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The interaction of high energy neutrons with heavy nuclei is studied under the assumption
that the nucleus may be described by the statistical model. A detailed study is made of the
energy transferred to the nucleus, the angular distribution of emerging particles, and the
effective cross section for neutrons passing through nuclear matter. A summary of the results
is given in the final section of the paper.

I. INTRODUCTION

'HE 100-Mev neutrons produced by the
Berkeley cyclotron' provide a powerful ex-

perimental tool for the study of the properties
of heavy nuclei. Considerable work has already
been done on the investigation of fission thresh-
olds and nudear reactions in heavy elements. '
It is the purpose of this paper to investigate in
detail the transfer of energy to the nucleus by
high energy neutrons and to study the scattering
of neutrons by heavy nudei.

The general principles of high energy nuclear
reactions have been described by Serber, 3 and the
point of view presented by him will be adopted,
for the most part, in this work. The main ideas
enunciated by Serber are that one must con-
sider individual nucleon-nucleon collisions in
which a relatively small amount of energy is
transferred on a single collision and that one
must take into account the degeneracy of nuclear
matter, i.e., e8ects due to the presence of nu-
cleons other than the particular collision partner

Helmholz, McMillan, and Sewell, Phys. Rev. 72, 1003
(1947).

~ Cook, McMillan, Peterson, and Sewell, Phys. Rev.
72, 1264 (1947).

3 R. Serber, Phys. Rev. 72, 1114 (1947).

in question. This will be taken into account
using the statistical model of the nucleus. 4 The
experimentally measured neutron-proton cross
section' will be used whenever possible, to char-
acterize the individual collisions taking place
inside the nucleus.

In Section II, the problem of the effective
mean free path in nuclear matter is duscussed in

conjunction with a preliminary calculation of the
scattering of nucleons by heavy nuclei. In Sec-
tion III the energy transferred to the nucleus is
studied in detail and the number and energy
distribution of particles emitted "immediately"
after a collision is discussed. (It should be noted
that the problems discussed will not be those
concerning what happens to the energy trans-
ferred to the nucleus, the results of which are
usually described by the evaporation model. '
The events of interest here are those which take
place in the order 10 " sec.) In Section IV the
results are summarized and a discussion of the
possibilities of experimental verification is given.

4 H. Bethe and R. Bacher, Rev. Mod. Phys. 8, 83 (1936).
~ Hadley, Kelly, Leith, Segre, Wiegand, and York,

Phys. Rev. 73, 1114 (1948).
6 P. WoN and W. Heckrotte, Phys. Rev. 73, 264 (1948).
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The first problem to be investigated is the
mean free path of a nucleon when it is inside
the nucleus. According to our model, we picture
the nucleus as a mixture of two non-interacting,
Fermi gases of neutrons and protons bound in a
uniform potential of depth about 26 Mev, the
highest filled state being at an energy of about
—8 Mev. The maximum Fermi energies of the
neutrons and protons are E„and E„,respectively,
and are given by the we11-known formula

Er ——(l'p'/2M) (3s'X/ V) & (1)

where N is the number of neutrons or protons,
V is the nuclear volume, and M is the mass of a
nucleon. For simplicity, we shall assume that
there is only one kind of particle inside the
nucleus and use for the effective number of
particles one-fourth the number of neutrons plus
the number of protons. The reason for using
only one-fourth the number of neutrons is that
on the basis of an interaction consisting of one-
half exchange and one-half ordinary forces which
seems to be necessary to fit the observed neutron-
proton scattering data' the total neutron-neutron
cross section is about one-fourth the neutron-
proton cross section. The exclusion principle will,
however, be taken into account for the incident
particle by demanding that the projectile as
well as the target particle be outside the occupied
sphere in momentum space after the collision.
The radius of the sphere is given by

P =h(3+'X/ V) &. (2)

It is easy to show that the most probable mo-
mentum transfer in a high energy nucleon-
nucleon collision is of the order of )'p/rp, where ro

is the range of nuclear forces. Since h/rpP is of
the order of ~, a sizeable fraction of collisions are
forbidden by the Pauli principle and thus the
effective cross section is decreased. It is just this
e8'ect which will be computed.

Consider a neutron with energy E0' incident
upon a nucleus. Inside the nucleus it has an
energy Eo =Ep + Vp where Vp is the well depth.

R. Serber„private communication.

IL THE EFFECTIVE MEAN FREE PATH IN NU-
CLEAR MATTER AND THE SCA'I"I'ERING OF

NEUTRONS BY HEAVY NUCLEI

A. The Mean Free Path

It will be convenient to measure all momenta in
units of I' and all energies in units of P'/2M, and
this will be done throughout the paper. Let the
momentum of the incident neutron (inside the
nucleus) be Pp and that of one of the target
nucleons be P~. It will be assumed that the cross
section for a collision between P0 and P~, namely,
pdQps, is known. Here dQps is an element of solid

angle about the final projectile momentum yf
in the center of mass frame of the two collision
partners. Obviously ps=pp ——IPp —P&I/2 where

y0 is the initial momentum in the center of mass
frame. In general o is a function of pp and the
angle between p0 and pf. No assumption of the
precise dependence will be made at this point.
For convenience of expressing results in the
laboratory frame, it is expedient to replace the
element of solid angle by a three-dimensional
volume element in momentum space. Let the
momentum transfer in a collision be g where

g=p~ —p0=Pf —P0 and Pf is the final projectile
momentum in the laboratory frame. The volume
element transformation is as follows:

1
&dflps =&,&(ps po)dps = p' ,&(ps po—)dg (3)

pS PO

where the last writing follows from the definition
of g if P~ is regarded as fixed. pf and p0 are now
assumed to be expressed as functions of g and P~.
The effective total cross section 0 is then found

by integrating the product of the relative ve-
locity IPp —P~I/M' and the cross section over
the allowed regions of P~ and dividing by the
incident velocity I'p/M:

I"dg dp&+(P&) I Po
&0

1
Xo(po,po ps)—&(po —ps), (4)

02

where X(P~) is the density of target nucleons in
momentum space. The allowed regions of inte-
gration are confined to those values of P~, g such
that the condition of having both the final mo-
mentum vectors of the collision partners lie
outside the occupied sphere in momentum space
is satisfied.

Before the evaluation of cr can be undertaken,
an appropriate cross section must be chosen.
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Since the problem of the mean free path is not
the primary one in this paper and since it will

be computed in another fashion in Section III
the cross section will be taken here to be isotropic
in the center of mass frame, i.e. , 0 = o.r/4z, where
o.~ is a total constant cross section. In the other
calculation referred to, this crude assumption
will be dropped.

A coordinate system appropriate for the cal-
culation of 0 is shown in Fig. 1. This computa-
tion of 0. will be given in detail since most of the
results may be directly applied to the angular
distribution calculation (see Part 8 of this sec-
tion). The construction for finding the allowed
values of P~ such that for a given momentum
transfer, g, the target particle lies outside the
occupied sphere after the collision is made as
follows: Move a distance g from the filled mo-

mentum sphere parallel to g and draw a sphere
of radius 2 with this point as center. The region
above the auxiliary sphere and inside the original
one defines the allowed values of Pi (see Fig. 1).
The integrations over P& are most easily carried
out using a cylindrical coordinate system with
center at g/2 as shown. The limits on the g
integration are forced by the 8-function appear-
ing in the expression for 0 together with the
demand that I'f&1, i.e., that the projectile lie

outside the filled region after the collision. They
will be given explicitly below.

To proceed with the evaluation, all quantities

must be expressed in terms of g and P~. The
argument of' the b-function may be written in
terms of the new variables p, s, q by the use of
the theorem

&(f(z) -o) = (&f/&z) '*=-*o&(z zo-), (3)

where z, is the root of the equation f(zo) =0.
Using the relations pi =po+g and po= ~PO
—Pi~/2, one finds easily

zo = —g/2+Pp cost),
(Bf/Bz) z =zo g/2P——O,

where g is the complement of the angle between

g and Po (see Fig. 1). The fact that the con-
tributing values of Pj lie on the plane a=so is

simply a statement of the physically obvious
fact that the same speci%ed momentum transfer
parallel to g must be supplied by all target par-
ticles eR'ective in scattering into dg.

When every thing is written in terms of the
above defined cylindrical coordinates, the z in-

tegration carried out, the expression for 0- re-
duces to ¹z

~
dgP(g),

4x ~

with
3 p2x pp2

F(g) =—
) dip) pdp

~g 0 Pl

where the constant density in momentum space
has been inserted. The limits p~, p2 depend on
the values g and cosy. Three cases must be
considered:

(1) g& 2, 0&z &1—g/2,
(2) g «& 2, 1 —g/2 ««zo«& 1+g/2,
(3) g&~2, g/2 —1&«zo«&g/2+1.

The corresponding values of p&, p2 are

pi ——(1 Poi cos'g)&-
»=(1 (g Po «»9)') i

(2) and (3) p, =0
p2 = (1—(g —P«os')')'.

(9)

(10)

Fio. 1. Coordinate system used in computing the
effective mean free path and the angular distribution of
scattered particles,

The inequalities given in Eq. (9) completely
define the region of integration in g, cosy space
with the exception of the condition imposed by
demanding that Pf) i. This yields the addi-
tional restriction

Po 1&«g «& Pa+ 1, cosy —«& (P02+ g' 1)/2Pog. (11)—
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F(g) may be evaluated trivially; the result is

Case (1)
F(g) = (3/Po) (2Po cosy —g),

Cases (2) and (3)

(12)

I
Z

Q lo-

R

j os-

V=ai eO~
0 fO 20 30 40 50 60 70 So QO

ENERGY OF SCATTERED NRTCLES IN Msv

Fic. 2. Energy distribution of particles scattered from
a heavy nucleus at fixed laboratory scattering angles. The
energy of the incident neutron is 90 Mev. The discontinu-
ous derivatives at the maxima result from the exclusion
principle. The ordinate scale is in arbitrary units.

F(g) = (3/PC) (1—(a —Po coss)'I (13)

lt is easy to see that F(g) vanishes on the bound-
ary lines g = 2PO cosy, g =Po cosy ~1. The line
cosy=1/Po marks the transition from Case (1)
to Cases (2) and (3) and is an explicit manifesta-
tion of the exclusion principle.

The remaining integration over g is trivial,
although rather tedious. The result for P0&~02
is quite simple and is given by

o =Xo r(1 —7/SPo') (14)

The result for Po&VZ is more complicated and
will not be given. If the radius of the momentum
sphere corresponds to 18 Mev, the potential well

to 26 Mev, and the energy of the incident par-
ticle to 90 Mev outside the nucleus o/X~r =0.78.
Assuming that the eRective number of particles
is 113 and the radius of the nucleus is 9&(10 "
cm (corresponding to lead) and that the cross
section oz is 0.064b (extrapolating the value of
0.083b at 90 Mev by a 1/F law) the mean free
path is found to be 5.52X10 " cm, whereas it
would have been 4.3X10 "cm with the neglect
of the Pauli principle. It turns out that the iso-
tropicity assumption underestimates the eR'ect

of the exclusion principle e8ect; the value of

the e8'ective cross section found in Section III,
using a more realistic cross section, leads to a
value of 6.20)&10 "cm.

B.The Angular Distribution of
Scattered Neutrons

The statistical model predicts that the angular
distribution of neutrons scattered from a heavy
nucleus will differ markedly from that expected
qualitatively for high energy phenomena, namely,
of strong forward scattering. Forward scattering
implies small momentum transfers which, as was
pointed out above, are very much reduced by the
exclusion principle. Thus the angular distribu-
tion of scattered neutrons should show a pro-
nounced dip in the forward direction. (Since the
exclusion principle acts for the projectile, large
momentum transfers are also discouraged, and
there would be a corresponding dip in the back-
ward direction. ) It will be seen later that this is
indeed the case. Another characteristic of the
model is that for a fixed scat'tering angle there
will be a distribution of energies among the scat-
tered particles due to the motion of the target
nucleons inside the nucleus.

The same assumption made in Part A of this
section about having to deal with only one kind
of particle will be made here. Two additional
assumptions will be made: (a) The incident
neutron makes only one collision inside the nu-

cleus before escaping. This is not too good an
assumption, as will be seen in Section III; how-

ever, the angular distribution is not greatly
modihed by the multiple collisions, as will be
seen later. (b) The cross section for individual
nucleon-nucleon collisions depends only on the
momentum transfer involved in the collision.
This point requires some discussion.

If one assumes that the Born approximation is
valid, the cross section will be proportional to
the square of a matrix element of the form

(Pf ~
~

~ Po& =~fi(Po —Pg) +I fo (Po+Pf),

where pf, po are the final and initial momenta,
respectively, in the center of mass frame, and
n, P are constants which depend on the particular
sort of exchange and ordinary potential mixtures
assumed. The general characteristic of the ang-
ular distributions associated with f& and fo are
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easily seen, since

fg(po —p/) I dre'~"~P' —P~~'Uy(r)
J

Evidently if the U's are reasonably well behaved

f & will be large only when py po whereas f2 will

be large only when pj —po. Thus the angular
distribution associated with f~ is peaked in the
forward direction, that of f2 in the backward
direction. As was pointed out at the beginning of
this section, one would expect the effects of the
exclusion principle to be prominent only in the
case of very small or of very large momentum
transfers. To see the effects, therefore, it will be
sufficient to consider the case of small momentum
transfer, in which case the most important con-
tribution to be considered is that of the forward
scattering, i.e., of fq(po —py). What shall be done
in practice is to fit the experimentally measured
neutron-proton angular distribution with a func-
tion f~(po —p~) in the angular range of 0 to m./2
in the center of mass frame. It is, therefore, to be
expected that the angular distribution in the
heavy nucleus case will be correct only for
angles somewhat less than s/2 in the laboratory
frame since the transformation from the center
of mass frame tends to concentrate the whole
cross section in the forward direction. In Section
III, the experimentally observed neutron proton
cross section will be used.

The calculation proceeds exactly as that of 0

in Part A, except that the integration over g is
not carried out, since the diA'erential effects are
desired. Using the definition of g it is clear that
dg=dP~ where PJ is the final laboratory mo-
mentum of the scattered neutron. The cross sec-
tion for scattering into dPJ, namely, 0 L,de, may
be written as

Case (1)

3
o&d~f o(po pf)

+0

JP0 I fX— —de
(Po2+P~2 2PoPi cos8)'—

LX

I
Ã'

Ig

O' Io' 20' Rf 40' 5d' so' 7cI' so'

LANORATORY SCATTERING ANGLE

Fzo. 3. Angular distribution of particles scattered by a
heavy nucleus in the laboratory system assuming only a
single collision inside the nucleus. The energy of the in-
cident neutron is 90 Mev. Because of the symmetry of
the neutron-proton scattering, these curves give also the
distribution of recoil protons (see Section III). The or-
dinate scale is in arbitrary units and is not the same for
the two curves.

Cases (2) and (3)

3
o L,de =—o (Pp —Pg)

JPQ

Pt 2PyPp cos8+Pp Pg slI1 8
X dPg, (16)

IPp'+PP 2PoPy cosB—I
I

where g and cosy in Eqs. (12) and (13) have
been written in terms of (see Fig. 1) Pr and 8
using

PP =Po +g 2Pog cosg, —
g'=Po'+P ' 2P(Pr cos0—

The regions of integration in I'y, cos8 space
follow in a straightforward fashion from Eq.
(9), but the results are very complicated and will

not be given. There is one modification of the
region. The value of I'~ must be greater than
(Vo)I in order that the neutron be able to
escape from the nucleus after suAering its
collision.

The cross section chosen to fit the angular
distribution in the region 0 to m/2 in the center
of mass frame of neutron proton scattering at
90 Mev is

o (po —p~) = (constant)/ I 1.0714+ (po —py)'I . (18)

This cross section has no theoretical foundation
and was taken only for simplicity of computa-
tion. The expressions for Cl.de were evaluated
for fixed values of the scattering angle 0, and
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the energy spectra of scattered neutrons was
found. Then the angular distribution was calcu-
lated. As a numerical example, neutrons with an
energy of 90 Mev outside the nucleus were
chosen. The results are given in Figs. 2 and 3.
In Fig. 2 the energy spectra are shown, and in
Fig. 3 the angular distributions are given, the
isotropic cross-section results being given for
comparison. For lower energies the maximum
in the angular distribution would occur at a
larger angle because the particles would have to
be deHected through larger angles in order to
transfer the requisite amount of momentum in
a given collision. A further discussion of these
results will be given in Section IV.

In addition to the inelastically scattered neu-
trons treated above, there will also be some neu-
trons scattered with no change in energy. This is
scattering by the nucleus as a whole and corre-
sponds to the well-known diffraction scattering.
The importance of this effect is that the elastic
scattering is confined primarily to small angles
and wouM thus tend to erase the dip predicted
by the statistical model (Fig. 3). It will be seen
later that this complication does not provide an
insurmountable barrier to the experimental meas-
urement of the decreased forward scattering of
the inelastically scattered neutrons. Neverthe-
less, it seems worth while to estimate the effect
semiquantitatively.

To the approximation in which the nucleus is
regarded as a completely black sphere of radius c
(sticking probability unity), the differential cross
section may be easily calculated to be

A(kaO) '
odQ =@2 dQ, ' (19)

where Jj. is the Bessel function, k is the wave
number of the incident neutron, and 8 is the
scattering angle. This result is valid for 8«1.
If c is taken to be 9 &(10 "cm and k correspond-
ing to 90 Mev, the first minimum occurs at
about 11'.The approximation of sticking proba-
bility unity is a good one, as may be seen from
the results of Section I II.

III. MORE DETAILED CALCULATIONS

The problem to be considered in this section is
that of calculating in some detail quantities such

H. Bethe and G. Placzek, Phys. Rev. N', 1075 (1940).

as the energy delivered to the nucleus in bom-
bardment by high energy neutrons, the number
of collisions suffered by the projectile, the angu-
lar distribution of scattered particles taking into
account multiple collisions and, finally, the mean
free path of a nucleon passing through nuclear
matter. The statistical model will again be used
to describe the nucleus; however, more attention
will be paid to the fact that both neutrons and
protons are present. The experimentally observed
neutron-proton scattering cross section will be
used whenever possible.

The approach to these problems will be pri-
marily a classical one in the sense that the con-
cept of a definite trajectory for the particles will
be used and also that of a definite radius for the
nucleus. This is a well justified approximation
since the wave-length divided by 2s of a nucleon
with an energy of 90 Mev is about-,'X10 "cm,
or eighteen times smaller than the nuclear
radius. The method to be used has been de-
veloped by S. Ulam and J. von Neumann. ' The
fundamental idea of the method is the following:
One follows in detail, collision by collision, the
passage of a large number of particles through the
nucleus until the particles either escape or lose
sufficient energy to be captured. Evidently, if a
su%ciently large number were chosen, an exact
solution to the problem would be obtained.
Whenever it is necessary to make a choice of a
number of equally probable events, this choice
will be made by a random process. The method
can be most easily explained by actually de-
scribing the successive steps involved in follow-

ing a particle.
The first problem to be faced is that of how far

the nucleon travels into the nucleus before mak-
ing a collision. One imagines that the nucleon
has penetrated the nucleus; as far as this nucleon
is concerned it is immersed in an infinite medium
of nuclear matter. The geometry of the sphere
will be taken into account later. Then the total
interval from zero to infinity is divided into
regions of equal probability. Evidently the
division is made according to the law

(20)

'S. Ulam and J. von Neumann, Bull. Am. Math. Soc.
53, 11&0 (19&7).
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where p is the probability of penetrating a dis-
tance x from the surface without suffering a
collision, and ) is the mean free path not taking
account the Pauli principle (the particle does
not know if the collision is to be forbidden until
it tries to collide). The path lengths are found
to be x =X ln1/p, where p„designates which
one of the equally likely intervals in which the
collision has taken place and is given by n/N
where N is the total number of divisions of the
total interval from zero to one (0~& n~& N) The.
value of p„ is chosen at random and a path
length is obtained.

The next decision to be made is that of the
momentum of the struck target particle. The
whole allowed region of momentum space is
divided into regions of equal probability, i.e. ,

equal volume. The number of these divisions
should be sufficient to cover the region in a
reasonable representative way. Since the proba-
bility of making a collision with a particle in the
ith region is proportional to p„;~(g,~) where p„
is the relative momentum and 0(p„~) is the total
cross section for a collision with relative mo-
mentum p„;, it is clear that the appropriate
division into equal probability intervals is ob-
tained by computing the partial sums

where Ni is the total number of divisions of the
momentum space. Then a random number, m,
between zero and one is chosen and if s„~&m
& s„+l the collision is taken to be with a particle
in region n.

Having decided on a collision partner, one
must then find out the scattering angle. It is
most convenient to work in the center of gravity
system for this purpose. It is supposed that the
diEerential cross section a(p„,6)dQ is known.
The appropriate values of 8; are computed from

(21)

where 1&~j~&N2 and X2 is the total number of
intervals chosen for division. The final vector
momenta of the collision partners are deter-
mined from the conservation laws. Then one

I
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FrG. 4. Distribution of excitation energies of the re-
sidual nucleus immediately following the bombardment of
a heavy nucleus by 86.6-Mev neutrons.

must see if the collision is permitted by the
Pauli principle. If it is permitted, the whole
procedure is repeated for the two final particles
until they have escaped from the physical sphere
or been captured. If the collision is forbidden,
the particle is given a new path length along its
original trajectory.

In the computations carried out in this paper,
one hundred incident particles were followed. A
greater number should, of course, be used, but if
a greater number is chosen, the problem should
be handled by a machine. The results obtained
show some scattering but nevertheless indicate
quite definite trends. The number of divisions
used to obtain the path lengths was one thou-
sand. The momentum sphere was divided into
twenty regions and the scattering angles were
divided into five regions from zero to s/2. The
reason for going only to s/2 will be discussed
immediately.

The choice of the differential cross section
made here is based on the experimental fact
that the neutron-proton scattering cross section
is very nearly symmetric about ~/2 in the center
of mass system. This implies that the angular
distribution of recoil protons is the same as that
of the scattered neutrons. The convention was
therefore made that only scattering angles less
than s/2 in the center of mass frame would be
considered; since targets and projectiles are
treated on an equal footing, all possibilities are
included. There is one important simplification
resulting from this choice: Only one curve need
be constructed for the determination of the
scattering angles since the cross section may be
chosen as a universal function of the momentum
transfer, g, irrespective of the relative momentum
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No. No. Average excitation
particles of energy of residual
emerging cases nucleus

Average energy distribution
of emerging particles

decreasing energy
1 2 3

94.5
41.6
35.2
40

45.0
27.2
14.5

16.0
9.5 6.5

(g=v2p, sin8/2). It turns out that, on the basis
of an interaction consisting of one-half ordinary
forces and one-half exchange forces, which 6ts
the experimental data, 7 the neutron-neutron
scattering angular distribution has the same form
as the neutron-proton; consequently the neglect
of the difFerence between these types of collisions
is justified. The exact form chosen is that given
in Section II, Eq. (18). Further account of the
presence of both neutrons and protons was taken

by setting the minimum energy for escape from
the nucleus at 14.5 Mev above the Fermi energy,
an average between the neutron and proton
barriers.

The energy dependence of the total cross sec-
tion is taken to be inversely proportional to the
relative energy, and the magnitude was fitted to
the experimental result of 0.083b at 90 Mev.
This has the consequence that p,~(p,) averaged
over the momentum distribution is just Potr(PD),

0 Io 20 30 40 50 eo
r HNGY —Mer

I
I

I
1

I

l

I

70 so 90

Fro. 5. Energy distribution of particles emerging at all
angles immediately after the bombardment of a heavy
nucleus by 86.6-Mev neutrons.

Year.z I. Results for 100 incident particles, of which f.5
pass through the nucleus without collision. Energetics of
the particles produced by the 85 which make successful
collisions. All energies are in Mev.

where I'0 is the projectile momentum, and pro-
vides a check on the method used to select the
collision partners.

The actual calculations were carried out pri-
marily by graphical means; analytical calcula-
tions would have required an exhorbitant
amount of time if done with ordinary desk com-
puting machines. The calculation described here
required about two weeks full-time work by two
people. The energy of the incident particles was
taken to be 86.6 Mev, the depth of the potential
hole to be 26 Mev, the maximum Fermi energy
to be 18 Mev, and the nuclear radius to be
9.0X10 "cm.

The mean excitation energy of the residual
nucleus was found to be 42.5 Mev. The distribu-
tion of excitation energies is shown in Fig. 4;
this curve represents 85 particles. The average
number of collisions sufFered by a particle escap-
ing with more than 1.5 Mev is two, although
about half the particles have only one collision.
Note that these emerging particles may be target
particles. The total energy distribution of all

particles emerging at all angles is shown in

Fig. 5; this curve represents 105 particles. The
angular distribution of all emerging particles
with energies greater than 15 Mev is shown in

Fig. 6; this curve includes particles which have
suffered up to five collisions before emerging
and represents 76 particles. A further breakdown
of the data is given in Table I. The effective cross
section was found for particles with energies of
113and 66 Mev inside the nucleus. The fractions
of the total cross section at these energies are
0.69 and 0.32, respectively. It was found that 15
particles pass through the nucleus without a
collision; an exact calculation based on a mean
free path of 6.20 X 10 " cm predicts 17 such
events. It is interesting to note that the total
cross section for lead found experimentally, '
namely, 4.53b, agrees quite well with the value
0.85 X2xa' which yields, with a =9.0X10 ",
4.32b. Of particles emerging with an energy
greater than 15 Mev, 36 had suffered one colli-
sion, 29 had two collisions, eight had three colli-
sions, five had four collisions, and one had hve
collisions. The intervals on the block diagrams
were chosen so as to give a reasonably smooth
curve and should not be regarded as giving a
measure of the statistical accuracy involved.
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Since each curve represents about 100 particles,
the intervals on the diagrams represent from 10
to 15 particles.
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IV. SUMMARY AND DISCUSSION OF RESULTS

(a) The theoretical angular distributions shown
in Figs. 3 and 6 show that the expected dip in

intensity in the forward direction for scattering
high energy neutrons from heavy nuclei occurs
over a relatively small angular interval; the in-
terval is so small, about 25', that experimental
measurements will be diS.cult, although probably
not impossible. It is interesting to note that the
inclusion of multiple scattering does not radically
change the angular distribution; this is due to
the high number of single scatterings and to the
fact that the double scatterings are strongly
correlated to the single scatterings. The compli-
cation of the background of elastically scattered
neutrons does not provide serious difhculty be-
cause of the fact that the distribution of recoil
protons should be essentially the same as that
of the scattered neutrons; one need, therefore,
measure only the protons. In Fig. 2, the energy
distribution of particles emerging at various
angles is shown.

(b) The mean free path in nuclear matter for
a neutron with energy 90 Mev outside the nu-
cleus computed on the assumption of isotropic
scattering in the center of mass system is
5.52 X10 "cm, whereas that computed using the
observed angular dependence is 6.20X10 " cm.

(c) The distribution of excitation energies of
nuclei bombarded with 86.6-Mev neutrons is
calculated (Fig. 4). The average excitation en-

ergy is 42.5 Mev. This energy will be distributed
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FIG. 6. Angular distribution of particles emerging from
the nucleus taking into account multiple scattering (com-
pare Fig. 3). The cosine of the laboratory scattering angle
is given in the lower scale and the actual angle in the upper
scale.

among the nucleons, and the subsequent behavior
could be described by the evaporation model.
The total energy distribution of emerging par-
ticles is shown in Fig. 5. The peak at the high
energy end is believed to be real; it represents
the large number of particles which subtler only
one collision before escaping from the nucleus.
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