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The problem is re-examined from the point of view of the Hamiltonian applicable to two
charged particles and accounting for effects of order »2/c?, where v is the velocity. The work
differs from that of Bechert and Meixner in that the energy of the Dirac’s electron in a central
field is taken as the reference point. The solution is carried out in terms of an eight-component
rather than a four-component approximation to the 16-component wave function. The result
is the same for practical purposes as that of Darwin for the prequantum-mechanical problem
and of Bechert and Meixner for the four-component approximation. The energy formula is
affected only by the original Bohr reduced mass correction to the term value and also by a term
which is independent of the particular fine structure component and depends only on the prin-
cipal quantum number. Bethe's electrodynamic shift is, therefore, not obscured to within terms
of relative order o?(m/M) by effect of nuclear motion.

I. INTRODUCTION

HE effect of nuclear mass motion on the

fine structure of hydrogen has been cal-
culated by Bechert and Meixner.! Related con-
siderations have been made by Lowen.? The
increased importance of the fine structure as a
test of views on quantum electrodynamics® has
made it desirable to re-examine the question.
The work of Bechert and Meixner leaves one
with a partial feeling of dissatisfaction because it
employs the four-component approximation to
the 16-component two-particle wave equation.
It is not clear without further proof that this
approximation is adequate for the present
problem. While it is true that for a single particle
the reduction from 4 to 2 components yields
results for the energy which are correct to
relative order o2, it does not follow without
further proof that the perturbing effect of the
mass correction can be treated by an extension
of the same method. One might be especially
doubtful about the meaning of such a calculation
if one recalls that the Dirac and Schroedinger

* Assisted by the Office of Naval Research, project NR
024-055.

( ;Ig) Bechert and J. Meixner, Ann. d. Physik 22, 525
1935).

2 I. S. Lowen, Phys. Rev. 51, 190 (1937). Lowen’s results
are closely related to those of the present paper. This is
especially true of his Eq. (14a). Lowen did not carry the
calculation far enough to make it possible to make com-
parlsons with experiment except for the 1s term.

3H. A. Bethe, Phys. Rev. 72, 339 (1947); Julian
Schwinger, Phys. Rev. 73, 415 (1948) Willis E. Lamb, Jr.
and Robert C. Retherford, Phys. Rev. 72, 241 (1947); J.
E. Mack and N. Austern, Phys. Rev. 73, 1233 (A) (1948).

wave functions are represented by different
powers of the distance r at the origin.

The calculation of Bechert and Meixner
amounts to the carrying out of the following two
steps: (a) such a rearrangement of terms in the
four-component wave equation that the explicit
introduction of the reduced mass becomes pos-
sible and the non-relativistic Schroedinger equa-
tion with reduced mass can be used as the
zeroth-order approximation to the problem; (b)
the evaluation of the expectation value of the
difference between the two-particle Hamiltonian
and the zeroth approximation. The relative order
of the difference is (m/M)a?, and the first-order
perturbation theory suffices. The general scheme
is doubtless beyond criticism. It is clear, however,
that the application of first-order perturbation
theory can have only a formal significance if the
wave function is strongly affected by the dif-
ference between the actual and the approximate
Hamiltonian. Since the Schroedinger function is
a poor approximation to the Dirac function at
short distances the question arises as to whether
the application of first-order theory in the ar-
rangement of terms chosen by Bechert and
Meixner has more than a formal meaning,
whether the perturbation method converges, and
if it converges whether the convergence is rapid
enough to make the result significant. A certain
degree of optimism is, of course, necessary
regarding absence of mathematical difficulties,
and the questions raised above would probably
be out of order if it were not for the fact that it is
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known that for small » the probability of finding
an electron per unit volume behaves very dif-
ferently with distance according to the Dirac
and the Schroedinger equations and if the
assumption of being able to expand the Dirac
functions in terms of their non-relativistic
approximations were not a part of the usual
development of first-order perturbation theory.
It is not clear that the large values of the ratio
of Dirac electron density to the Schroedinger
density can be accounted for by a series with a
reasonably small number of terms or that the
difference between the actual and the zero-order
wave functions has a negligible effect on the
final estimate of the mass correction. Some of
these questions are still unclear, but it is believed
that the matter is somewhat more soundly
understood as a result of the present work.

An additional reason for undertaking it is the
desirability of being able to see the answer in
such a form that the exact solution of Dirac’s
equation for a fixed nucleus is approached as a
limit for M = . This is not the case for Bechert
and Meixner's calculations, although it is the
aim of Lowen’s reductions. The latter are not
carried, however, to the point of estimating the
effects on the energy. It is obviously better to
be able to carry out the development in such a
way as to have the energy appear as the Dirac
energy for M =  because by doing so one is in
a better position to obtain a theoretical under-
standing of the problem for cases of high atomic
number Z. It may be mentioned that for small
values of 7 the usual reduction of the 16-com-
ponent equation to the four-component form
requires modification and that for this reason
the 4-component approach appears to be ques-
tionable. It derives an energy value by changing
the wave equation close to r=0 and in a sense
also the boundary condition at »=0.

In addition, it appears pertinent that the
extra terms brought into the Hamiltonian by the
nuclear motion have to be taken into account to
the second order of perturbation theory. It is
true that with Bechert and Meixner’s arrange-
ment of the calculation only first-order per-
turbation theory is used. This is the result of
employing the non-relativistic Hamiltonian for
reduced mass as the zeroth approximation and
removing terms from the Hamiltonian which can
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give rise to effects of relative order m/M. The
Bechert-Meixner work thus amounts to the cal-
culation of the expectation value of the Hamil-
tonian employing the wave function of the non-
relativistic reduced mass problem. A justification
for employing this rather than another wave
function is easy to give for the four-component
treatment because for it effects of relative order
m/M are removed from the perturbing Hamil-
tonian. The fact that the whole argument depends
on this property of the four-component approxi-
mation and that the 16- or 8-component equa-
tions appear to require the consideration of
second-order effects when one takes infinite
nuclear mass as a starting point also suggested a
re-examination of the problem.

NOTATION

m =electronic mass
M =mass of proton
e=electronic charge
Z =atomic number
r=Planck’s k/2x
c=velocity of light
a=e/hc
E=energy of system in rest mass system — M¢?
7e=(%¢, ¥e, 2.) =coordinates of electron
Ry = (%, Y, 2u) =coordinates of proton
r=r.— Ry
pe=(h/3)(3/0x., 3/9y., 0/9z.)

D= (h/1)(8/3xm, 8/3Ym, 8/32u)

a, B=the four matrices, o), as, a3, as, of Dirac.
These matrices operate on the spin coor-
dinates of the electron; 8= p3

n=principal quantum number
an = h?/me*=Bohr radius
T =non-relativistic kinetic energy
Ry =absolute value of energy of ground state of
hydrogen for M = «; Ry=e¢?/2an
¥ =four-component wave function for Dirac’s
equation
W=energy of single electron according to
Dirac’s equation
L =azimuthal quantum number
(A)=expectation value of operator 4.

II. THE 8-COMPONENT EQUATION

The 16-component equation is equivalent to a
set of two simultaneous equations on two four-
component functions. In addition one has to add
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to the energy the expectation value of an
operator ¥ which represents the combined effect
of the magnetic interaction and a correction for
the effect of retardation on the electrostatic
energy. The representation can be chosen in such
a way that the equations have the form*

(£+2MC)+(0‘MPM)\I’=0, (1)
LY+ (OMpM)q> =0,
where

1.1)

(1.2)

£=pot+ ep.+Bmc,
with
po=(E+e/r)/c.

In order to simplify the formulas the nuclear
charge is taken to be e. In order to change results
to a nuclear charge Ze, the quantities €2, « should
be replaced, respectively, by Ze?, Za. The sub-
script M refers to the nucleus. The vector matrix
o has components having the form of Pauli’s
three spin matrices. The functions ¥, & have
two indices, the first of which is the Dirac four-
valued spin index for the electron and the second
of which is the two-valued spin index of the
proton. The matrices «, 8 operate on the first
index; o operates on the second. The operator
Yis

Y= (e/2r)[(eex) + (ar) (enr) /7]
in the original 16-component representation. In
the notation used in the present paper e
converts & into ¥, ¥ into ®, and after this
operates like oy. The calculation will be carried
out with an attempt at not making the assump-
tion that the velocity of the electron is small
until the final stage of the calculation. The
operator e« will be left, therefore, in ¥ and will
be considered accurately. It is realized that ¥V is
only accurate to order #?/c® and that at this
point the gain in accuracy is questionable. The
contribution of Y is of the last highest order of
quantities considered here and its effect vanishes
for M= . For hydrogen it does not matter
whether the effect of YV is evaluated accurately

(1.3)

4 The arrangement of the calculation is similar to that
in G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023
(1947) and G. Breit, Phys. Rev. 39, 616 (1932). Equation
(1) of the present paper does not include magnetic inter-
action and retardation effects. The expectation value of an
operator called Y is used later in order to take into account
these interaction effects, in accordance with the view that
this is the proper way of employing the 16-component
equation. A justification of this view is given in the (1932)
paper quoted in this footnote.
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or not. Since it turned out to be just as easy to
calculate the expectation value accurately as
approximately, the accurate evaluation will be
used almost up to the end of this paper. The
replacement of ¥V by something better requires
a more thorough investigation. One of the objects
here is to provide accurate forms of the answer
for the approximate theory so as to make it
easier to see in what way the physical effects
that are approximately represented by ¥ can be
treated more satisfactorily.
From the first of the two Egs. (1) one finds

b= —[1—(L/2Mc)+ - J(oups)¥/(2Mc). (1.4)
The condition

(PetPu)¥ = (P+Pa)®=0 (1.5)

will be imposed on the wave function so as to
have the total momentum equal to zero. The
partial differential equations thus obtained show
that each of the 16 components depends only on
the relative coordinates r. The operator p, is the
same for this wave function as the operator

p=(%/1)(3/dx, 3/dy, /9z). (1.6)

Substitution of Eq. (1.4) into the second of the
two Egs. (1) gives the following equation on
linearizing in e and omitting terms in ¢, which
contribute only to the hyperfine structure,

[e—p*/2Mc+ £,]¥ =0, (1.7)
where
£1=pLp/4M>3c. (1.8)
One has
L1V = p2 OV /AM? P+ £ (1.81)
where
Lo=heX(pr)/ (41 M%c3r3). (1.82)

The first two terms of Eq. (1.7) give an approxi-
mate wave equation which corrects the energy
for the kinetic energy of the nucleus and includes,
therefore, effects on the energy of the system to
the first order of m/ M. If the equation were exact
then the first part of £, in Eq. (1.81) would be
equivalent to an addition to the energy operator
of

— (cp*/8M3c?) (1.83)
which for small Z is of relative order
1/m\?3a?
—(—) — (1.84)
4\M] n?
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and is negligible. The first-order effect of £, on
the energy is obtained by taking the expectation
value of —c¢&,. For light nuclei this is

(—c‘,ﬁz)z(fﬁe2/4M2c2)fao Vs(dVg/dr)dndr

1.85
> —h2%2Vs?(0+4) /2 M%c? (1.85)

= —Ry(m/M)%*?/nd.

Here the subscript S on ¥ indicates the non-
relativistic Schroedinger approximation, the
lower limit of integration is designated by 7, and
the notation 0+ indicates that ¥g is evaluated
for the small value ». The reason for putting the
matter in terms of this notation should now be
explained. The operator £, arose in the step
between Eq. (1.8) and Eq. (1.81) as the result
of interchanging the positions of £ and p. The
whole term £ came in as a consequence of the
presence of — £/2Mc¢ in the brackets of Eq. (1.4).
At distances of the order e?/Mc¢? it is no longer
satisfactory to stop with the second term in the
brackets of Eq. (1.4) because then the potential
energy and M¢? are of the same order. Carrying
out the integration from r=0 to « would not
have much meaning, therefore. A second reason
for employing the notation 0+ is the convenience
of not having to bring in the difference repre-
sented essentially by the factor exp[ — (a2/2) logr ]
between the larger of the two Dirac functions
and the Schroedinger function ¥g. The small
value of a does not make the integral diverge
and the factor exp[ —(e?/2) logr] changes by
~0.3 percent when r changes by a factor e. It
changes, therefore, by roughly 2 percent between
e?/mc® and e?/Mc* and is thus practically con
stant between the point at which the two terms
of Eq. (1.4) are sufficient and the point at which
the approximation of the larger Dirac radial
function by the corresponding Schroedinger
function becomes good up to values of 7 con-
siderably greater than the Bohr radius. The
right side of Eq. (1.85), while larger than the
expression in Eq. (1.84), is, nevertheless, neg-
ligible.

It remains to consider the effect of the term
in p? which enters Eq. (1.7). To the first order it
brings in a correction of the order (m/M) of the
term value. It gives besides effects of order
(m/M)2, (m/M)a? and higher order terms. Effects
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of order (m/M)%? and those of higher order will
be neglected. Corrections of order (#/M)? cannot
differ from the (m/M)? effects for the Schroe-
dinger equation and are therefore taken care of
by the second term in the Taylor expansion
of the factor [1+4 (m/M)]™" in the original Bohr
reduced mass correction. It is further seen that
there are no correction terms of order (m/M)%a.
In fact the process of expansion of the eigenvalue
of Eq. (1.7) into a Taylor series in (m/M) is
equivalent to the employment of the Rayleigh-
Schroedinger perturbation method with p?/2M
as the perturbing term in the Hamiltonian. The
power (m/M)? is obtained in the second-order
perturbation energy which is given by the
standard expression

Ey=3;|Hif |*/(Ei— Ey), (1.9)

where ¢, f refer to initial and final states, respec-
tively. The difference in E, caused by changing
from the Schroedinger to the Dirac equation
consists in three effects: (a) The presence of the
negative energy part of the spectrum for E; in
the Dirac case; (b) Differences in E;—E; for
E;>0; (c) Differences in the numerator of the
formula for E;>0. It is well known that the
relativity effect on E; can be represented by a
Taylor series in even powers of a. The effect
(b) is, therefore, only that of causing the ap-
pearance of o? rather than a. An examination of
the formulas of Darwin and Gordon® for the
wave functions shows that here too all effects are
free of the first power of @ and that the effect
(c) is, therefore, also harmless. The only place
where the first power of a has the appearance of
entering explicitly in Gordon’s formulas is in
the ratio Co@/Cy®. It enters, however, through

(aE/mc*)/[1—(E/mc)*t=n'+(k*—o?)}, (1.91)

where #’ and | k| are both integers. The quantity
ko in these formulas may be thought at first
sight to contain the first power of a. This quantity
occurs, however, only in the combination k¢ and,
since

ko = (r/an) {o*+[n'+ (B — o) P} 4,

the effect of relativity through &, is describable
as a change of linear scale which is free of the

(1.92)

5C. G. Darwin, Proc. Roy. Soc. Al18, 654 (1928);
W. Gordon, Zeits. f. Physik 48, 11 (1928).
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first power of a. For E; in the continuous positive
energy spectrum one can make E; the same for
the Dirac and Schroedinger cases. The first-order
radial equations,

(pot+me)f—h[ g+ (1+k)g/r]=0,
(po—me)g+hLf'+(1—k)f/r]=0,

give the Schroedinger equation identically if one
replaces the coefficient po+mc of f by 2mc. For
values of | E;—E;| of the order of the ionization
potential and for »>ax the effect of relativity is
thus describable as a change in f/g of the order
(E—mc?)/mc* which is of the order o?/n®. For
distances of the order ¢2/mc? the fractional effect
on f/g is of the order of 50 percent. The volume
within which this is the case is of the order
(e?/agmc?)’=af, however, and this effect is negli-
gible. For E;~mc? the relativistic f/g is again
appreciably (of the order of 50 percent) different
from the non-relativistic value. Here, however,
the final state fis practically that of a free electron
for which p? is diagonal in the non-relativistic
approximation. One expects, accordingly, the
whole effect to be small. In fact the number of
states f in the energy interval mc® for a one-
dimensional problem in the interval 0 to R is
~(R/wch)mc?. The effect of the short wave-length
of the final state is to bring in a factor of the order
(h/mc)/an =« into each matrix element. Besides
the normalization factor for the continuum is of
the order (eam/R)* of what it is for the ground
state. The whole contribution is therefore of the
order

mc*(R/wch)(2m/2M)(T?/mc?)o?(ar/R)
~(m/M)e*Ry,

(1.93)

(1.94)

where the dependence on # is not considered
since the whole is negligible. The relativistic
value is of the same order as that just con-
sidered and effect (c) is negligible. The con-
sideration of effect (a) is essentially similar to
that just made for the continuum, with the
additional simplification of larger energy de-
nominators and the fact that for | E;+mc?| ~Ry
the large initial g; pairs off with a small final
g. This brings in an extra factor a in each
matrix element which takes the place of the fac-
tor (h/mc)/an, which was discussed in connection
with Eq. (1.93). Effect (a) is, therefore, also neg-
ligible. No terms of order (m/M)%*a are seen to
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be present in the second-order perturbation
energy, and it suffices to use the non-relativistic
value —(m/M)Ry/n? for this correction. It
remains, therefore, to evaluate the expectation
values of p?/2M and of the part of ¥ which does
not depend on nuclear spin orientation.

III. EVALUATION OF EXPECTATION VALUES

Neglecting the second term in the expansion
of ®/¥, one obtains an equivalent operator Y’
which contains oy quadratically. Linearizing in
the o5 and throwing away the spin dependent
part, one is left with

V" =(et/4Mc)[ (pe)r—'+r*(ep)
+(pr)(er)r—3+r=3(ar)(rp)]. (2)
The expectation value of this quantity and of

$*/2M will be calculated. Following Dirac it is
convenient to introduce the operators

e=(ar)/r, k=B[(Lo)+1], 2.1

and to recall that the meaning of Dirac’s angle-
dependent canonical transformation is that the
application of ¢, k, 8, to the Dirac four-com-
ponent wave function amounts® to the operation
on the column matrix

{; ) 2.2)

0, =i\ , {1 0
‘(z 0)' k‘k(o 1)’

where k is used interchangeably for the operator
and its eigenvalue. It follows directly from the
above form for e that

((pr)(ar)r=3+7r=3(ar)(rp))
=2k f (gf' —fg)rdr. (2.4)

(2.3)

The normalization is here such that
[ e+mrar-1.
0

Also it follows from the wave equation that

((pe)r~'+r7(ep)) = — 2(po+Bmc), (2.5)

¢ P, A. M. Dirac, Proc. Roy. Soc. A117, 611 (1928); The
quantum number j of Dirac's article is called & here. His
k is called L.
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and hence again, by means of Eq. (2.3) as well
as Eq. (2.4),

()= (@/24) [ [potmols

+ (po—mc)g*+h(fg' —gf’) Jrdr.

Multiplying the two Eqs. (1.93) by f and g, re-
spectively, there results a relation which enables
one to eliminate the derivatives and one obtains

(2.6)

(¥")= —(WMC)U;m(1>o+mC)J‘"2

+ (po—mc)g2rdr — hI], 2.7
with

I=k f " fedr. (2.8)
0

Again one has for the one-electron function ¢

P =(ep)¥y = — (ap) (po+Bmec)y
= — (po—PBmc) (ep)y = (po* —m*c®)y, (3)

and hence

(b*/2M)=(1/2]) f (pot —m3c?) (fr-+g2)rdr.

(3.1)
One has the helpful relations’

W =me? f R @)

me= [ polgr=pirar, 4.1)

where the value of E for M=« is denoted by
W and cpo=W+e?/r. It follows from these two
relations that

fw(W—{—ez/r) (g2—fAr¥dr=mc?, (4.2)

and hence
f (€2/r) (g2 — fA)ridr = (mict— W?) /me®.  (4.3)

7 The derivation of these equations is given in Appendix
I. The object in introducing these relations is to express
{p?/2M) in terms of W and also only quantities which have
to be evaluated only approximately. Equation (4) is
analogous to the virial theorem. Equations (4) make it
possible to express (e?/r) in terms of W.
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The factor € and the combination mc(f?—g?)
under the integral sign of Eq. (2.7) are expressible
by means of Eq. (4.3). Performing this sub-
stitution one has

(Y")=(m*c*—=W*)/ M+ — W(e*/r)

—{e/r)t+echl |/ M. (4.4)
Again Eq. (3.1) gives
(P22 M) = (W?2—m*)/2 Mc?
+[W(et/r)+(e'/2r*) ]/ (Mc?). (4.5)
Adding the last two equations one has
Ei=((p*/2M)+ Y")={— (W*—m’c")/2
+[—(et/2r2)+exchl ]}/ M2 (4.6)

The quantity W<{e?/r) which occurs in Eqgs. (4.5),
(4.6) disappeared on addition. This was arranged
on purpose so as not to have to evaluate cor-
rections of order o? to {(¢?/r). The deviation of the
relativistic wave functions from their non-
relativistic approximations is taken into account
implicitly in the value of W and appears besides
in the terms (e?/2r%) and chl. The latter two
terms will be seen to contribute only amounts of
relative order (m/M)a?, and it will suffice to
evaluate them without correcting for higher
powers of a.

For a Coulomb field it will be seen that the
terms in square brackets cancel in the non-
relativistic limit of small nuclear charge. In fact
the well-known hydrogenic value of (r—2) gives

(1/Mc*)(e*/2r%) = (m/M)e’Ry/[n*(L+3)].  (5)

The integral I occurs® in the theory of hyperfine
structure and has the value

I=(h/2mc) { —kg*(0+)/2+ (k(1+k)/7%)}

in the approximation of small nuclear charge.
The notation 0+ means that g is evaluated at
r~e?/mc?. The first term in braces is

(5.1)

— 47k ¥2(0), (5.2)

and it vanishes except for s terms. One has,
besides,

k(k+1)=L(L+1), (5.3)

and for a Coulomb field
(r*)=1/[an®L(L+3)(L+1)n*], (5.4)
¥52(0) =1/[mnag®]. (5.5)
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Hence

I=(a/2)(r%), (5.6)

so that the square bracket in Eq. (4.6) vanishes.
The cancellation is a consequence of the equality
of (r~2) and auL(L+1){r=3) for a Coulomb field.
The result is simply

Ei=—(W2—m%**)/(2Mc?), (6)
which can also be written as

Ey=—(m/M)(W—mc*)

— (m/AM)(2/n2) | W—me2|, (6.1)

which is identical in form with the results of
Darwin as well as Bechert and Meixner.

As has been discussed in the introduction, the
meaning of the result is somewhat different from
those previously obtained because it is ex-
pressed as a correction to Dirac’s W rather than
an approximation to it. This is only partially
satisfying because V"' is good only to order 22/c?
and one cannot be sure of the applicability of
the second term in Eq. (6.1) for heavier nuclei.

The reasons explained in the introduction
make one more certain, however, of the applica-
bility of the answer. To within terms of order
(m/M)2%2 the latter may be written as

E—me*=(W—mc*)/[1+ (m/M)]
— (m/4M)(o?/w?) | W—mc?|. (7)

One may conclude that it is probably appropriate
to apply Bethe’s electrodynamic shift correction
to the above formula for comparison with experi-
mental values of the Lamb effect. It may be
noted especially that there are no terms of order
(m/M)aRy/n? which would be a serious effect,
since (m/M)aRy=1.3X10*mc/s.

The considerations carried out above apply
directly only to an idealized proton having a
magnetic moment ek/2Mc. The magnetic mo-
ment of the proton may be described phenomena-
logically, however, by adding to the Hamiltonian
terms involving the electromagnetic six vector
in the manner proposed by Pauli as a mathe-
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matical possibility for uncharged particles. At-
tributing to the extra Pauli-like terms a physical
significance only through their expectation
values, one finds that nothing essential is
changed in the reasoning which gave Eq. (6). It
is still possible to start with Eq. (1). The terms
independent of relative spin orientations of
proton and electron are still represented by Eq.
(2), and the remaining steps leading to Eq. (6)
remain unchanged.

APPENDIX I
Some useful relations for the Dirac functions

Equations (4), (4.1) of the text do not seem to have been
recorded in the literature. Equation (4) is a generalization
of the virial theorem for the Schroedinger equation. To
derive it one can start with the radial equations (1.93) and
perform the similarity transformation

r=(140)",

where 6 is an arbitrary real number which will be made to
have small positive values. The equations which result
from the substitution are brought back to their original
form on multiplication with 1+46. Only now 7’ occurs
everywhere in place of 7 and, (1+6)E, (14 60)mc? replace E,
mc?. Making 6 small and recalling that the eigenvalue of
an equation cannot depend on whether the independent
variable is called 7 or 7/, one sees that the perturbation

energy mc’(—ol _:1)0, in the sense of Eq. (2.2), has

caused a change in the eigenvalue of magnitude 6E.
Application of first-order perturbation theory yields Eq.
().

One also has on multiplying the two radial equations by
—f, g, respectively, and adding

(po—mc)g— (po+me)f*+hd(fg)/dr+2hfg/r=0.

Multiplying by 72 and integrating, one obtains Eq. (4.1).
Another useful relation which follows from the second-
order equations is

I (pa—mee) (g irar
=3[ [(dg/dry+(af/dry+k(k+1)gt/r
+E(k—1)f2/r*Tr%dr.

This equation is not used in the paper, but since it was
helpful in some preliminary considerations it is reproduced
here for possible use of other workers.



