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It is shown in the present paper that the Heisenberg S-matrix can have only simple poles
and zeros in the complex plane of momentum and energy variables when the range of force is
short. This fact is suScient to determine the dispersion formulae in nuclear physics.

1. INTRODUCTION

'HE nuclear dispersion formulae as derived
by various authors' account quite satis-

factorily for the resonance phenomena in nuclear
physics. Ke may classify all the derivations into
two groups. The first group follows the per-
turbation method and the treatment is closely
analogous to Dirac's theory of dispersion of
light by charged particles. The perturbation
treatment can hardly be considered as justified,
as the interaction is usually very strong in the
nuclear reactions. The second group makes use
of complex energy states introduced by Gamow.
A simplified model is usually needed in this
method, and as a consequence the results vary
with the diiTerent assumptions about the model
that have to be introduced. Furthermore these
derivations give no account of the potential
scattering.

'G. Breit and E. P. %'igner, Phys. Rev. 49, 519, 642
{1936).N. Bohr, Nature 13"I, 344 {1936).H. A. Bethe
and Placzek, Phys. Rev. 5j, , 450 (1937).F. Kalcker, J. R.
Oppenheimer, and R. Serber, Phys. Rev. 52, 273 (1937).
H. A. Bethe, Rev. Mod. Phys. 9, 71 (1937). P. L. Kapur
and R. Peierls, Proc. Roy. Soc. 166, 277 (1938}.A. J. F
Siegert, Phys. Rev. 56, 750 {1939).G. Breit, Phys. Rev.
58, 606 (1940). E. P. Wagner, Phys. Rev. I0, 15 (1946);
Proc. Nat. Acad. Sci M, 302 (1946). H. Feshbach, D. C.
Pearlee and V. F. %eisskoH, Phys. Rev. Vl, 145 (1947).

j.3

It has been pointed out recently by Heisen-
berg' that the divergence difficulty of the pres-
ent quantum-field theory is perhaps due to the
fact that the phenomena at small distances be-
tween the particles have not been described
correctly. He proposed that in the future the
collision matrix, ' or the S-matrix, which gives
only the asymptotic behavior of the wave func-
tions, should be considered as the only funda-
mental quantity. Heisenberg and Mpller4 have
shown that the knowledge of the 5-matrix is
sufficient to predict all the observable quantities
if the analytic and unitary properties of the
5-matrix and the completeness condition are
assumed. In the present paper we shall show

that the nuclear dispersion formulae also follow

from these general properties of S-matrix. This
means that these formulae real1y rest on a much

'W. Heisenberg, Zeits. f. Physik 120, 513, 673 (1943);
Zeits. f. Naturforsch. , 11/12, 607 {1946), and several as
yet unpublished papers, a complete account of which is
given by C. Mpller, Kgl. Danske Vid. Sels. Math-Fys.
Medd. 23, No. 1 (1945).

3 This matrix was 6rst introduced by Wheeler, see J. A.
W'heeler, Phys. Rev. 52, 1107 {1937).

'C. Mufller, Kgl. Danske Vid. Sels. Math-Fys. Medd.
23, No, 1 (1945); 22, No. 19 {1946); Nature 158, 403
(1946).
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more solid basis than other theoretical deriva-
tions hitherto used.

where
0-(I/») (e "—Si(k)e""),

5)(k) =expt —2is i(k)) (4)

is Heisenberg's 5 which is a matrix in the general
case when the angular momentum and the num-
ber of particles is not fixed. Since pi(k) must be a
real and odd function of k (this can be seen from
the fact that if we reverse the sign of k in (2),
no new solution of (1) should be obtained since
(1) is even in k), it follows from (4) that

5'(k)5(k) =1

5(k)5( —k) = 1.

It is expected that when V(») is a regular func-
tion of », 5(k) should be an analytic function
of k. According to the suggestion of Kramers
and Heisenberg, the bounded states of the sys-
tem is given by the negative imaginary values
k„of k, which satisfy 5(k ) =0 (or positive
imaginary values k„*or —k„of k, which satisfy
5(k *)= ~). Then f is given by

(1/»)e """=(1/»)e '"i" (7)

which falls off exponentially with r, and therefore
represents a closed state. It has also been shown
that the zeros of S(k) for complex values of k
represent quasi-stationary states of the system.

2. GENERAL INVESTIGATION ON THE 8-MATMX

'6'e shall first give a brief account of Heisen-
berg's theory. It is sufficient for this purpose to
consider the simplest case of a non-relativistic
particle in a central fieM of force. The
Schrodinger equation is given b&

D I /») (d'/«'-) j(»4)+kV
pl(I—+I)/»'-]f+ V(»)/=0, (1)

where I is the angular momentum. The asymp-
totic solution for P at large distance» in the
continuous spectrum is given by

(1/») slnLk»+ s $(k)j, (2)

where s(k) is the phase shift due to the inter-
action potential V(»). Equation (2) can also be
written in the following form, apart froni an
irrelevant factor depending on k:

4s»'pg*(»)pl„(»)d» = b(k —k') (10)

to be AI. =1/&2s. . C„can also be determined
from the normalization condition by a method
due to Kramers, ' but it is determined more con-
veniently by the completeness condition

dkfk(») $1,.*(»')
~Jp +Z.4"(»)f -'(»') = (1/4 '-) ~(» —»') (11)

Inserting (8) and (9) into (11) and using the
relation

s(k) = s( k), --
~ Kramers, Hand- und Jahrbuch d. Chem. Physik 1,

312 (1938).

I'or real values of k, 5(k) gives directly the
scattering cross section of the particle by the
central field of force. We see then that 5(k)
determines all the observable quantities that
can be obtained by solving (1). The above re-
sults hold also when the relativistic wave func-
tion is used.

In the following we shall show that with a
possible exception at infinity the only singulari-
ties that 5(k) can have in the upper half of thc
complex k plane are poles of the first order. This
follows directly from the general properties of
5(k). At least for the case when the range of
force is very short, we can show that 5(k) can
only have poles of the first order in the lower
half of the complex k plane also. To show these
we need a relation for 5(k) derived by Heisen-
berg from the completeness condition of the
asymptotic wave functions. As probably most
readers have not yet read Heisenberg's papers,
we shall derive this relation once again;~s
follows: The asymptotic wave functions for the
continuous and discrete states are, respectively. ,

given by

P~(») AI;Psin[kr+s(k)]/»j
and

f„(») C [e'"""/27»v'2» j,
where A~ and C„are normalization constant
and k„ is now given by S(k„)= ~. Al,. is deter-
mined by the normalization condition for the
continuous spectra:



Now S(k) has a pole at every point k =k„above
the real axis in the complex k plane. By changing
the path of integration towards increasing posi-
tive imaginary values of k, this path finally
reduces to circles around the poles at k„and an
infinite semicircle above the real k axis. There-
fore, one gets

dkS(k) e*"'"+"'
tlat ~I't,

+ ~ dkS( k)e*"&'+"=P„~C '~e'""&'4"& (14)
~r

where Jr is the integration along the infinite
semicircle. Since (14) holds for any value of
r+r', the- coeflicient of exp[ik„(r+r')] of both
sides must be equal. So we finally have

dkS(k) =,i C„' I,
A. =Art

(15)

dkS(k) e'"'"+"'=0. (16)

Equation (15) is the relation for S(k) obtained
by Heisenberg in his papers in i946. Equation
(16) determines the nature of singularity, if it
exists, at infinity. This point will be discussed
later. From the above derivation we see im-

mediately that if there is a quasi-stationary state
determined by the poles of S(k) above the real
k axis, it should be included in the summation
of (11) since other wise both sides of (14) cannot
be equal. Iii fact, the e, ave function for this
quasi-stationary state

expI iK,r K2r j(K.&—0).
satisfies the same boundary conditions as the
closed state. We have shown' that (]7) repre-
sents a quasi-stationary state of the X-capturing
type. It should be noted that this result is not
contradictory to the conclusion from wave me-
chanics that the quasi-stationary states should
not be included in the completeness condition

'M(. Heitler and X. Hu, Proc. Ro~. Irish Acafl. 51A,
Xo. 9 ('1947), Nature j,59, 776 (1947).

we easily obtain

p+ao
dkS(k)e'"&'"' = P ~

C„'~ e""&'+"' (13)

(i.e. , t,hey cannot. be considered as members of
the orthonormal systeni determined by the wave
equation), as the complex poles above the real
k axis are only possible in the theories where
particles can be created and annihilated; in
that case the Hamiltonians are certainly not
Hermitian so that complex eigenvalues cannot
be excluded.

The complex poles of 5(k) below the real k

axis give rise to the usual quasi-stationary radio-
active states. 4 These states should not be in-
cluded in the sum of the left-hand side of (1])
since these poles make no contribution to the
residue of the integral of (13).

For the case of relativistic particles, (15) and

(16) are also obtained by the same procedure,
except that, perhaps, some remarks should be
added here. From the relation

F = (k'+ti-')',

2 being the energy and p the rest mass of the
particle, we see that 8 is a double-valued func-
tion of k. Consequently, the wave function ltt,

which is a function of k and 8, is also double
valued. 9,&'e may imagine the complex k plaiie
as consisting of two Riemann sheets jointed
along two cuts on the imaginary axis from k =ip,

to k=i~ and from k= —ip to k= —i~. The
upper sheet represents only states with positive
energy and the lower sheet only those with nega-
tive energy. The integral in (13) will then be
along the real axes of both Riemann sheets and
the summation in (13) contains the states de-
termined by the poles in the upper half of the
plane of both sheets. The same conditions (15)
and (16) are obtained except that Ji is now taken
along the two infinite semicircles in the upper
half of the plane of both Riemann sheets.

We shall now extend Heisenberg's investiga-
tion to find the nature of the singularities of
5(k) in the upper half of the complex k plane.
The general expression of 5(k) around the singu-
lar point k„can be written

5(k) f(k)+Q LA,,i(k —k )*j
s=l

where f(k) is regular at the point k = k„and
A, (s = 1, 2, ) are constants. Inserting this
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into (14) and using (15), we have

dkS(k) e'a&"+"'& = P [A,e"&"+"

k~k~ A, =k~ g

(k k—„)'j=P [2xi/(s —1)!j
e=1

XA,[i(r+r') !' 'e""i'+"' (20)

Since the above equation must hold for any
value of r+r', the coe%cients of (r+r')* of both
sides of (14) must be equal. Thus we have

Ai= (1/2') i C„ i, Am=AS= . . =0 (21)

and (19) becomes

5(k) =f(k)+(1/2')L~ C.'~/(k —k.)]. (22)

Therefore, 5(k) has only poles of the first order
in the upper half of the complex k plane. It
should be noted that the same result can be
obtained by Kramer's method of determining
the normalization constant of the closed state. '
The conclusion for the closed states was ob-
tained also by Mgller.

The relation (14) does not give any informa-
tion about the nature of singularities in the
lower half of the complex k-plane since these
singularities are not included in the summation
of (11).However, at least in the case of nuclear
reaction where the range of force is much smaller
than 1/Ei, k= —K= —Z'i —iE2(E2&0) being
the position of the pole, we can show that S(k)
has only poles of the 6rst order also below the
real k axis. From (6) we see that k =E must be a
zero of 5(k). The wave function becomes at this
point

Px = yx/r, ex e '=exp( iKir+E2r], —(23)

which represents a radioactive decaying (cap-
turing) state when Ei is negative (positive).
We have therefore at k =X and, when r is very
large,

d (de & (d'q )—ei —+~ke I =«xl
dk ldr i ax idk«)~x

(dy'i (d'e )
+~«'+iE«/ —

IEdk) i x Edk«) a x

dex (d» ) +i«'.
dr &dkj, x

Differentiating with respect to k, we have

P(d'/dr')+k' —(l(i+1)/r']+ U(r)]
(de/dk)+2k' =0. (26)

Multiplying (25) by de/dk and (26) by e and
subtracting and integrating the result with re-
spect to r, we obtain

= —2k e'dr. (27)J,
Therefore, (24) becomes

2iK(d—S/dk) i= x= —2K I (px'dr+i yx2 (28)
~0

We shall now introduce the assumption that
the range of force is very small so that for r &a,
where a«1/Ei, ex represents a, free wave:

ex(r) = (—i)'+'(xEr/2)&Hi+i(Er). (29)

The integral in (28) may be broken into two
parts

pr fsa pr

j p~ df = ' p~ df'+ pE dP'

0 ~0 &a
(3o)

The last integral can be evaluated easily and
gives

PF
rpx dr = (—1) i+ (Ex/2) (r /2)

~a
(&)

2
(&)

X I [H;(Er) j'—[Hi;(Er) j
&& [Hi+;(«) jI I

'. (31)

The upper limit cancels with the last term of
(28) when r is very large. For the lower limit we
use the following approximate expression for
small r:

Hi+)(Kr) = (2/ Kxr)'[(2l)!i/(i!(2Kr) ') j (32).

For very large r, the left-hand side becomes
simply 2—iK(dS/dk) & x if small terms of higher
orders are neglected. Now inserting P= e/r into
(1) we obtain

$(d'/dr')+k' —(l(l +1)/r']+ U(r)grp=0. (25)
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We have, for l&0,

Adding (33) to (34), we have

(dS&

( dk) ~,.=-z

pa
= (—1)' I px*pxdr

aJ p

1 1 (2/)! -' 1
35

(2E)"a"—' l! 2/ —1

lt is seen that for /)0, (35) cannot vanish since
both terms in the bracket are positive. For the
case l=0, we have

Ja
vx* pxdr = (I /2K2) y*(a) p(a) = I /2K~, (36)

; s nrl (28 ) b econ t es

i(d5/dk) g p =(I/2Ãgl —=-(I/2Kg+2iÃ2). (37)

Equations (35) and (37) furnish t.he proof t.hat:

(dS/dk)~. =F40 and, consequently, the zero of
5(k) at k=E is of the first order. From (6) we
see that. the pole of 5(k) at k= —X below the
real axis must also be of the 6rst order.

In the above investigation we have only con-
sidered the isolated singularities of 5(k). It can
easily be seen that 5(k) cannot have unisolated
singularities such as those along a cut connecting
difFerent Riemann sheets other than the original
two sheets in the relativistic case introduced bx

the fact that energy is a double-valued function
of momentum. For if there is a cut between any

t '« —i(1/2&)tt '=(—I)'51/(2&)"j
(1/a2' ') L(2/)!//! j2(1/2/ —1). (33)

To evaluate the hrst integral on the right-hand
side of (30), we assume that the wave function
for r &a is nearly stationary so that the density
of outgoing current is much smaller than the
charge density. In other words, we assume that
the wave function for r &a is nearly real or nearly
pure imaginary. From (29) and (33) we see that
when l is even, q~ is nearly real just outside
r=a. Thus, by continuation, the wave function
shouM also be nearly real inside r =a. When / is
odd, q& is nearly pure imaginary just outside
r =a and, consequently, the wave function
should be nearly pure imaginary also inside r =a.
We have, therefore,

two points a and b introduced by the factor like

P(k —a)(k —b)]& in the expression for S(k), from
the condition S(k) =1/5( —k), there must be
another cut between —c and —b. None of these
two cuts can pass across the real axis, because
if they do, additional degeneracy would be in-

troduced to the continuous spectrum. Therefore
at least one of these two cuts must lie above the
real axis. Thus when we change the path of
integration towards increasing positive imaginary
values of k, in passing from (13) to (14), we
would get an additional closed integral around
this cut. Following the same argument leading
to (16) we see that this closed integral must
vanish separately. This however means that the
cut cannot be there at all. Similar argument
shows that 5(k) cannot have other factors which
are irrational functions of 2 and k such as
(F—a) l, (k —c)l, etc. , because they would in-

evitably introduce cuts in the complex k plane.
Therefore S(k) can only be a rational function
of E and k.

There is, however, a possibility that 5(k)
may have an isolated singularity on the real k

axis of the form
~ ic (/t:—&0) (38)

with c and k real and c also negative. The unitary
condition 5~(k)5(k) =1 for real k will not be
violated by this singularity. In the Appendix we
shall show that (38) is the only possible essential
singularity that 5(k) can have. Physically, this
singularity amounts to the phenomena that the
scattering cross section given by

sin'-'g = sin'-'Lc/(k —k~)]

will oscillate vera rapidly as k approaches kf).

EVe shall dismiss the possibility of this singu-
larity for fii&ite value of k!), on the physical ground
that the cross section should be a smooth func-
tion of k. When ko goes to infinity, (38) becomes

(40)

where c„ is a real negative constant. It will be
of interest to note that 5(k) with this factor has
been found in some known examples already.
The simplest example is the case of scattering
by a potential well of constant depth discussed
by Mgller. 4

The general form of 5(k) for the non-rela-
tivistic case when the range of force is very small,
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is therefore given by

Si(k) = as"~s L(k k *)/(k —k )j. (41)

where k„(n=1, 2, ) are the positions of the
poles and are all distinct since all the poles are
of the first order. The form of the factor (k —k „*)/
(k —k„) follows from the unitary condition for
real k: 5(k)S*(k) = 1. From the further condition
that 5(k)5( —k) =1, we see that for any pole k„
of 5(k) not on the imaginary axis, there must
be another pole k, = —k *. On the imaginary
axis the last condition gives no other poles and
zeros than those already demanded by the uni-

tary condition. Thus if we denote by k), all the
poles of 5(k) on the imaginary axis and by k, all

the poles on the right side of the imaginary axis,
the final expression for 5(k) for the non-rela-
tivistic case becomes

(k —ki,*) (k —k,*)(k+k, )
5(k) = ~e' iII 11 . (42)

& (k —ki,) ' (k —k.)(k+k,*)

For the relativistic case a singularity of S(k)
is not only specified by its position k, in the
complex k plane, but also by the sign of
I';, = ~(k, '-'+1)t (in the following we shall put
ii =1) which shows whether the singularity is in

the upper or the lower Riemann sheet. If S(k)
has a pole at k=k. , E=E,(E,2=k,2+1), then
from (5) and (6) we see that 5 has also a singu-
larity at k= —k,*, E=E,* and two zeros at
k =k,*, E=B,* and at k = —k„B=E,. There-
fore S must have a factor of the following form

(k.+k,*)(E—E.*)—(E,"—E,) (k —k.*)
S,= '

— — —.(43)
(k.+k.*)(E—E,) —(E.—E,*)(k —k,)

KVe can easily verify that the poles and zeros of
(43) are simple. If 5 has also a pole at k=k„
R= —E., then, following the same argument as
before, it will have another factor given by (43)
with E„replaced by —E,. We can easily verify
that these two factors multiplied together are
equal to the same factor

(k —k,*)(k+k, )

(k —k,)(k+k, ') (44)

We see from (46) that ~ki,
~

&1 and ~Ei~ &1, as
should be the case for any closed state. Lastly,
if S has an essential singularity at infinity, then
it must contain a factor of the form

tck gp

which means that the same singularities are
present in both Riemann sheets as (47) does
not depend on the sign of E. That this must be
so follows from the fact that E = ~ ~, and
k = ~ ~ should be counted as only one point in
the complex k- or E-plane. The final expression
for 5(k) for the relativistic c-ase is therefore:

of (42) as we would have expected. Next, if 5
has a pole at k =kq, E=Eq on the imaginary k

axis, then it has also a zero at k = k) *= —k~,

E=E~*. The expression for S has then the
following factor

Si, = (E—1+ibik) /(E 1 —ib—i,k) bi, = real.

It can easily be verified that the pole and zero
are simple and the position of the pole is given by

4 = 2ih/(1+4'), Ei = (1 —b~')/(&+bi') (46)

I:—1 i beak (k„+k—, ') (E, E,*)—(E,* I—',) (k k,*)—
,

——11-
"

& E —1+ibik' (k, +k,*)(E E,) —.(E, ,
—E,,*—)(k k,)—.

l'he sign & in (42) and (48) remains so far
undetermined. It should be noted that for any
pole k of 5(k) above the real axis, we have
from (15) the following additional condition to
be satisfied by 5(k):

dkS(k) & 0.
k =I;r,

Similarly, for any zero k, of 5(k) above the real
axis, we have, from (35) and (37) when the

imaginary part of k, is very small,

RlI( —I)'i(dS/dk)c c, I &0 (35')

(15') and (35') will determine among other
things the sign of S(k). It is rather difFicult to
write down explicitly the general form of 5(k)
which also satisfies (15') and (35'). Therefore we
shall consider (42) and (48) as our final form of
5(k) and (15') and (35') as additional conditions.
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3. THE SCATTERING FORMULA

The wave function (3) can also be written in

the following form:

Vow, since E =k'/2p, where p is the rest mass of
the particle, we have

Q(k) = (4sy'/k')
i t 2k(k, —k,*)/(E —E,)] i"-, (51)

P(r) (1 'r)(e '«"+(—1)'+'e'«"

+L( —1) ' —5 ]e'"'"). where E„=k,'-,/2p. Since E,, is a complex qua»-
tity, we may write E,= H~.,——.', iy.„ thus

The first two terms represent the incident wave
when there is no scattering. The last term repre-
sents the scattered v ave. The scattering cross
section is given by

Q, (k) = (~/k"-) ~1 —(—1)'5,(k) ~'. {49)

Ke shall first consider a special non-relativistic
case where 5(k) has only two poles, k, and —k„",
below the real axis. The sign can be fixed easily
by (35') to be ( —1)'. We put further c=0. This
gives the so-called "one-level" formula:

(k —k,*)(k+ k,)
k'- (k —k,) (k+ k,,~)

2k(k, —k,*) ''-'

(50)
k' k' —k,'

1/[~ E E,—(']= I/L(E —IF,,)"-+-,'p, '-].

This gives the essential feature of the usual dis-
persion formulae. t'sing the relatio»

(I/4pl(k, ,*'—k.') = -', y,„
we have

Q(k) = L2s/(k, '+k,*')]». /L(E- W.) +-.'~.-]. (52)

Equation (52) becomes the well-known one-level
formula when (k,-"+k,*') in the denominator is
replaced bx 2k'-. From the above derivation wc
see that (52) holds only when c =0 and is there-
fore not the most general form. ln the general
rase, M herc we have

2'
Q(k) =

(k,-'+ k,,*'-')

4(E W,,)'-' sin'-', —ck+ 2(E—W„)y,. sinck+ y,.
'-' cos'-'-,'ck

{E—W )'+-'v ' (53)

ated from (42) and (48), but we shall not write
them down here. From the above derivation we
see that the scattering cross section is entirely
determined by the value of c and the positions
of all the poles of 5(k). These values depend on
the particular form of potential function I'(r).
The resonance scattering takes place around
those levels for which R~,)&y„ i.e. , when E, lies
very near to the positive real E axis. Those
poles far from the positive real E axis shall only
contribute .to the potential scattering or the
background scattering. In the former theories no
account of the potential scattering ean be give».
According to the present theory, the potential
srattering is really the resonance scattering due
to quasi-stationary states determined by poles
far away from the positive real k axis and closed
states of the system. Our formula differs in
detail from other derivations given before. For
instance, (52) differs from the usual one-level
formula by a factor. The discrepancy must be
due to the simplified assumptions about the
model introduced in those derivations.

we shall have antiresonance scattering if cos'--,'ck
=0. In that case Q(k) vanishes when E= W, .
Jt seems, however, that c can only be a length
of the order of the range of force a. AVe have,
therefore, for nuclear scattering, e'"= j. , and
hence (52) will always be a good approximation
except when ka= i.

The corresponding one-level formula for the
relativistic ease when c =0 is given by

s. k, (E—E,*)—-', iy, (k —k,*) '-'

Q(k) = — 1 ——
k', k«(E E,)+-,'ip. (k—k,)—

where E,= t/V, —s-,'y„k, =kI+ikg, E,'=k, '+1.
If we consider E—TV„k2, and y, as small quan-
tities of higher order in comparison with lV, and
k~ in the neighborhood of resonance scattering,
and retain only terms of the lowest order in
them, v e shall see after some easy calculation
that (54) reduces to the same formula (52).

The many-level formulae can be easily evalu-

Ãp g

(54)
[u, (E W.) ', & ,k, ]"-+—', &, (E—-1).'--—



Equation (43) gives only the scattering when
the incident wave is a spherical wave of angular
momentum 3. %"hen the incident wave is a plane
wave, the total cross section is given by

Q= Ql(21+1)Q&

4. THE RESONANCE REACTIONS

k.&, k~, are the momenta of the particles
A, B, . , respectively. U' is the submatrix of U
with the initial and final states having the same
total energy and momentum. Since the 5-matrix
is unitary, we may apply an unitary transforma-
tion to transform it into the following normal
form

MTe can easily apply our foregoing result to
the nuclear reactions of the type

where

8 = u+Su, (62)

(56)

Khen the incident plane wave contains only A
and 8, the wave function for the system are
given by

((kAka [8, [
kAokao)

S=[
0

0

(kckD
[
82 [kcokao) )

(63)

4 (kA ka) = ~(kA —kA") ~(ka —ka')

+ f'(&A+ &a &A o &—ao)—
x (k,l, [

U[kAokao),

4 (kckD) = u(&c+&D &A' —~a')

X (k,.kD [ U[k. 'k.o), (51)

f (I') = (1/F) ',i~S(E:—) —, .(58)

In the other case when the incident w;ive con-
tains only C and D, we have

4 (kAka) =P(&A+~a &c' &D—')—
X (k ka[ U[kcokDo)

p(kckD) = ii(kc —kc') b(kD —kDo)

+P(Ec+&D &c' ~D")—
x (kckD

l
Ulkc'kD') (59)

where (kA, ka [81[k„',ka') and (kc,kD [82[kc',kD")
are two unitary matrices, and u is the unitary
matrix given by

t (kAka [2211 [kA'ka') (kAka [2212 [kc kD ) l
22=

[
&(kckD IN» IkA'ka') (kckD [2222 [kc'kD') &

'

(64)

u+ is the adjoint of u. If we use the center of
mass coordinate system, we ha~ e —k &

=k~,
—k~ =kD. Therefore all the states can be
labeled by a single variable k& or k~. 81 and 8.
can further be transformed into diagonal form
by using the representation of spherical har-
monics. Let ul, Sl, and 81 be the submatrices
of u, 5, and 8 when the angular momentum has
a definite value l. The general form of u and S
can then be written

The S-matrix for the system is given by

S=1+2ix U,
where

(cosule41
'l/) =

&
—sino. ,e

—'t'l

sino, Ee'«

cosule '&')

t'811
81——

&0 f12)'
(65)

tt'(kAka[ U'[kA'ka') (k,ka[ Uo[kc"kao) ) where 121 and pl are two arbitrary parameters
and 811 and S,2 are pure numbers. 5, is thus

61 given y

fCOS c281+Sin~1282 sina cosne' '~( 8,+$2) -l—
( 81+82) Sin~1281+ COS 1282 )

8~ and 82 may be considered as representing two
normal modes of the system in analogy to the
system of coupling oscillators. As is seen from

(63), each normal mode represents a pure scat-
tering system. We can, therefore, determine 8~
and 82 by applying the theory developed in the
last two sections. We obtain

(kA —kA1,*)
hg ——e" 'll

" (kA —kA1)

(kA —kA.*)(kA+ kA, *)
H

(kA —kA, )(kA+k„)
(k.-k.,*) (k.-k„*)(k,-k„*)

& (k.—k,),) ' (k, —k,l,)(k,+k„)
(67)
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AB~CD
l

CD~CD

(s jk„') l
1 —(k,, I

s, I k.,) I

'-'

= (s /k &')
l
1 —cos'n8i —sin'n821'-',

( /k ') ll —(k.ls lk ) I'
= (s.jk„') 11—sina cosae"e

X ( —8i+82) I,
(~/k;)11-(k.

l
s, lk, ) I-

= (s /k, ')
l
1 —sin'n8i —cos'+821',

(~/k. 2)11—(k. I
s,

I
k,) I

=(s/k ') I1—sinn cosne "e

X ( —8&+82) I

'-. (68)

The cross sections are completely determined
by the constant parameters 0. and P, the energ~
levels, the line breadth, and the value of cl and
c2 of the two equivalent systems. The values of
these constants cannot be given in a general
theory of resonance without knowledge of the
interaction potentials of the particular system.
Their theoretical determination will be very
tedious or even impossible for a complicated
system. It is usually more practical to determine
these constants empirically from experiments.
Equation (68) gives only the cross sections when
the incident wave has a definite total angular
momentum /. The total cross section when the
incident wave is a plane wave is given by

with —k„=kB, and —kc = kD in the center of
mass system. The reaction cross section is
given by

where c„are real constants. To identify F(k)
with S(k) we have further to satisfy the condi-
tion (13) of Section 2, which requires that the
integral

dks(k) e'"'"+"&,

C

which appears on the left-hand side of (14), ob-
tained by deforming the path of integration
towards increasing imaginary value of k in

passing from (13) to (14), should vanish sepa-
rately. g, means the integration along a closed
path starting from k =ko —a (a being real and
positive) to k=ko+a along the real k axis, and
then returning to k = kp —a along a half-circle
above the real axis of radius a with the center
at k =kp. For a given value of a we can find an
integer X such that the value of the series

g C./(k —ko)"
e 1

on this circle may be replaced by

p C„/(k —ko)"

with a negligible error. The integration along
the real k axis gives a contribution of the order
of a since

I S(k)1 =1 on the real axis. The condi-
tion for the vanishing of (72) becomes therefore,
on neglecting terms of order a when a is very
small,

dk exp i Q [C„!'(k—ko) "]
Q= Z&(2l+1)Qi (69) |k —kol =o n=l

.er!;(r+r'& —P (73)
Finally, the author wishes to express his

thanks to Professor C. Mgller for his kind
interest.

~icl (&—&0) (70)

on the real k axis, where c is a negative real
constant. The general form of the function F(k),
which has a singularity at k=kp, kp being real,
and satishes the unitary condition F*(k)F(k) = 1
for real k, is

F(k) =exp i P [C„/(k —ko) "]
n

(71)

APPENDIX

We shall now show that S(k) can only have
singularities of the form

where the integration is taken along the half-
circle of radius a. We may deform this path to a
new path starting from k=ko —a to ko b(b-
being positive and real and smaller than a), then
along a half-circle above the real axis with
center k=kp to the point k=kp+b, and finally
along the real axis from k=kp+b to k=kp+a.
The contribution to the integral from the path
along the real axis is again negligible since it is
of the order a —b. We may choose b so small that
the summation

N

2 [C./(k —ko) "3
n-l

can be replaced by a single term cN/(k —ko)~
on the smaller half-circle. Equation (73) then
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becomes

u jk —kp) =b
dk exp Ii[C /(k —ko)' ) I

Xe"&"+"'
& = 0. (74)

The integral (74) for very sniall values of

~

k kp
~

= b can be evaluated easily by the
method of variational phase. YVe have

AVhere the summation is over the range
0 & (21+1) ~& 2N, i.e. , from l =0 to l (2N —1)/2.
Equation (75) will be of the order exp(1/b~),
which is a very large quantity when b is very
small, except when %=1 and c~&0. In the
latter case (75) will be a very small quantity and
thus only in this case can (74) be satisfied. This
furnishes the proof that the singularity of S(k)
on the real k axis can at most be of the form

~ ]k-ko[ =b expLic/(k —ko)j (c&0). (76)

X ~t exp/ic~(1/b~ )(cos'N8 i sin—Ne) )be "d8

=2irie""+"'&b P, exp} c~(1/b~)( —1)')
Xexp[i(21+1/2N) &r) (7.5)

When ko goes to infinity, (73) goes just to (16)
of Section 2, and (76) becomes, on putting
c„=c/k02,

(77)
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Successive elastic encounters of a proton with atoms of air in a proton synchrotron
may build up a betatron oscillation whose amplitude exceeds the aperture of the vacuum
chamber; in this case the particle is lost. The Rutherford scattering formula, suitably cut off

at large and small scattering angles, is used to determine the r.m.s. amplitude of this oscillation
as a function of the increasing kinetic energy of the particle. It reaches a maximum, given by
Eq. (11),when the latter is four times its value at injection. The di6'erential equation is found,
which the distribution of amplitmies as a function of path length must obey, and it is solved,

by use of appropriate boundary conditions, for the case in which damping of the oscillations
is ignored. The solution makes possible an estimate of the fraction of the original particles
which is scattered to the wall (Fig. 1). These results are applied to two proposed synchro-
trons to determine the air pressures which gives a ten percent loss of particles.

I. INTRODUCTION

HE protons in a proton synchrotron will

move through a path of length nearly cto

if the acceleration takes place over a time to.

For to=1 sec. this is 3X10" cm. Even at a
pressure of 10—' mm Hg this is equivalent to

*WVork done under the auspices of the Atomic Energy
Commission.

about 40 cm of air at atmospheric pressure, and
appreciable scattering and loss may occur. Since
cross sections for inelastic scattering, which
includes all nuclear disintegration processes, are
generally smaller by factors of about 10 7 than
those for elastic or Rutherford scattering, it is
necessary only to be sure that the elastic scat-
tering is not serious.

The elastic scattering gives rise to "betatron"


