
H. J. BHABHA AND S. K. CHAKRABARTY

conversion. Such a calculation for gold, and an
electron energy of 2.35 Mev, leads to a value of
7.4 percent for the fraction of the incident power
that is converted into radiation. The theory
under these conditions predicts a value of 8.3
percent. The agreement between the two figures
is quite good, considering the uncertainties in-

volved in the calculations from the experimental
measurements and the approximations made in

applying a theory developed for thin targets to

those in which the electrons are completely
stopped. A similar agreement between experi-
ment and theory has been found by other ob-
servers in the case of copper, ' lead, ' and gold. '
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The paper summarizes the previous work, and brie8y
gives the steps by which the mathematical solution of the
cascade equations given in our previous papers can be
established rigorously.

This solution has been used to calculate the number of
shower particles for thicknesses between 0.25 characteristic
unit and 20 characteristic units, and for primary energies
from 2.7 times the critical energy {yo= 1}to 2.7 X10"times
the critical energy (yo 24}. For this purpose, the second
term of our series solution has also been calculated. The re-
sults are given in Table III and Fig. 3 in a form suitable for
comparison with, and analysis of, experiment. These show

that the second and higher terms of our series are negligible
compared with the first for thicknesses less than three to
four times that at which the shower reaches its maximum.

A method has been developed which allows the integrals
to be evaluated at very small thicknesses where transition

eEects are still of importance, so that it is now possible to
trace a shower from its very beginning to large depths.
It is shown that for very small showers started by particles
of two to three times the critical energy the shower must
penetrate to depths which are three times the maximum
depth to which a single particle could penetrate as a result
of collision loss alone. This is possible because part of the
path of the shower is covered by photons alone which then
materialize at a subsequent depth.

A simple formula has been given (37) which enables one
to calculate with considerable accuracy the spectrum of
shower electrons of energy much below the critical energy.
It is proved that this spectrum increases monotonically
with decreasing energy at all thicknesses. Its form is
approximately that of a modi6ed inverse square law at
the maximum of the shower, the power of the law becoming
higher with increasing dept/.

KNOWLEDGE of the generation of
cascades by electrons and gamma-rays is

of great importance in the interpretation of
cosmic-r@y phenomena. Since cascades are pro-
duced so readily by the electronic component,
they have often served to mask the eR'ects of the
other components of cosmic rays. For example,
an accurate knowledge of the number of electrons
to be expected in a cascade produced by an elec-
tron of known energy in a plate of given thick-
ness, of the fluctuations in this number, and of

the energy spectrum of the electrons in the
cascade, would enable one to decide by experi-
ment whether the cascades in cosmic radiation
conform entirely to the theoretical pattern, or if
not, to unravel other eRects which may be mixed

up with them, such as, for example, the creation
of mesons, or of particles having masses a few
times that of the electron, as has been suggested
by Auger and his co-workers. ' Knowledge of the

' Auger, Daudin, Freon, and Maze, Comptes Rendus
226, 169, 569 (1948}.
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spread of electrons in a cascade and of the fiuc-
tuations in the lateral density distribution of
electrons would enable one to decide by an
analysis of experiment whether intervening links
other than electrons and gamma-rays play any
part in the generation of large air showers. Per-
haps the accurate numerical answers to some of
these problems, particularly those connected
with the lateral spread of showers, will be given
only with the help of the new types of calculating
machines which are now being developed in dif-
ferent parts of the world. Nevertheless, a good
deal can be done by analytical methods, and in

some problems answers can be given which are at
least as accurate as the experimental data
available at present. For this reason we have
though it desirable to push the analytical solu-
tions as far as possible, and we believe that the
results given in this paper are more accurate than
any that have been given till now.

There is one approximation which underlies
all the treatments that have been given hitherto,
namely, neglect of the lateral spread of a shower
and its treatment as a one-dimensional phe-
nomenon. Only very qualitative estimates of the
lateral spread of showers have been made in some
cases. With this universal underlying simpli-
fication, the only complete and rigorous solution
of the cascade problem has been given by K. S.K.
Iyengar. ' He has treated the collision loss of
electrons as a constant independent of the
energy, but he has taken the exact cross sections
for radiation loss and pair creation as given by
Bethe and Heitler for all energies and not only
their asymptotic form for high energies. How-

ever, it is not easy to derive numerical values
from Iyengar's solution, and it has therefore not
been of use in interpreting and analyzing experi-
mental data. Taking only the asymptotic forms
of the cross sections for radiation and pair
creation at very high energies, Snyder, ' and later
Serber, 4 have given solutions which if correct*

' K. S. K. Iyengar, Proc. Ind. Acad. Sci. A15, 195 (1942).' H. Snyder, Phys. Rev. 53, 960 {1938).
4 R. Serber, Phys. Rev. 54, 317 (1938).* The difliculty is essentially the following. The solution

depends on finding the value at the point r= —s of a
function k(s, r) which satisfies a difference equation (see,
for example, Rossi and Greisen, Rev. Mod. Phys. 13, 240
(1941), Eq. (A12)). The values of the function k(s, r) can
be given explicitly as functions of s at all positive and
negative integral values of r, and from this the value of
k(s, -s) is arrived at by graphical interpolation on the

would enable one to calculate the total number of
particles in a shower with fair accuracy provided
the depth of material is not too small. Their
solutions, however, do not allow the number of
electrons to be calculated for small thicknesses
because of the circumstance that their boundary
condition corresponds to a spectrum of lower
energy electrons incident on the material in
addition to the high energy electron whose effect
we are investigating. They are also not suitable
for calculating the energy spectrum of electrons
in a cascade.

With the same basic assumptions we gave a
solution of the cascade problem in two previous
papers' ' which allowed the spectrum of electrons
in a shower to be calculated with considerable
accuracy. Although our solution was valid for all
thicknesses, numerical data could be extracted
from it previously only for thicknesses which
were not too small. We have now found a method
of overcoming this limitation, so that figures are
given in this paper for the growth of a shower in
thin layers of material. We can now trace with
considerable confidence the course of a shower
from its very beginning to thicknesses three to
four times that at which it reaches its maximum,
and calculate the energy spectrum throughout
this range. Secondly, our solution was in the
form of an infinite series and it was shown that
for most of the energies and thicknesses con-
cerned, the first term alone gave almost the
entire contribution. We have now extended these
figures to higher energies and greater thicknesses,
and, in addition, evaluated the next term of the
series. This has thrown further light on the
regions in which the first term is insufficient and
increased our confidence in the figures which
have been given in the rest of the range. For

assumption that k{s, r) is a smooth function of r. However,
it can be shown from the difference equation that provided
k(s, —s) &0 then k(s, —s —1) must be infinite although
k(s, r) is finite for the integral values of r on each side of
the point r= —s —1. This alone casts some doubt on the
validity of the assumption that k{s, r) is a smooth function
of r in a finite range round the point r = —s. In any case,
this assumption remains to be justified mathematically,
and an estimate of the error in arriving at the value of
k(s, -s) by the empirical method used needs to be given.
Till this is done, one does not know what faith to place in
the numerical figures obtained.

H. J. Bhabha and S. K. Chakrabarty, Proc. Roy. Soc.
A181, 267 (1943), referred to in this paper as A.

6 H. J. Bhabha and S. K. Chakrabarty, Proc. Ind. Acad.
Sci. A15, 464 {1942).



H. J. BHABHA AN D S. K. CHAKRABARTY

example, if the total number of particles is con-
sidered, the second term of our series only
becomes comparable with the first at depths
which are three to four times that at which the
cascade reaches its maximum.

It is shown that the third and higher terms of
our series are of importance only at large thick-
nesses where the shower is being absorbed, and
then too their contribution is mainly to the
number of electrons whose energy is much
smaller than the critical energy. But this is
precisely the range where radiation loss and pair
creation are badly represented by their asymp-
totic forms for high energies. Thus it is a satis-
factory feature of our solution that the neglect
of the higher terms becomes serious precisely in
the conditions in which the basic physical assump-
tions are no longer sufficiently accurate.

We have given a formula (37) which, with the
help of the table we have given, allows one to
calculate the low energy spectrum of electrons
with considerable accuracy. As far as possible
we have given our numerical results in the form
of tables and graphs which would make them
easily accessible for the experimenter who wishes
to compare theory and experiment, or to use
theory for an analysis of his experiments.

It must be emphasized that there is a con-
siderable range of the energy spectrum below the
critical energy for which the use of the radiation
and pair-creation cross sections for complete
screening is fully justified, especially in sub-
stances of low atomic number like air or water
where the critical energy is of the order of a
hundred million volts. In this range full con-
fidence can be placed in our figures. Even in this
range our figures dier considerably from those
given by Arley, ' which must now be regarded as
definitely erroneous.

II, THE MATHEMATICAL SOLUTION

In our original paper we gave only a formal
proof of the correctness of' our solution, and its
convergence was not demonstrated. This lacuna
was filled by Iyengar, who established the con-
vergence of our solution rigorously in the paper
already quoted. Since Iyengar's paper does not
appear to be as well known as it deserves and

7 N. Arley, Proc. Roy. Soc. A168, 519 (1938).
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The thickness of the substance t is measured in
radiation units of length, namely,

- —I
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Z being the atomic number of the substance, X
the number of atoms per cubic centimeter, and
the other symbols having their usual meaning.
The collision loss per radiation unit is denoted by
P. The probabilities for radiation loss and pair
creation are expressed in terms of the function
R(E, U) defined by

4E 4E'~
R(E, U) =

~

1 +
3 U 3U')

x~ and x2 being functions of a variable

mC2

(3)g =100
Z& EJ U E(—

some misapprehension exists about the rigor-
ousness of our solution, we think it desirable to
take this opportunity to sketch the steps by
which it can be rigorously established.

Denoting by P(E, t)dE the mean number of
electrons, positive and negative, in the energy
range E, E+dE to be found in a cascade at a
depth t, and by Q(E, t) the corresponding ex-
pression for the number of quanta, the funda-
mental equations of the cascade theory are'

8P(E, t) 8P(E, t)ft-
Bt az
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D —~8 ps —+
Po(s, t) = —e-"s'+

Ps —~s P8 —~S

Integrating (ib), remembering that Q(E, t) =0 has the solution
at 1=0 is the required boundary condition, and
substituting the resulting expression for Q in

(1a), we get
e—»', (8)

BI' BI' p" U—E—P = ' R(U U E)— P(U t)dU
Bf BE ~ E U2

E U
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tis=-'(As+D)+-,' {(As D)'+—4BsCsI' (9b)

for any fixed value of s. The solution (8) satisfies
the boundary conditions

&~4(s t)l
P(s, 0) =1,

i I
= —As at t=0 (10.)

at & i=o

where

Let Pi(s, t), Po(s, t), P.(s, t), be a set of
1

(D(y) (t t))d y p(U. t )d Udt (4)
functions defined by the recurrence formula

U2

P„(s,t) = I P,(sPn, t t')P„,—(s, t')dt'. (11)
Jp

r sR(U, E)
D(E) = d U.

In the limit of very high energies g—+0 and then

Then it can be shown without difficulty, as has
already been done in the appendix of our previous
paper A, that P„and P„i satisfy the equation

xi~1, xo-+4ocx = (12 log183Z &) '.
B2 B

(5) —+ (As+.+D)—
Iato

"
at

(5) is the approximation which underlies most
of the treatments. In the limit (5)

D = (7/9) —(1/6) ~

Let A8, B~, and C~ be those functions of the
complex variable s dehned by

)4 p d 1
+ex {
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& {ds S
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This follows simply by substituting (11) in (12)
and using (10).We now prove by induction that
(11) is equivalent to a formula evolved by
Iyengar, namely,

pt
y„(s,t) = y, (s, t,)P. ,(sy1, t t,)dt, . (13)—

Let (13) hold for all integral n from 1 to n 1. —
Then submitting for P„i by (13) in (11) we get

1 t'4 q 1
Cs= +f -+n {s+1 E3 ) s(s —1)

(6c) P„(s,t) = fo(s+n, t')y„ ( it s—t')dt'

y is the Euler-Mascheroni constant. Then the
differential equation Po(s+n, t')

0

it'o(s, ti)

82 B
+(As+D) +(As—D BsCs) it—o(s, t) =0 —(7)

Bt2 BE

'gg„o(s+1, t —t' —ti)dti dt',
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Pt
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"0 «0 $,(s, t)
g(s t)=

4o(s, t)XP. ,(s+1, t t, —t')dt—' dt,

and on changing the order of the t' and ti through the integral on the right with value of
integration s P(E', t) for which E'&~E.

Now introduce the functions

lpQ($~ ti)4a —1(s+1~ t tl)dti

by (11).
Now consider the expression

1 t' (Eo'i *

P(E, t)=.
27riEo "cE EP

" ( P ) " I'(s+n)
X QI ——

I $„(s,t) ds (14)
E & I'(s)

for 8 «& Eo, where the contour C of integration in

the complex plane runs along the straight lines
from —~ —i7 to 0 —i r, then to o+i ~ and then
to —~+ir, r being a large real number and
r &1. It has been proved by Iyengar that

(15)

for every value of s on C. Indeed (15) is simply a
consequence of (13) and the inequality

I Po(s, t) I

& 1+e. It follows that the series in curly brackets
in (14) is uniformly and absolutely convergent
if E&Pt. Moreover, it follows from the inequal-
ities for $„(s,t) given by Iyengar that the integral
on the contour C is convergent. I'(E, t) is
therefore a well deFi.ned function of E and t, and
the absolute and uniform convergence of the
series in curly brackets allows one to interchange
the orders of summation and integration. We
introduce (14) into the right-hand side of (4),
interchange the orders of the E and s integra-
tions, and carry out the E integration First.
Using the approximation for complete screening,
namely, (5), and remembering the definitions
(6), we find that it is equal to the left-hand side
of (4) provided f„(s,t) and f„i(s, t) satisfy Eq.
(12) for all integral n&~0. It follows that (14)
must be an exact solution of (4) for E&Pt. This
restriction does not interfere with the proof
since in (4) E(E, t) on the left is connected only

Write the integrand of (14) in the form

I'(s+n) $„(s,t)
Eo' Z ( —P)"

I'(s) I (E+Pg) Pg I—"'
I'(s+n)

=Eo* Q ( —P)" P„(s,t)
n=o I'(s) (E+Pg)"+'

I'(n+s+m) ~ Pgxg
= I'(m+1)I'(n+s) I E+Pg/

by expanding I (E+Pg) —PgI "+' in powers of
Pal(E+Pg)

The double series is absolutely convergent
because of (15) and its terms can therefore be
rearranged. We therefore get

1 ~( Eo
r(E, t) =

2 iE. ~. iE+Pg&

P q
" I'(s+n)

X P I I f„(s,t) ds. (19)
oEE+Pg) =1(s)

The restriction E&Pt can be dropped now, since
(19) exists for E &~ 0. It follows from the principle
of analytic continuation that (19) is the exact
solution of (4) for all E &~0. It can be shown that
the contribution to (19) from the parts of the
contour C from —~ —i r to 0 —i7 and from
o+ir to —~+ir tends to zero as r~oo. The
contour C can therefore be replaced by a line
running from o —i ~ to o+i ~ with o&1.

To get the total number of particles whose
energy is greater than E we integrate (19) from
E to Eo and get

1 t. +'" 1 ( Eo
X(E, t) =

2~i, ,„s—1 (E+Pg j
P y

" I'(s+n)
X PI I f (s, t) ds, (20)

~-o i E+Pg I'(s)
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Tsar. E I. Values of g(s, t) as function of s and t.

tQs 1.2 1.3 1.4 1.5 1.8 2.0 2.3 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.25
0.5
1.0
2.0
4.0
6,0
8.0

10,0
15.0
20.0

0.3100
0.3099
0.3099

0.2095
0.3195
0.3790
0.3904
0.3921
0.3922
0.3922
0.3922

0.4392
0.4622
0.4667

0.4673
0.4673

0.2205
0.3673
0.4892
0.5269
0.5353
0.5360
0.5361
0.5364
0.5364

0.2280
0.4027
0.5965
0.6868
0.7086
0.7149
0.7166
0.7167
0.7167

0.2312
0.4168
0.6309
0.7705
0.8009
0.8119
0.8164
0.8186
0.8186

0.2338
0.4301
0.6985
0.8765
0.9048
0.9259
0.9331
0.9387

0.3099 0.3922 0.4673 O.S364 0.7167 0,8186 0.9450

0.2352
0.4365
0.7264
0.9339
0.9564
0.9735
0.9891
0.9993
1.009
1.011
1.013

0.2367
0.4441
0.7565
1.006
1.010
1.023
1.043
1.059

1.095

0.2376
0.4481
0.7738
1.048
1.037
1.041
1.063
1.083
1.112
1.126
1.141

0.2391
0.4555
0.8054
1.129
1.066
1.047
1.069
1.094
1.136
1.164
1.226

0.8317
1.189
1.064
1.029
1.048
1.067
1.120
1.158
1.292

0.8475
1.239
1.047
0.9978
1.020
1.027
1.080
1.120
1.350

0.8630 0.8712 0.8846
1.287 1.313 1.347
1.027 1.000 0.9693
0.9621
0.9803
0.9876 0.9526 0.9156
1.036
1.074
1.386

$0(s, t) = 1 Ast+-
and from (13) that

(21)

(22)

Hence, for small t,

g(s, t) = t+0(t') (23)

as already proved in our previous paper. ' Thus,

1 r'+'" 1 ~E ~'
N(E, O) =

2si . ;„s—1 (El

the expression obtained by putting E=Eo, which
has to be subtracted from (20), being exactly
zero, as can be seen by deforming the contour C
into an infinite semicircle to the right of the
imaginary axis.

It remains to determine the boundary condi-
tions satisfied by P(E, t) at t =0. For this purpose
it is more convenient to consider N(E, t). It
follows from (10) that for small t EP(E, t)dE+ EQ(E, t)dE

8$ p 0

= —
P~ P(E, t)dE= PN(0, t), (2—6)

0

which simply states that the change in the total
energy of the shower is entirely due to collision
loss. Integrating (26), with respect to t, from 0
to ~ we get, for a shower initiated by an elec-
tron of energy Eo

N(0, t)dt =E,ip. (27)

It should be noted that by definition fq =$0 and

fi(s, t) =0, so that N, (E, t) =0 always. The second
term of the series (25) is N2(E, t), and it is
already proportional to p'.

Multiplying Eqs. (1a) and (1b) by E, inte-
grating with respect to Z from 0 to ~, and
adding the two equations, we get

for all 8~&80. Since we are then left with only
the residue of the integrand at the point s=1.
Our solution therefore corresponds to exactly one
electron of energy Eo incident on the surface t =0.
It similarly corresponds to no quanta incident
on the surface t =0. This is automatically ensured

by the substitution we made for Q(E, t) in

deriving (4) from (1a) and (1b).
Expression (20) can be written

N(E, t) =g N. (E, t), (25a)

1 ~ 1 (Eo)'
N. (E, t) =

2st', " s+n 1( P 3—
p ) a+a—i I (syn)

f„(s,t)ds (25b).
EE+Pgl 1'(s)

Since the solution (25) satisfies Eqs. (1) exactly,
it must satisfy (27). This need not, of course, be
true of the first term alone. Some misapprehen-
sion appears to have existed on this point. ' We
shall return to this point in the next section,
where we show that %0+%2 together contribute
between 70 and 85 percent of the whole primary
energy. From the physical point of view, how-

ever, Eq. (27) must be taken with caution,
especially in substances of high atomic number
where the critical energy is low. It is not true
that all the energy of a cascade is dissipated by
the collision loss of cascade electrons alone. A

good deal of energy is lost in the form of quanta
of energy less than 2mc' which are incapable of
further pair creation. Thus the complete series

~ I.E.Tamrn and S. Belenky, Phys. Rev. 7'0, 660 (1946).
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p+ pe

f„(s,t) = ~t e"qh„(s,r)dr, (28b)
2&1 p —Sea

where p is a large real number such that all the
singularities of p„lie to the left of the path of
integration. Introducing this expression into
(25b) we get

III. NUMERICAL RESULTS; ENERGY SPECTRUM
OF SHOPPER ELECTRONS

It is next necessary to evaluate the first term
of the series (25a), namely, %0(Z, t). Now fo(s, t),
which occurs in the integrand, is given by (8) and
consists of a sum of two parts. As is well known,
the coefficient Xq is much smaller than p8 for real
values of s, so that for all but sma11 t the second
part containing exp( pet)—makes a negligible
contribution compared with the hrst. The first
part can be evaluated with considerable accuracy
by the saddle point method. The second part
expressed the result of transition effects, and it
is therefore necessary to evaluate it if one wishes

to know what happens at small thicknesses.
However, it cannot be evaluated in the same
way as the erst part since the integrand has
no saddle point. We have now found a method
of overcoming this difhculty. Our method is
equally applicable to the higher terms N„(Z,t),
so that it will be developed in general. Let

dS
s+n 1—X.(Z, t) =

(2ni)'-

(Q q
a—1 ( p q

s+n—1 p(s+n)
xi —

(
& P ) &Z+Pg) 1(s)

Xexp(rt)@„(s,r). (29)

(29) is an exa.ct expression and it has the ad-
vantage that the double integral can be evaluated
by the saddle point method. Writing the integral
in the form exp&a (s, r), so that

a&„(s,r) = (s —1)yo+(s+n 1) lo—g~+pg

+rt log(s+n 1—)+logl'(s+—n)

—logI'(s) +log& (s, r), (30)
@„(s,r) =

~t e "f„(s,t)dt— (28a)
where yo=logEO/p. tA'e determine the double

(25a) for X(0, t) must give too many cascade Then
electrons of low energy at large thicknesses, and
the first two or three terms of the series may
well give a truer picture of the physical process
in substances of high atomic number.

FrG. 1.g{s, t) as a func-
tion of s.

l.o 2.0 XO 5.0
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TABLE II. Qp as a function of t and s as determined by Eq. (31a). The figures in line with each t give the values of yp
for the principal term n =0. Those below give yp for the next term n =2.

0.25

0.5

2.54

1.4 1.5 1.6

0.877

1.7 1.8

1.93

1.9 2.0

1.53

2.2 2.3 2.4 2.5 2.6 3.0 3.5

1.0 14.13 8.56 6.05 4.64 2.11 1.36 1,01

2.0 23.69 14.06 9.79 7.42
18.02 10.12 6.74 4.94 2.64

3.22
2.03

1.99
1.39

1.40 1.05
1.13

4.0 24.95 17.16 12.88 10.20
20.83 14.04 10.32 8.03

7.07
5.42

5.31
4.01 2.83

3.09
2.35

2.04 1.45
1.63

6.0 24.50 18.29 11.78 9.88
20.82 15.70 11.17 8.20

7.34
5.99

5.10 4.13
3.32

2.62
2.13

8.0

10.0

23.69 18.62
21.08 15.36

29.08 22.81
20.58

12.69
10.97

15.48
13.75

9.35
7.97 6.08

11.35
9.95

6.41

7.70

5.14
4.28

6.14
5.25

3.i8 2.12
2.63

3.71 2.42
3.13

12.0 27.00 21.93 18.27
24.76 16.52

13.35
11.93

9.00
6.21

4.24
3.63

15.0 26.99 22.44 19.01 16.33
25.02 20.69 14.91

10.92
7.66

5.02
4.38

20.0 24.85 21.30 16.09 12.46 9.81 6.31
27.63 23.26 19.86 13.00 10.07 5.63

saddle point s„,r„through the equations

namely,

8
t+ logy„(s, r) =—0,

t9f
(31a)

We then get as usual

exp((a (s„,r„))
X.(E, t) = . (32)

BN B2M ( BCd
2~

Br.' Bs„' l Br„Bs.J

P Bg
y,+ log —(s+n —1)

E+pg E+Pg Bs

8
+—

( logl'(s+ n) —logI" (s) I
s+n —j. Bs

8
+—log/„(s, r) =0. (31b)

8$

The values of g(s, t) for different values of s and
t are given in Table I. For this purpose we have
used the exact expression for g(s, t) as defined by
(16) and given explicitly by formula (57) of our
previous paper A, and not the approximate
expression A (58). Table I is, in fact, an extension
of Table 4B of A to cover a much greater range
of values of t and a larger number of values of s.
We note that g(s, t) is a fairly slowly varying
function of s of the order 1. For E »P the second
term in square brackets in (31b) is negligible
compared with the first. Its neglect means that
the variation of g(s, t) with s plays no part in
determing the saddle point. (See Fig. 1.) Thus as
far as the high energy part of the spectrum,
E »p, is concerned, the effect of collision loss is
simply to shift it to lower energies by a constant
amount pg(s„,t) The spectrum . is, however, not
represented by a simple power law for high ener-

gies, since the value of s„changes with the value
of E for a given Eo. Only if s„were fixed, would
the spectrum be of the form IED/E+pg}'", and
this is not so. Indeed, for fixed Eo and t the saddle
point s shifts to large values as E increases, so
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that the number of shower particles of high

energy is greater than would be obtained by a
simple power law»

For low energies E less than or of the order p,
the second term in square brackets cannot be
neglected. However, the saddle point s„changes
very slowly with E, and one can therefore take
for s„the value obtained by putting B=o. For
small E (32) can therefore be written approxi-
mately in the form

electrons below the critical energy

pg(s t)»»+» —1

X„(E,t) = — X„(t), (34)
E+pg(s, t)

and the contribution of the corresponding term
to the low energy spectrum is

BN (E, t) s„+n 1—
I'„(E,t) =-

BE pg(s„,t)

exp(pp„'(s„,r„))
(Btp»

Br„' Bs„' l Br„Bs„l

pg (s t)»»+»
N. (t), (35a)

E+pg(s„,t)

the total energy spectrum being

p q»»+» —1

xi
l E+pg(s„,t)P

(33)
&(E t) =2 &.(» t)

n=o
(35b)

where pp„' differs from tp„defined by (30) only by
the omission of the second term. This approx-
imation is not permissible for primary energies
Ep of the order p, and then we have to turn to
the more exact expression (32).

The contribution to the total number of elec-
trons is obtained by putting E=O. We write
X (t) =X (0, t) for brevity. (33) shows that for

4 p(s, r) =
(r+&s) (r+t s)

(36)

An insertion of (36) into the right-hand side of
(28b) obviously leads to (28a), since we are left

This double saddle point method is particularly
easy to apply to the main term Xp(E, t) In-.
serting fp, given by (8) (28a) yields

2.0 "

IO 25

FIG. 2. s as a function of yo for different values of t. Numbers indicate values of t. — relation
between s and yp for the first term ¹(t); ——relation between s and yp for the second term ¹(t)
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with only the residues of the integrand at the
points r = —) 8 and r = —p,g.

From the point of view of numerical calcula-
tion it is easiest to proceed as follows. We
assume a value of t and s„.We then determine r„
by Eq. (31a), and yo by Eq. (31b). One can then
determine N„(t)by (32). In this way we obtain
yo and N (t) as functions of s„for different values
of t. From these figures it is easy to obtain N„(t)
as a function of yp. The upper figures of Table II
give yp for diR'erent values of t and sp, that is, the
corresponding value of yp for the principal term.
The lower figures give yo as determined by (31b)
for the second term N2, of the series (25).
The values of s at the head of the table are then
to be understood to denote s2. The same results
have been given graphically in Fig. 2. Here sp

and s2 have been plotted as functions of yp for
difkrent values of t.

The values of No and ¹ calculated from (25)
are given in Table III for diR'erent values of yp

and t, the upper figure in each space giving Np

and the lower figure N2. The space for N~ has
been left a blank, whenever the number is quite
negligible compared with Np. In Fig. 3 both Np

and Nm are plotted logarithmically as functions
of t for four typical values of yp. Table III as
well as Fig. 3 show that N2 becomes equal to Xp
only at thicknesses which are three to four times
those at which the maximum number of particles
occurs in the shower. One may be sure that as
long as E2 is less than Xp, N3 and the higher
terms will be still smaller. Their contribution is
significant only at the tail end of a shower, and
that only to electrons of very low energy.

The spectrum of electrons whose energy is of
the order of the critical energy P, or less, is given
by (35). Whenever ¹«¹ the spectrum is
determined almost entirely by the first term of
(35b) and is of the form of a modified power law

IPg/(Z+Pg) }'o. Here g is a quantity approxi-
mately equal to I, the exact value of which can
be read from Table I, for any given value of t
and sp. The value of sp can be obtained from Fig.
2 for any t and yp. At the maximum of the
shower sp 2, while before the maximum sp

moves from about 1.3 to 2 with increasing t.
This means that the power of the modified power
law gradually increases with thickness, cor-
responding to an increasing concentration of
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5.C

O
Cl
O

l 2Q

FIG. 3. No and ¹ as
functions of t. Numbers on
the curves indicate the
value of yo.

+o+...+

Henceelectrons at the low energy end. The spectrum
is nearly a modified inverse square law at the
maximum of the shower. The effect of N2 and the
higher terms is to still further accentuate this
tendency. For as shown by Fig. 2, sp and s2 do
not diAer very much in the region where N~ is
comparable with No. Hence according to (35),
¹2 makes a contribution to the spectrum of the
form of a modified power law with a power 2

higher than Np. Indeed, keeping only the first
two terms of (35), we get roughly

sp+1 ¹—= 1.25.
sp —1¹

(I'(E, t) =const. I (so —1) ( 1 ¹
I (E+pg)

pg q
'o+'

+(s,+1)i ) pro~ (3~).
I E+Pg)

Thus, even if ¹2 is a little less than ¹p the effect of
the factors sp —1 and sp+1 is to make the con-
tribution of the second term greater than the
first for energies lower than those determined by

(E+Pg) ' so+1 No

Pg ) so —1¹
As a concrete example, take t=20, y=10. Then
sp=2. 58, s2=2.50, Np=70. 0, Ng=38. 7, g=1.01.

We therefore see that N~ makes a larger con-
tribution than Np to the spectrum of electrons of
energy less than a tenth of the critical energy. For
any given thickness and primary energy, the
contribution of the first two terms to the low

energy spectrum can be calculated easily by
using the tables and figures of this paper. As we
have already stated, the contribution of the
higher terms is negligible, except for the very
tail end of a shower and low energies.

Electrons below the critical energy arise by
electrons of high energy emitting large quanta,
and by pair creation, and not only by electrons
of energy above the critical energy coming into
regions of lower energy by collision loss, as has
been assumed by Arley. Indeed, for any thick-
ness before the shower reaches its maximum the
former processes certainly predominate. Iyengar
has proved that for thickness t (1 /(( 4/)3+a) =zo

there is still a trace left of the delta-function
representing the original electron, but for
t &1 (/(4 3/) +a) this completely disappears. For
t&&1 the form of the spectrum was given by us
in A. For t & 1/((4/3) +n) formula (37) shows
that the spectrum increases monotonically as E
decreases, contrary to the results of Arley.
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Iyengar has shown that this result remains true
even if the variation of the radiation and pair
creation cross sections with energy is taken into
account.

Table III brings out an interesting feature of
cascades started by low energy electrons cor-
responding to, say, y0&2. Take, for example,
ye = 1, that is, E0 =2.7P. The first column of
Table III shows that N2 becomes comparable
with Xo only when t &2, and here No has already
fallen to about one-tenth of its value at the
maximum. Thus the contribution of No to the
left-hand side of (27) can hardly be greater than
1.5. In order that (27) should be satisfied the
cascade must have a long tail of height &0.2,
say, extending to t~6. Now it has already been
remarked that the critical energy is in fact the
collision loss in characteristic units, so that

because of coLHsioe loss alone a particle of energy
ED = 2.7P cannot travel more than a distance 2.7.
The mean number of particles can therefore be
other than zero at a distance greater than 2.7
only if no energy has been lost by collision loss
for part of the distance. This is possible only if
no particles have traveled along some of this
distance. Thus, for showers produced by low
energy primaries, at certain thicknesses there
may only be quanta but no electrons present in
the shower, and at a greater distance quanta may
materialize into a pair of particles. For small
showers, the whole path of the shower is not
covered by ionizing particles, as is the case for
larger showers. This result is simply a rather
interesting case of the Quctuation phenomenon
which may be of considerable importance in
interpreting the experiment.








