
P H YS I CAL R EVI EW VOLUME 74. NUMBER 10 NOVEM B ER 15, 1948

Depolarization of Neutrons During Diffusion
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A theoretical analysis is given of the depolarization to be expected when a plane, mono-
chromatic, polarized beam of thermal neutrons is incident normally on a slab of finite thickness
in which the neutrons are scattered isotropically and without capture. The problem reduces
to the solution of an integro-di8'erential equation of the Wiener-Hopf type. The equation is
solved approximately by a method of G. C. Wick. Experimental possibilities for measuring
the scattering amplitudes by this method even in the case where neutron-nuclear forces are
not very spin-dependent, are excellent. The case where the capture cross section is diferent
from zero is also included.

I. INTRODUCTION

S PIN dependence of the interaction between a
neutron and a nucleus manifests itself in the

difference of the scattering amplitude mhen the
neutron and nuclear spins are parallel and the
amplitude when they are anti-parallel. Inasmuch
as a consistent theory of the nucleus should be
able to predict this spin dependence, experi-
mental determination of this difference gives us
a valuable datum for testing such theories.

Such an investigation has been carried out in
the case of the neutron-proton interaction by
observing' ' the diA'erences of the scattering cross
sections for slow neutrons in the ortho and para
modifications of the hydrogen molecule, and by
making a theoretical analysis of these differ-
ences. 4~ In this case, the large spin dependence
of the neutron-proton force results in a substan-
tial difkrence between the ortho and para cross
sections. Decisive information could therefore be
deduced mitbout requiring experimental results
of extreme accuracy. A similar theoretical anal-
ysis' for ortho and para deuterium indicates that
accuracy of but a few percent in the measure-
ment of the ortho and para cross sections would
be necessary, under the best circumstances to get
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comparable information about the neutron-
deuteron force. There is also the possibility if
this force is not very spin-dependent, that the
best experiment of this type mould still be inde-
cisive. For nuclei heavier than deuterium, experi-
ments of this sort would be extremely difficult to
perform.

More recently, ~ a determination of parallel and
anti-parallel scattering amplitudes has been at-
tempted by comparing the magnitude of the
dift'use scattering with the interference peaks ob-
tained mhen slow neutrons are scattered from
crystals such as sodium hydride and sodium
deuteride. In this case too, if the scattering
amplitudes do not differ by much, the experi-
mental accuracy required is beyond the limits of
available techniques.

Another possibility for the experimental deter-
mination of the spin dependence of the inter-
action is to study the depolarizing efI'ect of
scattering processes on a beam of polarized neu-
trons. Experimentally, techniques for obtaining
polarized neutron beams and for the analysis of
their polarizations are well known. "Theoretic-
ally, the probability that a slow neutron will

change its spin orientation in a single collision,
has been calculated" and is given by:

Q =~(2i+1) 'f(+i —ao)S(~+1)g/
Bi+1)aP+iao']

'E. O. Wollan and C. G. Shull, Phys. Rev. 0'3, 830
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FiG. 2. Depolarizing factor Q as a function of the ratio
of the scattering amplitudes when i=1.

where i= the spin of the interacting nucleus,
cj,= the scattering amplitude for parallel spin,
and ao = the scattering amplitude for anti-parallel
spin. a~=cf), implying no spin-dependence, has
as a consequence Q =0 or no depolarization. This
is dear since interactions which are not spin-
dependent will produce no changes in spin
orientation.

When several isotopes are present the depolar-
izing factor'0 is:

Q=-', Z lb„l'(2z. +1) '

(ai —a0 )'z„(z„+1)
X (1.2)

('.+1)(ai")'+z.(ao")'

where lb~i' is determined by the relative abun-
dance of the pth isotope (P„ lb~i'=1). The total
scattering cross section" is:

a =4zr(2i+1) '[(i+1)aiz+iao'] (1.3)

when only one isotope is present, and is given"
by:

~-=4~ Z lb. lz(».+1)-'

X[(i„+1)(a&)'+i (ao )'] (1.4)

when there is more than one isotope. A combina-
tion of two measurements, namely total scatter-
ing and Q is sufficient to determine the scattering
amplitudes when only one isotope is present. This
is no longer true when there are several isotopes.

The statement that the scattering amplitudes
are determined by two measurements when only
one isotope is present must be qualified. In Fig. 1,
we have a plot of Q vs. ai/ao when i=1. Except
when ai/a0 is equal to 1 or —-'„a determination
of Q does not determine ai/ao uniquely. In addi-
tion, the absolute sign of either amplitude cannot

be found from these two measurements. In fact,
no experiment in which the spin of the scattering
nucleus is arbitrarily oriented in space will yield
more information. '

If ag —cp is small, the resultant depolarization
for a single collision may not be measurable. It
has been suggested, ' therefore, that the cumula-
tive effect of several depolarizing collisions be
observed in order to determine the value of Q.
This paper is concerned with the theoretical
analysis of such an experiment. This technique
will be most valuable when Q is in the neighbor-
hood of zero, i.e., when ai/ao is approximately 1.
It is only in this region that our method is of
interest. For ai/ao considerably diferent from
one, the depolarization in a single scattering
process will be sufficiently large to enable deter-
mination of Q. In Fig. 2 we show the behavior
of Q in this region for i= i.

II. FORMULATION OF THE PROBLEM

Specifically, we shall consider the following
situation: a plane monochromatic beam of com-
pletely polarized (spins all pointing in some direc-
tion, p) slow neutrons, traveling in the positive
s direction, is incident at s=0 on an infinite slab
of amorphous scattering material perpendicular
to the s axis and of thickness h. The neutrons are
assumed to be scattered isotropically, in the
laboratory system of coordinates. They are suffi-

ciently slow so that no inelastic collisions are
possible. We assume further, that no energy
changes occur on collision, and for the moment
we shall neglect capture. Physically this corre-
sponds to a situation in which we are dealing with
the interaction between a thermal neutron beam
and a heavy nucleus, or with the interaction with
a light nucleus such as deuterium which is com-
bined in a heavy molecule whose other elements
do not contribute to the scattering.

As the neutrons diffuse through the scatterer,
the beam will become partially depolarized. In
the material there will be two competing proc-
esses in the depolarization: Those neutrons whose
spins point in the negative p direction will have
a probability Q for spin reversal on collision,
with a resultant increase in the polarization.
Those neutrons whose spins are oppositely di-
rected, will undergo depolarizing collisions with
the same probability. At the outset, it should be
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made clear that if the scatterer were in6nitely
thick, the emergent beam would be completely
depolarized no matter what the value of Q since
the depolarization process tends to equalize the
populations of the two spin states. Thus, it is es-
sential to consider a scatterer of finite thickness.
Let

N+(z, p) =the number of neutrons per unit vol-

ume whose spins point in the positive

p direction and are traveling in a direc-
tion given by p, =cos8, in the angular
range dp (8 is the angle made with the
positive s axis).

N (s, p) =the number of neutrons per unit vol-

ume whose spins point in the negative

p direction and are traveling in the
direction given by p, , in the angular
range dp, .

V= the neutron speed.
I=the scattering mean free path.

If the time of collision is small compared to the
time between collisions, then the transport equa-
tion for this process yields the following:

V V p+1
= ——N+(s, „,~)+—I" N+(1 Q)d„'—

2l" g

+1

+— N Qdp, ', (2.1)

have:

BN 1 1 I'+'
+ N=—— N—(1—Q)dp'

Bs l 2l

f'+1

+— N+Qdp'. (2.4)
2l

The problem reduces to the solution of a coupled
system of integro-differential equations with ap-
propriate boundary conditions. Equations (2.3)
and (2.4) may be simplified by adding and sub-
tracting them to give:

Bo. 1 p+'
p +0 = 0'dp,

Bz 2
(2 3)

86 n (+'
p—+6=—

I
hdp',

Bz 2
(2 6)

where we have introduced the mean free path 1,
as the unit of length and set

o =%++X,
a =N+ —X-,
4k=1 2

8N+ 1 1 ~+'
+—N+= —

I
N+(1 —Q)dy

Bz l 21 ~

)+1
+— N Qdp', (2.3)

2l
and

V P' +1

N(s, p, t)+ ——N(1 —Q)dp'—
2l

.08—

Equations (2.5) and (2.6) are integro-differential
equations of the Wiener-Hopf type. They arise
from problems dealing with the radiative equi-
librium of stellar atmospheres. " In most prob-

U +'
+— N+Qdp'. (2.2)

2l

The factor ~ which appears before the inte-

gral sign is a normalization factor for the iso-
tropic scattering function 1j4~ and is determined

by the condition

2x +].

1/4~~l

.08

.04

.oe

.e I.O I.R I.4 I.O

'ala,

Dep»rizing factor Q as a function of the ragjo of
the scattering amplitudes when i=1, and the ratio=1.
' E. Hopf, "Mathematical problems of radiative equi-

librium, " Cambridge Tracts, No. 31 {1934};N. Wiener and
We consider a steady state and for this case, we E. Hopf, Berliner Ber. Math. Phys. Klasse, 696 (1931}.
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0 = I+8(p —1)e *I"

A=I+8(y, —1)e z(v

b(p) = Dirac delta function; and

(2.7)

(2.8)

+1

f( ') &(~' P)du-' =f(P)
—1

This gives for Eqs. (2.5) and (2.6)

BJ 1 (+'
p—+J=—

~l Jdp'+-,'e-',
Bs 2

and

(2 9)

lerns of interest to the astrophysicist the atmos-
phere is taken to have an inhnite depth. As
pointed out in I, we are obliged to deal with
scatterers of finite thickness.

In order to facilitate the application of our
special boundary conditions, we introduce into
(2.5) and (2.6) the following transformations:

III. SOLUTION OF THE PROBLEM

The exact solution of the Wiener-Hopf equa-
tion for a finite thickness of scatterer has not yet
been found. Inasmuch as our problem will not
lead to significant results unless the slab is finite,
we must resort to an approximate method of
solving (2.9) and (2.10).The method we have used
is one originally proposed by G. C. Wick" and
which has been subsequently used and developed
by S. Chandrasekhar. " The principle of the
method is to replace the integral which appears
on the right side of (2.9) and (2.10) by a polyno-
mial, and thus reduce the integro-difkrential equa-
tion toasystem of first-order differential equations.
The special polynomial used is the one originally
proposed by Gauss" in his quadrature method of
approximating integrals:

p+1 n n

I(s, p, ')dpi'= P a~I(s, p,) = P a,I;. (3.1)
—1 e

neo
BI 0| p+' n

p,—+I=—
l~ Id p, '+—e—'.

Bs 2~ i 2
(2.10) The coefficients are the Christoffel" numbers

which satisfy the conditions:

Inasmuch as most detectors for slow neutrons
measure neutron densities rather than flux, me

mill express our principal results in these terms.
W'e will indicate later how these expressions are
changed to represent the flux. Accordingly we
define the polarization density as

P(s) =
J Ed'

—1

(2.1 1)

and are looking for P(d), where 2 = thickness of
the scatterer in units of mean free path (=7i/l).

Our boundary conditions are:

at s=o;

a(0, ~)=~( -1); I(0, ~)=o „)0. (212)
~(0, a) =~(u —1); I(0, i) =o

at s=d;

P a, =1; g, =g;. (3 2)

g,e—xs (3.3)

for the homogeneous part and adding the par-
ticular solution

where
I*= (a/2) « */(1 —~'), (3.4)

(3.5)

The complete approximate solution for I; is

The p; is determined in the eth approximation
as solution of the equation P2„(ii) =0, where
P2 (ii) is the spherical harmonic of order 2n. The
solution of Eq. (2.10) by this method is found by
letting

~(d, ~) =o'
A(d, p)=0;

J(d, ii) =0
(

'

)
ii(0. (2.13)

I.„e "~' L. „e"~' a le-'
I'=Z +2 +—,(3 6)

s-&1 —p;X„u-& 1+@,+„21 —p, ;
The boundary condition (2.12) is an expression

of the fact that a completely polarized plane
beam is incident normally on the scatterer. Con-
dition (2.13) states that after transmission, the
vacuum returns no neutrons to the scatterer.

'2 G. C. Wick, Zeits. f. Physik 121, 702 (1943).
'3 S. Chandrasekhar, Astrophys. J. 100, 76 (1944); S.

Chandrasekhar, Astrophys. J. 106, 142 (1947)."Riemann-Weber, Dig. Gleichlngen der I'hysik, I
(Dover Publications, Neer York}, p. 394.

'~ A. N. Loman, N. Davids, and A. Levenson, Bu11. Am.
Math. Soc. 48, 739 (1942).
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where X„ is determined by the equation

CL
—=1.

s=~ 1 —p'X'
(3 7)

Equation (2.9) is solved in much the same way,
except that in this case, (when n = 1) X =0
identically satisfies (3.7) because of (3.2). The
solution in this case is

~—& M„e—&~'

J,=b
3'=& 1—p, ,f„

n —z ~ „e&~' 1 pe
+Q +z —p;+R +—,(3.8)

n i1+ii=;l„21 —p;

IV. CALCULATIONS

The particular virtue of the method outlined
above for approximating the solution of the
Wiener-Hopf equation is that the convergence is
so rapid. In most cases, in dealing with an infinite
scattering atmosphere the second approximation
gives results within 1 percent accuracy. In esti-
mating the accuracy of our solutions in the vari-
ous approximations, it was not possible to corn-

pare them v ith an exact solution. We have
assumed that convergence to the exact solution
was uniform, and if the difTerence between the
nth and n+1th approximation is sufficiently
small, we consider the n+1th result to be exact.

A. First Approximation

If one writes Eq. (3.3) in the first approxima-
(3.9) tion, one has:"

and g„ is a solution of the equation
A A—(BI1/Bz) +Il = Il+—I—i—
2 2

(4.1)

2 ~*/(1 —~'V) =1,
4=1

(3.10)
(4 2)

1 CX A
(BI i—/B—z)+I i —Ii+ I i. —— —

V3 2 2

which is different from zero.
The boundary conditions (2.12) and (2.13) now

give the following system of linear equations for
the determination of I.„,I. „, M„, M „, b and R.

I=j 1 —P,X„u=&

0. F
+— =0

1+y;)„2 1 —p,

(i = 1, 2 n); (3.11)

L,„e—"" I„„e'~" 0 Z'e

+E +-
i1+ii;X„n==& 1 ii;X„2 1+ii,—

(i =1, 2. n); (3.12)

3f„~—& 3II „
+Q —ii+R

u=& 1 —pg' u=& 1+kg„

7+— =0
21—p, ;

(i = 1, 2 ~ n); (3.13)

—& 3f„e t " —& M „et' "
b Q —+Q +d+p, +R

1=-& 1+kg'~ n-& 1 —P,g'„

1 ye"
+— =0 (i =1, 2 n). (3.14)

2 1+ps

(-', )O'I/O +z(n —1)I=0, (4.3)

which is the diffusion equation.
To gain some insight into the applicability of

the first approximation, one starts with an exact
equation such as (2.6) and expands the unknown
function in spherical harmonics.

1I= P(2n+ 1)P„(i—i) I„(z),
4x

(4.4)

(we call the variable I instead of 6). Resubstitut-
ing (4.4) into (2.6) we get:

BI„
g (2n+1)pP„(p)

n Bs

+P (2n+1)P.(ii)I.=aIo. (4.5)

The total density is I=Ii+I i. Ii may be con-
sidered to be the density moving to the right and
I & may be considered that moving to the left.
Onecan eliminate I i from (4.1) bydifferentiating
with respect to z, then substituting for BI i/Bz
from 4.2 and for I i from (4.1). In the same way
one can eliminate Ij and one gets for I, I~, and
I ~ the following:
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First approximation

C1
0.577350

St-'&ond approximation

0.652145
0.347855
0.339981

P2 0.861136

Third approximation

u1 0.467914
a2 0.36Q762

0 171324
0.238619

p~ 0.661209
p3 0.932470

T&sr.E I. Christoffel numbers and zeros of the spherical
harmonics used in the various approximations.

depend on the values of I„, I „, Mp, 3II p, b

and R. By Eqs. (2.8), (3.6), (3.7), (3.5), (3.1),
and (3.2) we have:

1 +1

~o(d) =)I ~(d, y')dl '=)f Idg'
0 —1

+1

+)
~ 8 (p' —1)e—*~~'dp'
—1

First we integrate (4.5) from —1 to +1,and get

BI&/Bz+ I,= ~I„' (4.6)

then ere multiply by p, and integrate from —1 to
+1.Then this gives:

28I2/Bz+ BIO/Bz+38Ii/Bz =0, (4.7)

since II,'=(282+So)/3. Neglecting I2 and sub-
stituting for I& from (4.7) into (4.6), we have:

$(B'Ip/Bz') + (a 1)Ip ——0, — (4.8)

B. Calculation of Exyerimental Quantities

Having solved Eqs. (3.10) through (3.13) it
remains to be seen how the experimentally meas-
ured quantities, i.e.,

hp(d) =)I A(d, p')dp',
0

+1

ag(d) =)f a(d, p')dp',

which is the diffusion equation again. Thus we
see that if the distribution function is spherically
symmetric, the Wiener-Hopf equation corre-
sponds to the diffusion equation. Attempting to
solve (4.8) instead of (2.8) means that we are as-
suming that the contributions to the solution of
the higher terms in the expansion in spherical har-
monics are negligible. This assumption corre-
sponds exactly to using the first approximation
in our approximate method.

For the particular boundary conditions that
we are considering here, the distribution at s=O
is far from spherically symmetric. After several
collisions it will be closer to spherical symmetry.
We may expect therefore that the true trans-
mitted density will be given more closely by the
fj}rst approximation, the thicker the scatterer.

I- pe"~" 0, n a;pe —"
+P a;P

1 ~+@jap 2 i= —n f —p.
n~O n/0

+2 P I. „e"~"P
p=l t=i ] —p 2y 2

n Qs
+el'e —"P

i=i $ —p, .2

2 a

60(d) =—{P (L, e "~"+I. 8"~")}+I'e (4.9)

In a similar way we find that:

op(d) =
J 0(d, p')dp'

0

500-

100
~ 50
X
R
Q 10
cn

I
IC

I

.9
I.e

FK'. 3. Transmitted density as a function of 1 —2Q in the
second approximation when d =10 (mean free paths).

=2bIP (3f~e &~"+M ~et~")

+d+R}+ye ~. (4.10)

For the sake of completeness, we include expres-
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sions for the albedo (reHection coefFicient) from
a finite plate:

TABLE II. Solution of the equation a 5 a;/1 —p,;92= 1

for various 0. s.

1st approx.
a X1

2nd approx.
X).

3rd approx.
Xg

2 n

=-Lg (L„+L „)]+I—1,

0

0'p(0) = JI (T(0, ii )dpi
—1

n—1

(4.1 1)
1
0.95 0.387298
0.9 0,547723
0.8 0.774597
0.7 0.948686
0.6 1.09545

1.972027
2.01257
2.05519
2.14577
2.24183
2.34138

0.379497
0.525560
0.711876
0.834508
0.922637

3.202945
3.24943
3.29669
3.39312
3.49150
3.591195

C. Results

0.37948
0.52500
0.71045
0.829085
0.900563

1.225211
1.23255
1.24087
1.26096
1.28609
1.31067

=2bLP (Mn+M p)+R]+y 1. (4—.12)

If a deep detector is used one would measure cur-
rents rather than densities. We therefore include
the currents corresponding to Eqs. (4.9) to (4.12).

(4.13)

(4.14)

(L s xpd I slpd—y
X g/

X„ X, )

+ (1—n) I'e—'. (4.15)

Using the values tabulated in Tables I and II,
the transmitted density was calculated in the
second approximation for d = 10 (mean free
paths), from a=0.6 to n = 1.0. Formulas (4.9) and
4.10 were used for this calculation after having
found L„,I „, M„, and M „, by solving (3.10)—
(3.13). The values of I' and y are found from
Eqs. (3.7) and (3.9). The results are shown in
Fig. 3.The polarization P(10) as defined by (2.11),
if found in the case of no capture, by dividing
the value of Ap(10) for a, particular a, by the
value of &rp(10) [=299 X10 'j. Thus the value of
P(10) for a = 0.9, is found by dividing 9.33X10 '
by 299X10-'. This depolarization curve is shown
in Fig. 4.

To test the accuracy of the second approxima-
tion for this thickness, both the diffusion and
third approximation were calculated for ca=0.9
and compared.

~2
5(0 ii')ii'did =

~

—1 ~n ) so(10)

1st approx.

9.21X10 3

2nd approx. 3rd approx.
9.334X10 3 9.337 X10 3

X P (
——

( +(1— )I' —1. (4.16)

~5

O
.I

g .OS
0

~ Ol
~ .005
O

.001

I I

.8 .7

FIG. 4. Polarization as a function of 1 —2Q in the second
approximation for d = 10 (mean free paths).

It is thus seen (assuming uniform convergence
as indicated above), that the second approxima-
tion is excellent, and the diffusion approxima-
tion more than adequate. The error in the
first approximation is approximately given by
hn/n=0. 005 percent which corresponds to an
error in Q of 0.05 percent if we assume that
Q 0.05.

These results point to excellent experimental
possibilities since the beam is depolarized by a
factor of 30 when Q changes from zero to 0.05.
This involves, however, the measurement of a
neutron density after the polarized beam inten-
sity has been reduced by a factor of 10,000. If a
strong neutron source is not available, it may be
advisable to reduce the thickness of the scatter-
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IOO—

o 50

IO

Q
s

X
K

.S

I

.9
I

.8

FiG. 5. Transmitted current as a function of 1-2Q,
second approximation, d =10 (mean free paths).

ing slab. This will increase the transmit ted
density, but at a sacrifice in the amount of
depolarization.

To check the accuracy of the various approxi-
mations for the smaller thicknesses, we have cal-
culated the transmitted densities in the first and
third approximations for d =5. The results are:

the transmitted current (Fig. 5), the reflected
density (Fig. 6), and the reHected current
(Fig. 7).

It may be remarked at this time that although
we have neglected capture in this analysis, this
restriction is by no means necessary. The e8ect
of including capture is to change the fundamental
Eqs. (2.7) and (2.8) as follows: in (2.7) the fac-
tor -', on the right is changed to P/2, "where P is the
ratio of the tots, l mean free path (capture
+scattering) to the scattering mean free path; in

Eq. (2.6) the factor a is changed to e = (1—2Q)P.
Figure 3 can still be used to draw a new polariza-
tion curve. For example when P =0.99 and
Q=0.05, the transmitted density for P=0.99 is
read from Fig. 4 to be 160X10 '. The trans-
mitted density for e =0.99(1—0.1)=0.891 is
again read from Fig. 3 and is equal to 8X10 '.
The polarization is therefore 8/160=0. 05 when
Q=0.05. The rest of the curve is plotted the
same way. It should be noted that distances are
now measured in terms of total mean free paths,
1/lg, g. ——1/l„p. +1/l,.„,

~0~5)

1st approx. 2nd approx. 3rd approx.

0.133 0.1249 0.1253 V. SUMMARY AND CONCLUSIONS

As is to be expected, the diffusion approximation
is not as good as it was for d = 10. In fact it is no
longer adequate since the error in 0. is now ap-
proximately 0.25 percent corresponding to an
error in Q of 2.5 percent again assuming that
Q 0.05. The second approximation still seems to
be remarkably good. In Table III, we have in-
cluded a summary of some typical results which
can be evaluated on the basis of the calculation
which we have made.

For the sake of completeness, we have included
too the curves in the second approximation for

We have described and analyzed an experi-
ment suitable for the measurement of the diEer-
ence between the two scattering amplitudes in
the neutron-nucleus interaction. The techniques
required for the experiment are the production
and analysis of polarized neutron beams. The
accuracy of determination of a& —uo (or a&/ap)
mill depend on the accuracy of measuring polari-

R.O—

I'AsLE III. Summary of calculations for 5 and 10 mean
free paths for two typical values of Q.

5 mean free paths

g t.R

COa

Polariza-
tion

Calculation accuracy
1st 2nd

approx. approx.
(%) (%)

/o error in
Q when
error in

measurement
of Pis1%

Inten-
sity

down
approx.

I

.9
0.025
0.05

0.025
6.05

0.62
0.27

0.16
0.03

2.5 0.06

io mean free paths
1.2 0.001
0.05 0.001

16.3
3.7

1.9
0.28

10,000
10,000 "O. Halpern, R. Luneburg, and O. Clarke, Phys. Rev.

53, 173 (1938).

330 CO(

330
FIG. 6. Reflected density as a function of 1—2Q, second

approximation, d =10 (mean free paths).
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zations of neutron beams of relatively low den-

sity, and on the magnitude of the depolarizing
factor Q.

Referring to Table III, we can see that for each
value of Q, which must be determined approxi-
mately by some previous experiment, there will

be an optimum value of scattering thickness. On

the one hand, the thickness must not be so large
as to completely depolarize the beam. On the
other hand, the thickness must not be so small

O ~

Os
I8
e 04

I I I I

s ~ .7 ~
~K

FIG. 7. Reflected current as a function of 1-2Q, second
approximation, d =10 (mean free paths).

that a small error in the measurement of the
depolarization will result in a large error in Q.
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A Direct Deteiiriination of the Energy of the He' Nucleus
from the D —D Reaction

HARQLD V. ARGo
Institute for Nuclear Studies and DePartment of Physics, University of Chicago, Chicago, Illinois

(Received August 2, 1948)

The energy of the He' nuclei emitted at 90' to the incident deuteron beam in the D-D
reaction has been measured directly by deflecting them through a 90', 15-cm radius, cylindrical
electrostatic analyzer. The Hei ions were detected by allowing them to eject secondary electrons
from the first plate of a 12-element electron multiplier tube. Thus the ions were not required
to traverse any foi1 or window material between the heavy ice target and the point of their
detection.

The corrections to be applied to the electrostatic analyzer were experimentally investigated
and when applied to the kinetic energies deduced from the observed critical deflecting voltages,
give a Q value of 3.30+0.01 Mev for this reaction.

INTRODUCTION

~HE D —D reaction yieMing a neutron and
a He' nucleus has been studied by observ-

ing the recoil He' nuclei obtained when a beam
of deuterons impinges on a thick target of 020
ice. The energy of the He' ions emitted at 90'
to the incident deuteron beam was measured by
deflecting them 90' with an electrostatic analyzer,
and the ions were counted with an electron multi-
plier tube~ of the type developed by J. S. Allen. '

From the knowledge of the energy of the incident
deuteron and the energy of the He~ nucleus
emitted at 90', one has from conservation of
energy and momentum the energy released in
the reaction

D'+ D'-+He'+ n+ Q, (&)
* The construction of the electron multiplier tubes for

this work was assisted by the Joint Program of the Of6ce
of Naval Research and the Atomic Energy Commission.

' J. S. Allen, Phys. Rev. 55, 336 (1939); 55, 966 (1939).

Q =En+4En„

where Q is the energy released, En is the kinetic
energy of the incident deuteron, and ZH, is the
kinetic energy of the He' nucleus emitted at 90'
in the laboratory system.

APPARATUS

The deuteron beam was accelerated by a
Cockcroft-Walton voltage quadrupling circuit of
conventional design employing a low voltage arc
source developed by S. K. Allison. ' Accelerating
voltages up to 400 kv could be attained. This
voltage was measured by a resistance stack of
approximately 10"ohms in series with a sensitive
galvanometer. The current through the resistance
stack was known to 0.1 percent accuracy, and
the resistance to about 0.2 percent. The beam

~ S. K. Allison, Rev. Sci. Inst. 19, 291 {1948).


