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Line Shayes in Nuclear Paramagnetism
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This note discusses brieAy several methods of describing the width and shape of the reso-

nances characteristic of nuclear paramagnetism. Use of the so-called moments of the shape
function is illustrated by an experimental determination of a root mean square line width which

is in substantial agreement with a calculation by Van Vleck. The solutions of the Bloch equa-
tions, which lead to the Lorentz shape function traditional in the theory of radiation- and
collision-broadened lines, are compared with susceptibility curves based on a Gauss absorption
curve. A significant difference between the two dispersion curves serves as a criterion for
determining whether or not either of these two shapes closely approximates to a given experi-
mental curve, and experimental examples of each are given.

For comparison of shape functions, several well-known specializations of the Kronig-Kramers
relations are employed. The collection of these formulae may incidentally prove convenient
and useful to those engaged in studies of nuclear paramagnetism.

INTRODUCTION

~

~

HEN a sample containing nuclear mag-
netic moments is immersed in a constant

magnetic 6eld Hp, energy may be absorbed from
a radiofrequency magnetic held which is perpen-
dicular to Ho and has a frequency near the nuclear
Larmor frequency. The rate of absorption is pro-
portional to the imaginary component of the nu-

clear magnetic susceptibility y= y' —ig". The
dependence of y" on frequency v is given by the
shape function g(r ), defined as follows

I'" x'(v') —x'( ~)
x"(v) = —— dv'.

X "p v
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resonant frequency for a nucleus with spin I and
magnetic moment v, =gPI, g being the nuclear
g-factor and P the nuclear magneton. For a given
shape function, the line width is proportional to
I/T2. If x"(v) is known, x'(v) is given by the first
of the Kronig-Kramers relations:

2 I
"v'x" (v')dv'

x'(v) —x'(~) =— '

%'Lp v v

al p

II f
These formulae were originally derived for the

oo electric susceptibility. ' Gorter and Kronig' later
g(v)dv = & (1) pointed out their validity for magnetism, and

they are easily shown to apply to a large class of

T~=-2+(v)]M.... complex quantities used in the analysis of physics
and engineering problems. 4

Here xo ——XN,'(3kT) '(I+1)/I is the static nu- In Eq. (2), as well as in Fqs. (3), (4), and (p)
clear susceptibility and v, = (pH, )/(Ih) is the which follow, the Cauchy principal value is to be

understood, that is, if f(v') has a singularity at
v'=v, then
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FIG. 1. Fluorine (F") resonance in a CaF& single crystal.
Ho along $100j; H*=6824.2 gauss, v=27.33 Mc.
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LINE SHAPES IN NUCLEAR PARAMAGNETISM

SPECIAL FORMS OF THE KRONIG-
KRAMERS RELATIONS

TABLE I. Root mean second moments of the F"absorp-
tion line in a single crystal of CaF& for three directions of
magnetic field in the crystal.

Both x'(v) and x"(v) for nuclear resonances are
effectively zero except in a small frequency in-
terval, usually no more than 200 kilocycles even
for solids, about the resonant frequency vp of at
least several megacycles. The approximations
v'/(v'+v)=-', and v/(v'+v) —

p therefore allow

Ho direction

100
110
iii

Experiment

3.68+0.20 gauss
2.25 +0.20
1.77+0.20

Theory of
Van Vleck

3.60 gauss
2.24
1.53

~" x"(v')dv'
x'(v) =-

7f'~p v v

1 t."x'(v')dv'
x"(v)=-- '

Ã~p v —v

Extension of the lower limit from —vp to —~
adds negligibly to the integrals in view of the
narrowness of the resonance. Formulae (4) are
more conveniently applied to nuclear suscepti-
bilities than the more general relations (2). Plac-
ing (v'/v) —1=(v' —v)/vp and using x'(0)«x (vp)

after partial integration of Eq. (3) yields

1 ~" dx" (v')
x'(v) =- log—

prljp dp p —v
dv,

~" dx'(v')
x"(v) = ——,log,

dv p v

vp
dv ~

The modulation type of apparatus developed by
Purcell, Pound, and their co-workers' ' may be
adjusted to measure quantities directly propor-
tional Co either of the derivatives involved in

Eq. (5). If the available apparatus measures di-
rectly the derivative of but one part of the
nuclear stupceptibility, the relations (5) offer the
moet direct means of obtaining the other part.
The form of the integrals in Eqs. (5), each of
which has a logarithmic singularity in its inte-
grsed, ate) makes evident the qualitative simi-

Placing v' =vp+hv' and v =vp+Dv yields

1 t
"x"(hv')d(hv')

x'(vp+kv) =-
hv' —b v

(4)
1 t

"x'(Av')d(hv')
X"(vp+hv) = ——

Qv' —8 v

larity between one part of the susceptibility and
the derivative of the other part.

THE MOMENTS OF THE SHAPE FUNCTION

In the preceding paper, Van Vleck finds ex-
pressions for the second and fourth moments of
the shape function g(v), the (2n) th moment being
defined as

(6)

In particular, Van Vleck obtains the second mo-
ment in terms of the direction cosines of the
magnetic field Hp with respect to the principal
axes of a simple cubic lattice, and he calculates
the fourth moment for Hp along the 100 axis.

The simple cubic lattice of F"nuclei in crystal-
line CaF~ ofFers opportunity for an experimental
check of these calculations. The dependence of
peak signal strength on magnetic field direction
in this crystal has been examined by Purcell,
Bloembergen, and Pound. 6 In the present experi-
ments, a cylindrical specimen about 1 cm in
diameter and 2.5 cm long was cut from a single
crystal of Auorite, the cylindrical axis lying along
the 1i0 crystal direction. The crystal was in-
serted into the r-f coil of the permanent magnet
apparatus described elsewhere, ' and the deriva-
tive of the F" absorption line was plotted for
several directions of Hp in the crystal. One of
these experimental curves is reproduced in Fig. 1,
the magnetic field being along 100. The second
moment may be found directly from this curve
by performing a partial integration on the right
member of Eq. (6) and recalling that g(v) vanishes
except in a small frequency interval about vp..

r
" dg(v)

((hv)P")p„=—
I (hv) P"+' dv. (7)

2pp+1 &p dv

'I E. M. Purcell, N. Bloembergen, and R. V. Pound, Phys.
~ R, V. Pound, E. M. Purcell, and, H. C. Torrey, Phys. Rev. VO, 988 (1946).~.&, Ni (1946). ~ G. E. Pake, J. Chem. Phys. 16, 327 (1948).
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FrG. 2. Nuclear suscep-
tibilities, x =x' —iy".

Root mean square line widths (measured in units
of magnetic field rather than frequency) were
evaluated numerically using Eq. (7) and curves
such as that of Fig. 1 for three directions of Ho

in the CaF2 crystal. The experimental results are
listed in Table I, along with the corresponding
values calculated by Van Vleck. The failure of
the theoretical width for 111 to fall within the
limits of error should not cause undue concern,
inasmuch as the relatively large power of Av in
the integrand of Eq. (7) accentuates the effect
on a narrow line of spurious broadening intro-
duced by crystal imperfections or by small errors
in crystal orientation.

Figure 1 can be used in a similar way to
evaluate the fourth moment, with the result

((hH) ')o, ~ =4.56&0.20 gauss. Inasmuch as a con-
siderable part of the error quoted arises from
magnetic field calibration, it is perhaps more
instructive to consider the ratio ((hH) ')A, &/

((~2)2,&; the experimental value is 1.24&0.02,
compared with I.25 given by theory.

COMPARISON OF LORENTZ AND
GAUSSIAN LINE SHAPES

Bloch' has obtained a system of diAerential
equations satisfied by the expectation value of
the nuclear magnetization which lead to the
Lorentz shape function traditional in the theory
of radiation- and collision-broadened spectral
lines. For r-f magnetic fields sufficiently weak to

F, Bloch, Phys. Rev. V'0, 460 (1946).

preclude saturation, the Bloch susceptibilities are

x"(~)= xo~oT2
1+T2'(ioo —oi)'

T2(oio oi)
X'(~) = Xo~oT2

1+T 2(~ ~)2

where co=2xv is the angular frequency. These
susceptibilities are consistent with the Kronig-
Kramers relations and with the definitions of
Eq. (1).

In attempting to determine line shape by the
diagonal sum method, Broer' finds a general
expression for the (222)th moment:

d" 2

Ti. —S
dt"

Although the shape function would, in principle,
be determined by its moments, the highest thus
far calculated is the fourth, which Van Vleck
obtains in the preceding paper. The practical
difficulties in evaluating the higher moments
force Broer to follow Heisenberg's theory of ferro-
magnetism by assuming that g(2) is proportional
to a Gauss function, exp) —a(62)2]. Equation (1)
requires such an absorption curve to have the
form

X"(co) = Xoo&oT2 expL —T2'(oio io)'/or j. (10—)
' L. J. F. Broer, Physica 10, 801 (1943).
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F(x) =e—") e&'dy. (12)

Both Lorentz and Gaussian formulae for x'(&o)

should and do reduce to go at co =0.To verify this
for Eq. (11), one may use dF/dx=1 2xF a—nd
the fact that dF/dx is vanishingly small at great
distances in frequency from ~0, in particular, at
o) =0.

Both Lorentz and Gaussian shape functions
may be linked with idealized physical models,
the first of which relies solely on the broadening
introduced by oscillatory local field components
at the Larmor frequency. By this means neigh-
boring nuclei limit the lifetime of a given nuclear
spin state by inducing transitions from it, and
mathematical analysis closely parallel to that for
collision broadening of ordinary spectral lines"
would lead to the Lorentz shape function. Such
a picture, however, ignores local field static com-
ponents, ~* which disperse the resonance values of
the large constant magnetic field and which pro-

From Eq. (10) and the first of Eqs. (4) one finds
after considerable manipulation that

y (co) =xgyoT2'2' 'F(w 'T2(coo —ct))), (11)

where

vide the broadening mechanism of the second
model: The e8'ective static local field at an ab-
sorbing nucleus depends upon the positive or
negative excess of its near neighbors with spins
aligned in the positive Ho direction. Spins
throughout the sample are assumed to be ran-
domly parallel or antiparallel to HQ (I is taken -',

for simplicity), and, in the limit of large numbers
of near neighbors clustered about each absorbing
nucleus, this excess number becomes distJibuted
among the absorbing nuclei according to a Gauss
function. The effective local field of the model is
essentially proportional to this distribution. Al-
though these models evidently represent much-
simplified approximations to reality, they identify
the two shape functions, Lorentz'and Gaussian,
with physical pictures which, however incom-
plete, may prove helpful until the detailed theory
is cast into a form more amenable to calculation.

Figure 2compares, asfunctionsofx=T2(~0 —co),

the Lorentz curves of Eq. (8) with the Gaussian
curves of Eqs. (10) and (11).Values of the func-
tion F(x), which arises in heat-How problems, are
taken from a tabulation by Miller and Gordon. "
The derivatives of these curves are plotted in
Fig. 3, corresponding to the quantities measured
directly by experiment. From Figs. 2 and 3, one

Fir. 3. Derivatives
of nuclear susceptibili-
ties, x'= T2(coo —co).

, III
X

OV dy
dx'
dx

02'

UNITS OF ' ' ' " UNITS OF

~Ma Tg *jj", '. 1.0 os" -+.4&i-W:,+-~;:;,"„;„;;:„,'''L~
~::d x ~;:, , : s~ . ,

0.8;
dx I+x

d a ':QS

l4&-=I-=:='-'-:g-~4'-"

-1$-M "
- v. -+ '. .'ll ~ 'i ~ ----I

,'X»" o"

&I"& 'i,-. 5l:=:=:-2j".-, ,-I -*,' l---===ll '.. '&. ..-:::IIl'.=~n-14:"" --""=«4l==:'=I-0:=:=I-2i-.--- Ii+--I, ': 'I ""2&-i=-~Br&-'-'-i-I4;. : "-
'T

lg I

-w--- -++---,-- P 2', + -- ~
— +l P21

+ I'

---i-0.4'. :
I'&'&I+H+".+ ~t

.=-I fjP~:;fgy945 l~~-II~~':4.'--:--:dx I+X& dx ======---'---- . ;;-w-'--, ;~I =6~~7 d

8 NAP-MMV', -:: -'%R-"-..
--: -- - ' 4PR '-' K-=ht, =,--

tl:-lg:Rg
~~~LORENTZ' .-": ':;":..': '. . . :: . .'-+~, -i-'-I GAUSSIAN IF--@ ~+

' J. H. Van Vleck and V. F.%'eisskopf, Rev. Mod. Phys. 17, 227 (1945).**In Reference 1, pp. 695 and 696, the dipole-dipole Hamiltonian is written in a form which displays terms corre-
sponding to static and Larmor frequency local 6elds.

1~ W. L. Miller and A. R. Gordon, J. Phys. Chem. 35, 2875 (1931).



G. E. PAKE AND E. M. PURCELL

t. PONT/
NANCE
OER AT POINTS,

NANCE
7.4 MG

SEC.

4 5 6
4 a»p I I

a S 4 x

d
dx

FIG. 4. Negative derivatives of nuclear susceptibilities,
X=X —~X = ~~{o —).

can relate any experimental width measure to
1/T2. The Lorentz and Gaussian curves diA'er

most significantly in the ratio R of the large
maximum of dx'/dx to either small minimum:
R(Lorentz) =8:1and R(Gauss) =3.5:1.Applica-
tion of this criterion to an experimental disper-
sion curve indicates which shape function, if
either, seems likely to fit the data.

Figures 4 and 5 shorn experimental nuclear
susceptibilities, measured with the permanent
magnet apparatus, which approximate to these
two shape functions. The F'9 resonance in poly-
tetraHuoroethylene (TeRon) at room tern perature
fits the Bloch curves reasonably mell, whereas the
proton resonance in NH4Cl powder at room tem-

Fto. 5. Negative derivatives of nuclear susceptibilities,
X=X —~X t &=~2(0 —)

perature has R=3.3 and more nearly resembles
the Gaussian curves. It should be borne in mind
that many substances, especially crystals in
which "frozen-in" nuclei determine line width
and shape, may possess a shape function differing
markedly from the two simple ones considered
here. Figure 1, for example, does not resemble
closely either absorption curve derivative in Fig.
3; the proton dispersion curve for (NH4)2SOg
powder has R=2.5, and pronounced fine struc-
ture has been observed in hydrated crystals. '

Facilities for the experimental work here re-
ported, including the large permanent magnet,
were provided through a Frederick Gardner
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