence much the greater part of the cal-
culation.) N(1)e has a Poisson distribution since
eX1. The value of ¢ is uncertain, but nearly all
the results to follow depend only logarithmically
on it. N(1) is the gas amplification which would
have obtained at V had not the divergent chain
Geiger action set in. This is usually about 105 at
Vs, so we will set e=1075,

Thus, for the calculation of problem (i) all
that is required is N(1) as a function of the
counter variables.

THE FORM OF THE FIRST AVALANCHE

An electron, born inside the counter, will drift
towards the wire under the influence of a field

vV
- (2)
r logh/a

at a distance » from the axis. V' is the applied
counter voltage, b and a the cathode and anode
radii. At some distance 7, ionization by collision
begins, 7. being determined by some critical
value of X/p, p being the pressure in the counter

7 H. G. Stever, Phys. Rev. 59, 765 (1941).
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Fi1G. 2. Relation between V, and p for the typical counter.

(in the following, X will be measured in volts/cm
and p in mm Hg). Thus

Ve

Vs
a V,
where V), is the starting potential for propor-
tional counter action. So

N(1)=exp(f”a~dr), 3)

a being the first Townsend coefficient effective
under the counter conditions. We now make the
assumption on which the whole treatment is
based, namely :

a=constant X X. (4)

Generally a/p will be some function of X/p
for electrons remaining in equilibrium with the
field, and over the range of X/ of interest (about
60-300 for the average counter) this approxima-
tion is reasonable, as may be seen from Fig. 1
representing the results of Kruithof and Penning?®
for pure argon. Other gases behave similarly.
Relations (23), (3) and (4) give together

7e Qoc
N(Y) =(—) , ®)
a

where Qo is the charge per unit length of the
counter wire, given by

Qo 1
vV 2logb/a’

and c is a constant related to that in (4).
If now by N(1, r) we mean the number of ions

8 A. A. Kruithof and F. M. Penning, Physica 3, 515
(1936).
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produced by the avalanche between 7, and 7
7.\ Q¢
Nan=(<) ©
7

DEPENDENCE OF V, ON THE COUNTER
VARIABLES

We may now at once give an answer to problem
(i) using relations (1) and (5) and find, for the
dependence of V, on p

kiV,

V, log = constant, @)

where &, is a constant given by

les Te

p a

If we now consider a typical counter which we
shall discuss throughout this paper where a
numerical value is to be derived, having 6=1.0
cm, ¢=0.01 cm, V,=1000 volts, V,=200 volts,
=70 mm Hg, we have k;=0.35 mm Hg/volt
and a relation between V, and p given in Fig. 2.

The dependence of V, on b and @ may similarly
be found to be given by, at a fixed p,

Vs Vs
log( ) =constant,
logb/a kqa logh/a

k2 being another constant of value 4.35X103
volts/cm for our typical counter considered
above. V, is shown in Fig. 3 as a function of a for
several b values.

These relations are subject to two limitations.
The first concerns 7. which should be consider-
ably smaller than b, or the whole avalanche may
not be formed. Thus the results may not be used

* It is not suggested that this is a complete account of
the first avalanche. It is merely desired to have some
simple analytic expression for its form which is in adequate
accord with the facts and on which the formal treatment
of the space-charge build-up may be based. A detailed ac-
count of the first avalanche has been given by S. C. Brown
[Phys. Rev. 62, 244 (1942)] for a helium-filled counter.
Such an account should be given in a complete study, but
would complicate enormously its development. Brown
considers the space-charge effect of a single avalanche on
itself. It is well known that this effect is all-important in
cases of small b/a ratio—as Brown's results reveal—but
in the specifically Geiger-counter geometry considered here
it is relatively small. The diffusion results of the next
section but one may be used to estimate the effect, which
amounts to a few percent at the wire.
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at very low counter pressures or small b/a
values. The second concerns the constancy of
composition of the gas. This has been implicitly
assumed as e has been held constant. The fact
that, for example, in argon-alcohol counters, V,
depends more rapidly on the partial pressure of
the alcohol than on that of the argon, is inter-
preted simply as a decrease of e with increasing
alcohol pressure, which may be understood from
many points of view.

These relations are in good accord with ex-
perience, and, rather than being a product of the
theory, should be regarded as confirmation of the
basic assumptions.

THE BUILDING-UP OF THE SPACE-CHARGE
SHEATH

For the attacking of the main problems we
must consider the way in which the space charge
of positive ions is developed, and its manner of
quenching the discharge. Before this can be done,
we must establish three important characteristics
of the sheath.

(i) It is uniform in structure and does not
preserve any of the granular nature which
might be expected of it, having been
built up from discrete avalanches.

(ii) It is effectively stationary until the dis-

charge has terminated in its immediate

neighborhood.

It holds on to the wire by induction all

the electrons formed in the avalanches.

(iii)
These three characteristics will be discussed in

turn:

(i) Although the avalanches building up the
sheath are quite discrete, each one undergoes

000 =
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FiG. 3. Relation between V,, @, and b for p=7 cm Hg.
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considerable diffusion in the course of its forma-
tion, and the positive ions from neighboring ones
completely overlap. This diffusion effect may be
roughly estimated by calculating that obtaining
in a parallel plate chamber of electrode spacing
d=r.—a across which is applied the potential
difference V' between 7. and the wire.

logr./a
logb/a

7 —

~300 volts for our typical counter. Remembering

that
v, LeX

D nP’

where v,/ is the electron drift velocity, D the
coefficient of diffusion, L Loschmidt’s number, P
760 mm Hg expressed in dynes/cm?, and 75 the
Townsend coefficient giving the ratio between
the mean electron agitation energy and $k7T", we
have: the probability of finding our electron
between x and x+dx from the plane of the center
of gravity of the distribution at time ¢ is

ex
(=)

(4w Dt)  (4rDp)b

and the mean electron displacement, which may
be taken as a measure of the spread of the

avalanche, is
4D\ }
i= (__) .
™

This gives a fractional displacement f=d/é of

f=0.178(—;—1—,)§

~0.01(n)*.

Now 7 for pure argon is already 310 for X /p=35
and, though considerably reduced by the
quenching agent, is probably quite big in the
X/p~100 region in which we are interested.
Letting then =100 gives f=0.1 so that the
lateral extension down the wire of an individual
avalanche is about 2f(r,—a)~0.1 mm. This,
coupled with the fact that the number of ava-
lanches per cm of counter wire is usually of the
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thousands order, as will be seen, shows that the
positive ions are in fact quite mixed up, and we
may assume the desired uniform space-charge
sheath.

(ii) The assumption of the locally stationary
positive ion sheath is based on the enormously
greater mobility of the electrons than positive
ions (the ratio is about 103:1). As we shall see,
the local discharge lasts a few times 10~% sec. in
which time the positive ions formed in the be-
ginning at the wire surface will have moved a
few times 0.001 cm—a few tenths of a wire
radius. Those at 7, will have moved about a fifth
as much, and, as most of the avalanches are
formed quite late on in the discharge, because of
its exponential nature, these movements may be
neglected.

(iii) The assumption that all the electrons
formed are held on to the wire by induction of
the positive ions may be justified by calculation.
Applying Green’s Theorem in electrostatics, we
find that the fraction ¢g_ of electrons which can
escape from the wire is given by, using (6)

Tc 1 7e Qoc 7
rof —- (——) log—dr
a 7 r a
B e Qoc
logb/a(—)
a

1 1

~——

Qoc logb/ a

Now, as seen, 7,/a~>5 and e~1075 so Qoc~7 and
g¢-~0.03. Thus all but about 3-percent are
retained by induction.

THE CHARGE DEVELOPED IN THE COUNTER

To find the charge developed in the discharge
we must examine the action of the space charge
sheath. We assume that all the photoelectrons are
born outside 7.. (This will be discussed later.)
Thus, until a new photo-electron reaches 7. it
will experience the same field (2) as if no space
charge were present, since the positive ions
retain an equal number of electrons on the wire.
If we now imagine all the avalanches to fall in a
length x of counter wire, and if we number them
successively, N(n,r) being the ionization pro-
duced by the nth avalanche between 7, and 7,
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we have a field at 7 for the (r+1)th avalanche of
2 e n
-lo-2E wonn), ®)
r X 1

(implicitly assuming x>>7. which we shall see is
true). Thus, to calculate N(n+41) the total
number of electrons in the (z+1)th avalanche,
we have

1 dN(n+1, r) dr

€é n
- - [ 'N ’ , 9
¢c Nn+1,7r) r {Q *c; (. 7) ©)

and so N(n+1) <N(n).
The direct solution for the form of N(n,r) is

very difficult, but two approximations suggest
themselves:

rc Q(n)e
M N r>=(—) ,
r
N( ) 4 ) rc)ro
n,r)=An (—r— .

The first allows the form of successive avalanches
to change, as it must, and so is more realistic. As
both give the same results, the calculation will be
described in terms of the first. The second will be
used later. The calculation is easy and proceeds
as follows. The sum in (8) is replaced by an
integral since dN/dn is small and the final value
of n is large. (10) is substituted in (9) and the
integration over r performed, giving, since

N(n+1)~N(n),

(10)

(i1) (11)

1 7e
—logN(n) =Q, log—
c a

L)) o

Differentiating (12) with respect to #, and per-
forming the integration over r gives an ex-
pression for Q(n), which, combined with (10)
and solved, gives

—(n ~b= ( )—Q(n)cl Q) +c logrc/a}

(n ) _ro{ c Iogrc/a]
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Neglecting small terms and retaining only the
more powerful Q(n) in the power term, setting
the other equal to Q,, gives

' (13)

en
—+0
Qox

() ")

showing an inverse linear dependence of N(n)
on 7.
At some avalanche 7; we shall have

N(nj)€=1,

and the discharge will converge. Thus the total
charge gx generated in the length x of counter is
given by

nf
qx= ef N(n)dn,
1
giving the simple result
€
q=Qo log-.
0

This may be expressed in terms of the very im-
portant ratio

which is found to govern almost all aspects of
counter behavior

m=log-. (14)
0

Now the chief experimental facts concerning
the dependence of g on the counter variables are
the following :

(i) ¢ depends almost linearly on V—7V, to
begin with, most authors agreeing that the
increase is a little more rapid than
linear.5 6911

* A. Nawijn, Het Gasontladings Mechanisme van den
Geiger- Miiller Teller (Drukken] Hoogland-Delft, 1943).

10§, H. Liebson, Phys. Rev. 72, 602 (1947).

1], D. Craggs and A. A. Jaffe, Phys Rev. 72, 784 (1947),
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(ii) At a well-defined overvoltage (Vz—V,)
corresponding approximately to m=1, a
sharp break occurs in the curve, the slope
dq/d(V—17V,) falling to about half its
previous value, the dependence now being
quite linear.5 %1

For a given overvoltage V —V,, ¢ is prac-
tically independent of $ and depends only
slowly on b/a.%?

If the results for the pulse size ¢ be ex-
pressed in terms of m, we have the rela-
tion, for the first part of the curve

(iii)

(iv)

(15)

C being a constant depending on the
counter, its value ranging from about 0.4
to about 2 (see Stever,® and Nawijn® for
extreme values).

We must now see whether relation (14) can
explain all these facts. Using relation (5) and
remembering that 7.« V we find

Vs %4
m=constantX{(V—TV,) 10g7+ 1% logv} (16)

P 8

for a given counter and pressure.
Now generally (V—V,)/V, is small, and we
write

giving
m=constant X (V—V,)

Ve V=T,
Xi1+log—+——1,
Vo vV

8

(17)

G40 80 100V -V,
v

OF G
1000 1060

F1G. 4. Relation between g or m and V—V, or V up to
m=1.
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or

Vg V'_ VJ
g=constantX V(V—V,) 1+10g7+—— '
V4

8

showing the desired sensibly linear dependence
of m on V— V,, with the almost linear dependence
of g, the extra V term serving to give the noted
slight departure from linearity. m and ¢ are
shown in Fig. 4 for our typical counter detailed
above (which we now assume, in addition, has
C=1) up to m=1, g being simply plotted as
V/VXm.

The dependence of ¢ on  may be derived by
eliminating the pressure from the constant in
(16) and when this is done we find, neglecting the
(V—="V,)/V, term in the curly bracket of (17)

14 V!
g=constant X (V— V,)——(l—i— (log——) ),
V, Vo

showing the almost complete lack of dependence
of ¢ on p, V, as we have seen in relation (7),
changing only slowly with 2.

The dependence on b/a is similarly found,
giving, with a ‘‘geometry-free’”’ constant

v
g=constantX—(V—TV,) ,
Ve logb/a

giving the slow change of ¢ with counter geom-
etry.

To find the predicted value of the constant C
we must have an equation free from undeter-
mined constants. This may be found, with the
help of € to be

V_Vs{1+(l V‘)—l}l ! (18)
m= og— og—
Vs ng ge

giving, for the counter considering above, C =1.86.
This C value lies in the range 0.4-2 noted in (iv)
above, though it is a little on the high side. It is
quite satisfactory in view of the nature of the
calculation.

The theory has thus accounted quantitatively
for facts (i), (iii), and (iv) above, and only (ii),
the sharp break at m=1 awaits explanation.
Expression (14) is clearly incapable of accounting
for the phenomenon, giving a smooth indefinite
increase of m with V' — V,. However, something is
going to happen at m =1 since at this point the
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field at the wire has been reduced to zero, and
further avalanches cannot multiply ail the way
to the wire. (Actually they must stop a little way
from the wire even at m=1, and Vg will not
occur quite at m=1 but at (1—a/r.)~0.8 as
indeed is found by some experimenters, but we
neglect this.)

For the calculation of this effect it is more
convenient to use the simpler expression (11)
for N(n, r) which, we have noted above, gives the
same answer for m in the 0<m <1 range. We
then have, treating unit length of counter wire,
x having no effect on m as we have seen above,

A(n)= ,
(en/Qo)+1

so if m=1 occurs when n=n,, we have

1 (en”+-1) 1
ogl — =1.
Q.0

So for n>n,, multiplication will proceed only as
far as a(n) and the total number of electrons
generated so far in the discharge is

<I>(n)=%+j;:A(n) (;Z—;—))rodn, (19)

a(n) being the r value, for the nth avalanche, for
which the positive ion space charge outside a(n)
is Qo. So for r>a(n) we always have

®(n, r) =9e—0 log(ae:%-{- 1 ) (%)QMO.

Thus, if a(n) increases by da(n) from the nth to
the (n+1)th avalanche (#>n,), the charge
brought down by the (n+41)th avalanche must
equal the positive ion charge between a(z) and
a(n)+da(n). Thus, writing a(n) —a=A(n),

1 (" )Q“_ dd dA(n)
(en/Qoo)—}—l\a(n) - E dn '’

d®/dr being evaluated at r=a(n). Solution
yields, noting that A/a<1

A(n) en
Qoc——=log log(——+ 1).
a

0w (20)
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F1G. 5. Complete relation between g or m and V—V,.

We now have an expression for a(n) which
may be inserted in (19). The solution is, under
the fair approximation

()1 22

a a

q’_%l ) L17:'[14-10% log((ens/ Qo) +1)1—Ey(1)

e 4

The e in the denominator of the expression in
brackets is the base of the Napierian logarithms,
and
z el
—-dx.
o X

E’,(x) =

Equation (20) may also be used to find #y,

giving
eny eny €
(—+1) 10g(———+1) =-.
Qof Qof 9
If now m =1 occurs at Vg we may rewrite (18)

for V<Vpg as
V-V,

C Ve—V,

m

’

or, for any V, using (14)
V-V,
Ve—"V,

€
=R=log-.
0

We may thus express the behavior of m above
m=1 in terms of the ratio R of the overvolts to
the overvolts required to give the break in the ¢
curve since,

for R<1
for R>1

m=R,

E(1+1log logt) — E:(1)
14
e

» (21
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COUNTING RATE

o 1 L 1
) 100 200 y-v, 300

F1G. 6. Calculated plateau curves for the liberation of 1,
2, 4 or 8 initial electrons.

where
£ logé =eF. (22)
This gives
R m
0 0
0.5 0.5
1.0 1.0
1.5 1.23
2.0 1.45
2.5 1.63
3.0 1.85

This should be the same for all internally
quenched counters. The relation between 7 and
R is almost linear above m =1, but that between
g and R is more so. In Fig. 5 are plotted ¢ and
m as functions of V for our typical counter, in the
same way as in Fig. 4.

The ratio of the slopes above and below m=1
is given by differentiation of (21) with respect
to R, when, using (22) one finds a ratio of
exactly 3.

A. G. Fenton working in Birmingham has
made 20 independent determinations of this
slope ratio for counters with values of p from 80
to 180 mm Hg and e values of 0.005, 0.007 and
0.01 cm. The ratio ranged from 0.4 to 0.67 with
an average value of 0.50. There was no significant
difference in the ratio for various pressures and
wires. *¥*

(A rather simpler expression for m may be
obtained by a slight further approximation. It is,
form>1

m=1+log log¢

giving results almost identical with those
tabulated above, and the same slope-ratio.)
It thus seems that all points concerned with

** I am grateful to Mr. Fenton for permission to make
use of these results prior to their publication.
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pulse size are satisfactorily dealt with by the
theory.

One point has been overlooked. The above cal-
culation refers only to the total ionization
generated. Since this is greater than Q, the
question arises, how can all the positive ions
traverse the counter, since reverse fields seem to
be present? This is not so, however, since the
electrons cannot all attain the wire either, and
remain trapped in the space-charge sheath, the
separation occurring gradually as the more
remote positive ions begin to move across the
counter, reducing the induction on the wire.

THE SHAPE OF THE PLATEAU CURVE

When the threshold V, is passed, the counting
rate in a Geiger counter climbs rapidly to a
constant value at which it remains until mul-
tiple discharges and so on mark the end of the
plateau. It is the purpose of this section to
inquire into the nature of the initial rapid climb
and to see whether it depends on any variable.

At some V>V, we have an average of

€
Z=N(l)e=-
[

avalanches breeding from the first. Now Z>1 is
the condition for a divergent chain of avalanches,
that is, a count, but statistical fluctuations in the
number of daughter avalanches may extinguish
the discharge by breaking off the chain before
enough charge has been generated to give a
count. Thus, the probability that there should
be not even one daughter avalanche is, for one
initial electron in the counter,

p(1)=e?

assuming a Poisson distribution.

T

O COUNTING RATE

L I ! ! 1
100 150 200 250 300 V-V,

1
S so

F16. 7. Experimental plateaus for CuO cathode counter.
Open circles: ultraviolet irradiation; solid circles: y-ray
irradiation,
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FiG. 8. Relation between v and m or V—V,.

If now p(w) represents the probability of the
discharge converging at or before the wth stage
of multiplication, it is easy to show that

p(w+1) =exp(—=Z(1-p(w))).

The probability of a convergent chain p(x) is
thus given by

p(o)=exp(=Z(1—p(=)))

logp() =Zp(w)—Z

assuming Z to be constant, which is reasonable
since we are effectively interested only in the
first few multiplication stages.

Now the plateau curve is given simply by
1—p(x) and so may be calculated as a function
of Z or V—V, If there are » intial electrons
liberated by the ionizing particle, the probability
of a convergent discharge is p(»)" and the
plateau curve is given by 1 —p(« )", The plateau
curve has been calculated for our typical counter
for n=1, 2, 4 and 8 and is shown in Fig. 6.

It is seen from Fig. 6 that the plateau curve,
for the release of single electrons should be
detectably worse than for the release of four or
five. To check this, the inside of the cathode of a
copper counter was irradiated with ultra-violet
light, liberating single electrons, and then with
y-rays, giving a few electrons at a time. The
results are given in Fig. 7 where it is seen that
the plateau is indeed much worse for the single
electrons.

It seems probable that 100 percent counting is
being approached for an overvoltage of about
180 (the plateaus have been normalized over
their upper regions). Thus when Geiger counters

(23)

or

(24)***

*** Since this work was completed I have seen a copy
of Nawijn’s book (see reference 9), in which this problem
is discussed, and Eq. (24) derived in a simple way. For this
reason I have thought it worth while to give the inter-
mediate probabilities expressed in (23).
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are used to monitor ultra-violet radiation, or in,
say, specific ionization studies where the libera-
tion of a single electron is generally considered
enough to initiate the discharge, the over-
voltage should always be as high as possible.

THE PROPAGATION OF THE DISCHARGE DOWN
THE COUNTER WIRE

The last important problem to be tackled with
the aid of our theory is that of the velocity of
propagation of the discharge down the wire (v).
The theory presented here is based on the
remark that if at any instant a length x of
counter wire is ‘‘burning” in the sense that dense
avalanche activity is taking place in it, and if it
“burns” for a time T, then

=—. (25)

We thus require to calculate x and 7. Matters
are simplified by the observation that the
number of stages w; of multiplication of ava-
lanches required to burn out the length x of
counter wire (achieving the n; avalanches) does
not depend much on x—logarithmically, as will
be seen.

x is now the distance which the region of
intense avalanche activity propagates in both
directions combined along the wire during the w;
stages of multiplication. If now we represent by
¢, the average distance, measured along the wire,
which an ultra-violet photon moves before being
absorbed and giving its daughter avalanche, we
can find x in terms of it. If Z=1, the problem is

fo) ! L ! 1 ! 1 !
O 10 20 30 40 50 60 70
V-

F1G. 9. Miss Freeman's results for the relation between
vand V—V, for the counter fillings of () 9.5 cm Hg argon
plus 0.5 cm Hg alcohol, (b) 9.5 cm Hg argon plus 2.8 cm
Hg alcohol.
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that of the random walk with w;, steps. The solu-
tion is that the probability of a final displace-
ment ¢ (measured in units of the step length) is

proportional to
¢2
exp( - ——)
2'w,

a Gaussian distribution of width 2(wy)} The
region of intense avalanche concentration would
thus have a length x=2(w;)}X!y, being quite
well defined because of the rapid fall of the
Gaussian distribution. For Z>1 the problem is
more complicated, but one may approximate by
increasing the step length proportionally with the
probability (1—(%)%) that a step will be taken
in a given direction in any single multiplying
event. {o may be calculated from v, the mean free
path for photon absorption, and is

14
lo=—.

2

(26)
Thus

x=2<wf>%><2(1—<%>2>§. @)

We have now limited x by the Gaussian dis-
tribution, and imagine the new length of wire to
start burning at the end of the first, the peaks of
the Gaussians being placed one half-width apart.
Thus the time of burning on any one spot on the
wire is

T= 2‘ZU/T (28)

where 7 is the time for a single stage of multi-
plication. 7 depends on various factors—the
migration time of the electron from its point of
birth to the wire, the excitation time of the (say
argon) atoms responsible for the photon emission,
and the photon’s transit time. These times are,

Lkl o
10

o8-
x
cm

06 -
o4 |-

o2

4 m
8 g% 7] 5% B R vy,

F1G. 10. Relation between x and m or V—V, (=1 mm).

D. H. WILKINSON

respectively, a few times 10~9 2X107!° and
3X 10712 second, the first being derived as ex-
plained below and the second taken from the
paper of Alder, Baldinger, Huber, and Metzger.*
We thus may probably ignore all but the electron
migration time. The average distance of birth
of the photoelectrons from the wire is

™Yy
Ve=—

4

(29)

((26) and (29) are calculated on the assumption
that v>>a).

Thus, if the mean electron velocity in the
immediate vicinity of the wire is v., we have

und

T=—

. (30)
4y,

Thus the problem is reduced to the calculation
of Wy.

Considering the length x of counter wire,
suppose that at stage w of multiplication there
are j photoelectrons present, # avalanches having
already taken place, then

Jw+1)=jw)N(n)e,
dn

(£=J.(w);

and

using (13) we obtain the relation between =
and w

d’n dn( € 1)
dw? —dw (en/Qox)+6 '
dn  Qoxe en

log —-+1)——n+1. (31)
Qoxt

SO

dw e

Noting that the greater part of the build-up
process is spent at n<<n; we write the log term
as en/Qox6, integration yielding

0 6*0 2
log x“Q_( ))
wymm (32)
‘4
9

(A numerical integration of (31) shows the
approximation leading to (32) to be accurate to
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e o TR
o 20 a0 % %8 n'o% vTv,

Fi1G. 11. Relation between T and m or V—V, (v=1 mm).

about 20 percent over the interesting range of
m.)

wy is seen to depend only logarithmically on x
and, as x~0.5—1.0 cm, it is set =1 and effec-
tively omitted from (32). Thus, combining (25),
(27), (28), (30) and (32) we have

3
—(1—=(3)" .. (33
( ™) (log<<ooe/e><1—e—m>2>) K (39

Having now obtained our expression for v, we
may examine the facts which it has to explain.
These are derived chiefly from the work of
Alder, Baldinger, Huber, and Metzger,* of Hill
and Dunworth,? and from the unpublished
results of Miss Freeman obtained in this labo-
ratory.f

(i) The relation between » and V — V,isroughly
linear, the curve being slightly concave towards
the v axis.

(i1) A lowering of noble gas pressure, keeping
the quenching gas pressure constant, results in
a roughly inverse increase of v for a given value
of V-V,

(iii) » depends on the nature of the noble gas,
all other factors being constant.

(iv) The v versus V—V, curve does not pass
through the origin, but may be extrapolated to
a finite positive value of v at V—V,=0.

(v) v does not depend very strongly on quench-
ing agent pressure for a given value of V-1,
though at low V—7V, a higher quenching gas
pressure gives a higher value of v.

Alder, Baldinger, Huber, and Metzger* have
put forward a theory of v, but it is unsatisfactory

12 ] M. Hill and J. V. Dunworth, Nature 158, 833 (1946).

TI am very grateful to Miss Freeman for her kind per-
mission to quote and discuss her results prior to their
publication.

1427

2 04

1 1 1
6 8 1-0,
S % 88 38 D vy

F16. 12. The number of avalanches per cm of counter wire
(ns/x) as a function of overvoltage.

because it requires the fixing of three constants,
is not in very good accord with the facts, and
makes no mention of any role of the space charge
sheath. It also does not allow for the fact that
before a pulse can be observed the local discharge
is extinguished.

Figure 8 shows v plotted as a function of V—V,
or m, being taken from (33) appropriately for our
typical counter. v is plotted only as far as m=1
where a break must occur. It is seen that the
result satisfies fact (i) above.

The second and third facts are explained with
reference to the v, of expression (33). A decrease
of p will produce a roughly inverse increase of v,,
hence of v, and v, will obviously depend on the
nature of the noble gas. (Hill and Dunworth!?
find v values in the ratio of about 3:1 for helium
and argon counters. This is just the ratio if the
v.’s in the pure gases for measured values of X /p,
though this is probably coincidental, considering
the profound effect on v, of admixed gases.) The
fourth fact is seen to be correctly explained, the
curve of Fig. 8 giving a finite intercept at
V—V,=0. For our typical counter, the ratio of
v at V—V,=50 to that at V—V,=0 (extra-
polated value) is 0.3. Experimental values range
from 0.2 to 0.5. It is seen that the theoretical
curve goes off to infinity for very small V-7V,
values of the order of one volt. This divergence
is probably mathematical, and, in any case, at
such tiny overvoltages the assumption of a
uniform space charge sheath can no longer hold.
Examination of fact (v) brings to us the necessity
of deciding in which constituent of the filling
mixture the absorption of the photons to give
the secondary avalanches takes place. It has
generally been assumed that the absorption is in
the quenching agent, and Alder, Baldinger,
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Huber, and Metzger,*for example, have found an
absorption coefficient of 640 cm™ for normal
alcohol vapor. Liebson,'® however, claims that
the noble gas is responsible for the absorption.
It is almost certainly a mixed effect, but we shall
make the more plausible assumption—that the
quenching agent is responsible. One thus sees
that v should not depend much on the partial
pressure of the quenching agent, since there is
no » in the expression (33) for ». However, v, will
depend somewhat on », a bigger » giving a
smaller v, since the mean X for the electron path
will be smaller. Thus increasing the quenching
gas pressure should increase v. One thing tends
to hold v, constant however, and that is the space
charge, whose effect is to tend to equalize the
fields near the wire in the manner calculated
above. Thus, the bigger m, the less should v
depend on ». This is shown in Fig. 9, where Miss
Freeman'’s results are displayed.

It is seen that at low overvoltages, the bigger
alcohol pressure does indeed give the bigger v,
but that the curves approach for higher over-
voltages.

It may be remarked that if the assumption of
a negligible excitation time for the argon atom is
incorrect, we must write

v

T=—+¢1

¢ being the mean excitation time. The », in
expression (33) then becomes

Ve
1+ (4w, /7v)

and v does not change so rapidly with », both
numerator and denominator increasing with de-
creasing .

All five facts having been adequately ex-
plained, it remains to compare the absolute
values of v predicted by expression (33) with
those experimentally determined. This com-
parison is rendered difficult by our lack of
knowledge of electron mobilities in very high
fields. Den Hartog, Muller, and Verster!® have
measured electron mobilities in a counter gas

13 H. Den Hartog, F. A. Muller, and N. F. Verster, Phys-
ica 13, 251 (1947).

D. H. WILKINSON

(9 cm Hg of argon plus 1 cm Hg of alcohol),
finding
7)6'=k3X,

k3 being a true mobility constant of value 15,600
cm/sec./volt/cm at p=100 mm Hg. Sherwin!!
has found a conflicting result, namely a parabolic
relation

ksequalling 4.5 X 10% for a 92 percent argon 8 per-
cent amyl acetate mixture. If these results could
be extrapolated down to the X/p values of
interest in the present problem, they would
yield, for an alcohol pressure of 0.5 cm Hg and
an argon pressure of 6.5 cm Hg, using Alder,
Baldinger, Huber, and Metzger's* value for the
effective absorption coefficient, = wvalues of .
4% 10~? and 8 X107 sec., respectively. This cor-
responds to effective v,’s of 4X 107 and 2 X107
cm/sec. These values are not widely different,
and are of the order to be expected from cloud-
chamber photographs of electron avalanches at
high X' /p values such as those taken by Raether,!®
and Kerr cell studies such as those of White.!¢
We thus average, and take v,=3X107 cm/sec.
This yields, for our typical counter, a value of v
at V—V1,=50 of 8X10% cm/sec. The alcohol
pressure used by Hill and Dunworth!? was also
0.5 cm Hg and they found, for a counter con-
taining 4.5 cm Hg of argon and V—-V,=50 a
value of v of 7X10% cm/sec. The uncertainties
in v, and the C value of the counter used make
wider comparisons unprofitable, but it is seen
that the predicted value of v is at any rate
roughly correct.

THE MEAN FREE PATH OF THE PHOTONS

We may remark here on the assumption made
above that all photoelectrons are born outside 7..
Under the alcohol absorption hypothesis, the
value of » would be a little over 1 mm for 1 cm
Hg pressure of alcohol. As noted, 7./a~5, hence
for a=0.01 cm, as large a wire as normally used,
rc—a=0.04 cm, and the majority of the photo-
electrons will indeed be born outside 7.. The

14 C. W. Sherwin, Phys. Rev. 71, 479 (A) (1947).

15 H. Raether, Zeits. f. Physik 107, 91 (1937).
16 H. J. White, Phys. Rev. 46, 99 (1934).
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smaller ¢ and the alcohol pressure the better is
the assumption. On Liebson’s picture of argon
absorption, almost the same » would result for a
10-cm Hg argon pressure, so the two views should
give roughly the same result for the majority of
the effects calculated above. 1f the absorption is
in the argon, the small effect of alcohol pressure
on v is more readily understood, but greater
difficulty would be encountered in explaining the
dependence of v on total pressure p. In any case,
the photons mainly responsible for spreading the
discharge may have a very small » and not be
observed in the experiments of Liebson and
Alder, Baldinger, Huber, and Metzger. The
agreement of observed and calculated » however,
seems to tell against this. If v were less than 7,
one effect would be to impose another straggling
on that of numbers of ions in individual ava-
lanches. In the present state of uncertainty it is
not profitable to modify the calculations for the
v <r. case.

SOME MAGNITUDES OF THE DISCHARGE

It is of interest to evaluate x, the “burning
length” of the wire, T the time of “burning’’ at
any one spot on the wire, and #;, the number of
avalanches taking place per cm of the wire.
These are obtained from the appropriate rela-
tions above.

x is shown in Fig. 10 for our typical counter
(setting »=1 mm).

It is seen to vary but slowly with V' — V,, being
0.5-1.0 cm in the usual range of counter opera-
tion.

T is shown in Fig. 11, being of the order of a
few times 108 sec. #; is shown in Fig. 12.

This is the only quantity which depends much
on e (being proportional to it) and so is liable to
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considerable error. Only its order is of any
interest fortunately. All other quantities are of
the loge type.

It has not been thought worth while to cal-
culate the behavior above m=1, since these
quantities are more interesting for their rough
magnitude than for their exact dependence on
V—"V..

DISCUSSION

It is seen that all features of the Geiger dis-
charge considered here depend strongly on m,
which should therefore be measured when
counter behavior of any kind is being studied.
It may be enough simply to find V3, and hence
the C value (relation (15)), but a direct measure-
ment would always be preferable. The C value
of a counter is of great importance in determining
other aspects of counter behavior—the dead
time, for example, which drops sharply above V.

Note added June 26, 1948: Sherwin!? has re-
cently published experimental results which may
be interpreted as evidence in favor of the de-
pendence on overvolts and absolute magnitude
of T as calculated above and shown in Fig. 11
He finds in Geiger counters a delay between the
entry of the ionizing particle and the manifesta-
tion of the pulse which can be only partially
interpreted in terms of the time of drift of the
initial electrons to the wire. There remains a
residual delay of the form and magnitude shown
in Fig. 11. It is clear that a delay of order T
must occur after the initial electrons have arrived
at the wire, as sufficient charge must be generated
to manifest the pulse. Because of the exponential
growth of # with w the delay will certainly be of
order T.

17 C. W. Sherwin, Rev. Sci. Inst. 19, 111 (1948).



