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In regular crystals, the width of the absorption lines
arising from the magnetic moment of the electron or
nucleus is caused primarily by the interaction between the
magnetic dipoles. It is prohibitively difficult to determine
the precise shape of the absorption line theoretically, but
the invariance of the diagonal sum in quantum mechanics
permits the calculation of the second moment of the fre-
quency deviation, and hence the r.m.s. line breadth. The
latter agrees excellently with the observations of Pake and
Purcell on the magnetic absorption of the F nucleus in
CaF,, both in absolute magnitude, and in the dependence
on the direction between the magnetic field and the
principal cubic axes. The fourth moment was also com-
puted to examine how good an approximation is the
conventional assumption of a Gaussian shape. As long as
no exchange is present (the nuclear case) the Gaussian
model is moderately good. For the 100 direction in a cubic
crystal, the theoretical ratio of root mean fourth to root
mean square breadth is 1.25. Pake and Purcell’'s measure-
ments yield 1.24. A Gaussian model would require 1.32.

The theory is extended to include crystals with two kinds
of spin moments (two types of nuclei, or simultaneous
nuclear and electronic spin). Coupling between unlike
moments is less effective (by a factor % in the r.m.s. width)
than that between like in broadening the lines.

In the paramagnetic absorption caused by electronic
spin, it is imperative to include the effect of exchange
coupling. This interaction does not contribute to the
second moment, but greatly increases the fourth. As a
result, the lines are peaked much more sharply than one
would compute from the second moment with the Gaussian
model for line shape. This ‘‘exchange narrowing” explains
why microwave paramagnetic absorption lines are much
narrower than one first conjectures from the amount of
dipolar coupling.

The theoretical calculations are given in Sections II-IV.
The final sections V-VI give the comparison with the
experiments of Pake and Purcell, and with the model of
Bloembergen, Purcell, and Pound, for r-f absorption in
liquids.

I. INTRODUCTION

HE present paper! deals with the broadening
of the absorption lines of crystals by dipoiar
interaction, with emphasis primarily on the r-f
and microwave regions. The theory is much
better tested by measurements in these domains
than at ordinary optical wave-lengths since with
the latter the line broadening is exceedingly
small compared to the proper frequency and also
it may not be safe to neglect, as we do, the
influence of Doppler and radiation broadening.
We shall deal exclusively with media in which
the atoms are regularly spaced, i.e., with
crystals. The material may, however, be either a
single crystal or a powder. The broadening which
we consider is caused essentially by the mag-
netostatic interaction of the atomic dipoles, and
is hence ‘‘adiabatic” in character. The mecha-
nism is thus quite different from that in gases,
where non-adiabatic collisions are the main
factor, as shown in the theory of Bloembergen,
Purcell, and Pound.?

1A preliminary account of the present paper was given
at the 1947 Chicago meeting of the American Physical
Society. For abstract see Phys. Rev. 73, 1229 (1948).

2N. Bloembergen, E. M. Purcell, and R. V. Pound,
Phys. Rev. 73, 679 (1948).

We shall assume throughout that the moments
responsible for the absorption are magnetic, and
arise from spin, be it nuclear or electronic. The
influence of the crystalline electric field will be
neglected, and the material will be supposed
non-ferromagnetic. This procedure is well war-
ranted in experiments on nuclear resonance ab-
sorption. The effect of the crystalline Stark effect
on the absorption by electronic spin will be
examined in a later paper. In another article the
theory will be extended to the ferromagnetic case
to provide a microscopic derivation of the Kittel
formula for the resonance frequency.

The energy terms attributable to magnetic
spin-spin interaction and to application of the
external constant magnetic field will be called,
respectively, the dipolar and Zeeman energies.
We believe that these names are less ambiguous
than the word magnetic, which can relate to
either term according to the usage of the author.
It will be supposed throughout that the applied
field is sufficiently large that the dipolar inter-
action is small compared to the Zeeman member.
This condition is fulfilled at the field strengths
used in most experiments on resonance absorp-
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tion at the Larmor frequency. The resonance
wave-lengths are ordinarily in the r-f or micro-
wave region according as the spin is nuclear or
electronic. In a later article, Miss Wright will
extend the theory to the case of non-resonant
absorption at very low frequencies such as are
used in the Dutch experiments on paramagnetic
relaxation.

An important feature of the present paper is
the inclusion of exchange interaction. Except for
the exclusion of ferromagnetism, no restriction
need be made on the size of the exchange coupling
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in our calculations, as it commutes in matrix
multiplication with the Zeeman term, so that
both energies can be simultaneously diagonal.

The mathematical theory will be developed in
Sections II, III, and IV. Comparison with ex-
periment will be made in Section V, and readers
not interested in theoretical calculations may
wish to proceed directly to this section. In
Section VI a qualitative comparison will be made
with the theory of Bloembergen, Pound, and
Purcell on relaxation phenomena in gases or
liquids.

II. CALCULATION OF THE MEAN SQUARE ABSORPTION FREQUENCY

We shall suppose that the constant magnetic field H is applied in the z direction, and that the
oscillating field whose absorption is being studied is along the x axis. Because of the dipolar inter-
action, the absorption is not strictly monochromatic at the frequency HgB/k, and the present paper
attempts to estimate the amount of the diffusion. Here and elsewhere, 8 denotes the Bohr magneton,
nuclear or electronic as the case may be, and g is the corresponding Landé factor.

The Hamiltonian matrix is

3¢ =HgBZ;S2;+ZisiA 1S Su+8°8Zus;[7ri73(S5- Si) — 37 (xia- S;) (xja- Se) 1. (1)

Here the first, second, and third members are, respectively, the Zeeman, exchange, and dipolar
energies. The symbol Sz; denotes the 2z matrix-component of the spin angular momentum (electronic
or nuclear) of atom j, measured in multiples of the quantum unit A/27. All atoms are assumed to
have the same g-factor, and same spin quantum number S. This restriction will, however, be removed
in Section IV. We make the usual assumption that the exchange coupling can be calculated on the
basis that the atoms are effectively in .S states, so that the exchange term has the isotropic form
proportional to the scalar product of the two spins. If each atom has z electrons not in complete
shells, and if these electrons are treated as equivalent, then the constant of proportionality in the
second member of (1) is connected?® with the usual exchange integral Jj by the relation 4 j; = —252J .
The exchange interaction is present only in the electronic, and not in the nuclear case since the
orbital exchange energy is correlated by the exclusion principle with the alignment of electronic
rather than nuclear spin.

For our purposes it is advantageous to use a system of quantization in which the z component of
spin is diagonal. In order to exhibit more clearly the effects of this quantization, we write scalar
products such as rj-S; in the explicit form 7 ik(@jpSz;+BiwSy;+vixSz;), where aji, Bjr, vir are the
direction cosines of rj; relative to the x,y,2 axes. When this is done, Eq. (1) becomes

30 = HgBZ;Se;+ZisiA S+ S+ Zus 8287513 { S5 Sk — 3y 252 S — 3 (in +B85#?) (SisSk—+Si—Se) }
+2i55828% 7 { — 2 (ain® —Bir®) (SipSes +Si-Sp-) + 3ijaBix(Si+- Skt — Si-Sk-)
— 3y iu(an—B) (Si+Seu+S2iSk+) — §vin(@ie+1Bix) (Si=— S +S5:-) 1§ (2)

Here we have used the abbreviations S;;, S;— for the combinations Sz;+%Sy;, Sz;—4.Sy; which are
introduced in order to simplify the selection rules. Namely, the selection rules for S;, S;- are, re-
spectively, AM;=+1, AM;= —1 and hence are sharper than those AM;= =1 for Sz; or Sy;. Here
M; is the magnetic quantum number for atom j, supposed individually space quantized relative to
the z axis. We shall use the letter M for the total magnetic quantum number 2;M;.

3 For a discussion of the dependence of exchange energy on spin alignment, see, for instance, J. H. Van Vleck, Tke
Theory of Electric and Magnetic Susceptibilities (Oxford University Press, 1932), p. 316 ff.
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Were it not for the portion of (2) inclosed in
heavy brackets, the z component of total angular
momentum, i.e., Z;Sz;, would be a constant of
the motion, and would be specified by the usual
total magnetic quantum number M. The x
component of magnetic moment would then
conform rigorously to the selection rule AM = =1,
and the absorption would be entirely in the
vicinity of the Larmor frequency g8H/k. The
inclusion of the bracketed part of (2) introduces
matrix elements in the Hamiltonian function of
the type AM =41, +2. The addition of these
elements makes the selection rule AM = =1 for
the x component of moment cease to be rigorous.
As a result, transitions of the form AM =0, +2,
+3 are allowed, corresponding to changes in
Zeeman energy amounting to 0, 2g8H, 3gBH.
(Still larger changes in M are allowed if the
perturbation calculation is carried further, but
the intensity is so low as to be negligible.) The
subsidiary lines whose frequencies are near 0,
2¢BH/h, 3gBH/k are not those of interest to us,
and so we shall henceforth drop the bracketed
part of (2). This omission is not to be regarded
as merely a simplification. Retention of the
omitted part of (2) would, in fact, be com-
pletely erroneous in the ensuing computation of
various mean powers of the frequencies by the
commutator method. If the commutator with
the complete Hamiltonian were used, we would
include the contribution of the lines centering
about 0, 2g8H/h, 3gBH/h as well. Then we could
not use the departure of the mean square fre-
quency from g?82H?/h? as a measure of the mean
square line breadth of the main line. The sub-
sidiary lines are, to be sure, much fainter than
the primary Larmor component, but differ so
much from the latter in frequency that their
contribution to the mean square frequency devi-
ation is of the same order as the mean square

N

3gBH[h

F16. 1. Schematic illustration of main and subsidiary
absorption lines. The dashed curve indicates how the
shape of the main line is distorted by exchange coupling.

0 g8H[h 2¢BH[h
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breadth of the dominant line. The situation is
illustrated schematically in Fig. 1.4

Let the letter » denote the characteristic
values of the expression (2), exclusive of the
bracketed part, which is henceforth supposed
omitted. Also let (S;)..r be the matrix element
of S;=2;5z; which connects the states » and #'.
The corresponding frequency is, of course,
Van' = (3Cn—3Cn’) /h. Then by definition the mean
square absorption frequency, i.e., the frequency
computed by weighting each fine-structure com-
ponent with the associated squared amplitude, is

En, n’ { Vnn’2! (Sz)nn’ 2 }
(= . 3)
’ S| (Se)un |2

The trick is now to note that both the numerator
and denominator of (3) can be expressed as
diagonal sums. If the notation Tr be used for
the trace or diagonal sum, then (3) can be
written as

(= —Tr[3S,—S:3¢]2/h*Tr(S:)2.  (4)

The great advantage of (4), which provides the
standard method for computing mean square
frequencies, is that the invariance of the diagonal
sum makes it unnecessary to know the individual
characteristic values 3C.. Instead the diagonal
sum can be computed in an arbitrary system of
quantization, most conveniently one in which
each spin is individually space-quantized. It
would, of course, be hopeless to try and compute
the various characteristic values 3C,, since the
number of them is comparable with the number
of atoms composing the crystal. Rigorously,
these characteristic values form a discrete rather
than continuous manifold. When, however, there
are 10% or so fine-structure components to a line,
it has effectively a continuous structure, as
sketched in Fig. 1.
The retained part of (2) can be written as

= HgﬁEjSzj+Ek>jAij,' . Sk+zk>,'B,'kSz,' - Sz,
©)

4A sketch similar to Fig. 1, except for the exchange
modification, is given by L. J. F. Broer in his thesis,
Amsterdam, 1945, and also in Physica 10, 801 (1943).
Broer discusses the orders of magnitude of the intensities
and breadths of the main and subsidiary lines, but does
not essay a quantitative calculation of the r.m.s. width.
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with
Ap=Ap+gBra[3va*—3], Bi=—3g87i[$vi’—3]. (6)

The reader should be careful to distinguish between the symbols 4j; and 4 ;z. Both appear as coef-
ficients of the scalar product S;-Si, but 4; embodies the effect of exchange alone, whereas 4 ;
also contains a dipolar contribution. The distinction can perhaps be remembered most easily by
thinking of the wavy line as indicative of the transposition involved in exchange. Any coefficient
without this line above it does not arise solely in virtue of exchange coupling. All B coefficients are
purely dipolar in origin.

The scalar product S;-S; commutes with S,=2;Sz;. Hence the second member of (5) has no
influence on (»*)a. As a result we can conclude that exchange has no effect on the mean square ab-
sorption frequency.

We can evaluate traces in (4) with the aid of the familiar commutation and trace relations, visz.,

Sszyk - SykSzj = Bijzﬂ:, TrSzj2 = %S(S-[— 1) (25+ I)N, TrSzj = 0, (7)

where S is the spin quantum number of an individual atom. The traces over the different atoms
can be computed independently. Thus

TI‘Sszxk = TI‘Sz,' = TrSzk = 0(]?5 k) , etc.

Proceeding in this fashion, we find that

Tr(S:)?2=3INS(S+1)(2S+1)¥, €))
:}CS, - S;SC = HgﬁiEiSyj +i2k>ijk(Sijzk +S1IkSzj) ’ (9)
—Tr(3S:—S:3)2/(2S+1)¥ =3 Ng?B2H2S(S+1) +(2/9) S2(S+1) 2245 ; B2,

where NV is the total number of atoms in the crystal.

One can easily convince oneself that the line structure (apart, of course, from the usual powers of »)
is symmetrical about a center located at the Larmor frequency HgB/k. This statement can be proved
from the fact that to every characteristic value of the expression (5), there is another one wherein
the Zeeman energy is reversed in sign, but in which the dipolar and exchange energy is unaltered.
Hence every fine-structure component on the high frequency side of HgB/h has a mirror image on
the other side, with the same line strength, since the transition probability is unaffected by consistent
reversal of the sign of the magnetic quantum number. Thus it follows from (4), (8), and (9) that
the mean square deviation of the frequency from the Larmor value is

A= ((v—gBH/m)*In= (v*)n— g*B*H?/1* =}S(S+1)h~*ZB 2, (10)

with Bj; defined as in (6). We suppose all atoms similarly situated, so that the sum at the end of
(10) is independent of j.

If the crystal has cubic symmetry, it is found that when the definition (6) of the Bj is used, the
expression (10) becomes

(Ar®)n=3g'8'h2[a+b(\*+ e +2s*) ]S(S+1), (11)

where Aj, s, A; are the direction cosines of the applied field H relative to the principal cubic axes
X, Y, Z. The constants a, b are independent of A;, A2, A3, and have the values

a=Zprp (7=t +vat+ £ ], b=Zwru [ —9+15(upt+vit+£)]. (12)

Here pjx, vjx, &% are the direction cosines of rj relative to the X, ¥, Z axes. For a simple cubic lattice,
the sums over k are readily computed, and (11) becomes

(Av2)p = 36.8g'8*h2d~ [ 1S(S+1) JL(\*+Aa*+Asf) —0.187]. (13)
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Here d is the spin-lattice constant, i.e., the distance between neighboring magnetic atoms located
on a simple cubic grating. (Our constant d need not be the same as the conventional lattice constant,
since there may be intervening atoms devoid of spin which are irrelevant for our problem.)

With a powder, rather than single crystal, we can replace the powers of the direction cosines by
their averages over a sphere, and then (11) reduces to

(A =3g*Bh2S(S+1)Zprine. (14)

It may be noted that the value (Aw?), is larger by a factor ($)2 than it would have been had we
computed this quantity in a naive fashion by erroneously assuming that because of the Larmor
precession only the z component of moment of each atom is effective in the interatomic coupling.
In other words, if we had assumed that the effectivedipolar part of (2) was Zi>;g28%x~3(1 — 3v42) Sz;Sz,
the values of the constants @ and & in (11) would be 4/9 as great as given by (12). This fact has
already been demonstrated by Bloembergen, Pound, and Purcell.? When only the z components of
moment are retained, the calculation becomes particularly simple, as it is then essentially mag-
netostatic rather than quantum-mechanical. Unfortunately the higher moments, say (A»™)s, cannot,
in general, be correctly obtained by multiplying the results obtained with the simplified model by
a factor (3)™.

Our formula (14) for the mean square frequency deviation in an isotropic medium or powder is
exactly 3/10 as large as the corresponding expression which Waller® derived for the mean square
frequency in the absence of any external field. Waller used the same method as ours, except that in
the numerator of (4) he took the commutator of S, with the complete Hamiltonian function (1) or
(2), inclusive of the bracketed terms. In his case, the inclusion of the bracketed terms was, of course,
appropriate, since without the external field the separation into different frequency bands in
accordance with the harmonic of the Larmor frequency is no longer relevant. By a very slight ex-
tension of Waller's calculation, it can be proved that in an applied field of arbitrary strength, the
mean square frequency, inclusive of all lines, is equal to g?82H%h~2410(Av?)s/3, where (Ap?)y is
given by (14). In strong fields, the subsidiary lines, of frequencies approximately 0, 28H/k, 38H/h,
make a contribution 7(A»?),/3 to this mean square. This contribution is independent of H because
in strong fields, as Broer* has noted, the amplitudes of the ‘‘forbidden” lines are inversely propor-
tional to H, whereas the frequencies are approximately linear in H. In weak fields there is, of course,
no essential distinction between the main lines and the subsidiaries or harmonics.

The usual assumption is that the frequencies have a Gaussian distribution

J) =[1/2x(v*)n ]} exp[ — (v—gBH/1)*/2({Av*)n . (15)

Then the full “half-width,” i.e., twice the deviation in frequency from the central value at which
the intensity has dropped to half its maximum, is

Avy=2(logV2)V2[ (Av?)a 11 =2.35[{(Av2)a ]}, Avm.s1.=2[{Ar2)u ]k (16)

We also include in (16) the formula for the frequency separation Avy,.s1. of the two points of maximum
slope (df/dv)max in the absorption curve.

One of the main points to be made in the present paper is that extreme caution must be exercised
in using (15). A good idea as to the applicability of (15) may be formed by reckoning out the fourth
moment, as we shall do in the next section, and examining whether it comes at all near to being equal
to 3[{Ar?)an %, as (15) would require. We shall see that if exchange forces are important, (15) is
necessarily far from the truth. On the other hand, in the case of nuclear resonance, where exchange
does not enter, the error involved in (15) is not so serious.

8 I, Waller, Zeits. f. Physik 79, 380 (1932).
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III. CALCULATION OF THE MEAN FOURTH POWER OF THE FREQUENCY

We now proceed to the more difficult calculation of the fourth moment. The standard formula,®
analogous to (4), for the mean fourth power of the frequency is

(O =Tr[3cU— U3]?/Tr(S,)?, 17
where U equals 3¢S, —S,3C and in our case is given by (9). Using the commutation rules (7) one finds

3eU— Use = + H?g*B2Z ;Sx;+Zuwi { (iR 1+ [R5} + Zionss { (A1) + LR ]+ [LiR]}, (18)

where

[:]k:] = 2HgBBijszzk +Bjk2SIjSzk2 +A jkBjk[ - Ssz:ckSzk +SykSij:cj - Syjzszk +Sszzk2],
[]kl:] = ZBjkBszszkan + I: - leAjk +Bku4 ik B;l/l kl +BjkAkl][Sszszz1 b Sijszyz],

with A ;.= Ay, By=Bi; defined as in (6).
Since the frequencies are symmetrically distributed about a centroid g8H/k, the relation (%),
=((gBHR '+ Av)*)y gives
(Av*)a = (v ) — 6 H2g?B2h—2(Av?)p — Hg'B*h . (19)

In order to work out the trace in (17), it is necessary to use, besides (7), relations such as
TrSep=TrSz2S;=0, TrSz;Su;S:i=§S(S+1)(2S4+1)7,
TrSe =3[ S*(S+1)2—3S(S+1)J(2S+1)¥, TrSe2Su;* =34[35*(S+1)*+FS(S+1)IJ2S+1DY.  (20)
With the aid of the preceding formulas, it is finally found that

B Av )= N71Z; . 1#[3Bi2Bji2+2A4 52 (Bji— Br1)*+24 jrAi(Bji— Bjx) (Bji— Bri)
+2A434Bi(Bj—Bi)*1[3S(S+1) 12 +2N"1Zks; { Bt - 3[S*(S+1)2— 3S(S+1)]
2B, A3+~ 3S(SHDIHBRASTAS(SH 4SS+ (1)

Here the notation j, &, I means that none of the indices are to be equal. There are thus six times
as many terms in the triple sum in (21) as in the type 1>k > j employed in (18). The # convention
makes it possible to write (21) more compactly than otherwise. In (18), however, it was desirable
to use the > rather than > scheme in order to exhibit clearly the fact that terms differing by simple
permutations must be added before rather than after squaring.

An interesting check on the arithmetical correctness of (21) is that all terms involving the 4’s
cancel if S=1% and if, in addition, all the By, etc., are formally given a value B independent of the
subscripts. Under these restrictions, simple general considerations show that the exchange terms
(i.e., those proportional to 4 ;i) should have no effect on the spectrum. Namely, the exchange energy
Zi>iA 1S; Sk (or equally well the energy Zis;4 S, Sk defined by (6), which contains in addition a
dipolar contribution) commutes with Z;Sz; or Z;Sz;, and hence with the Zeeman energy, as well as
with the dipole moment responsible for the absorption. This energy also commutes with the remaining
dipolar Hamiltonian

sz>jSszzk=%B[(E,’Szj)z—zjs‘zj?],

if S=1, for then S:;2 has the unique value %, making the term Z;Sz;? merely an additive constant.

Hence the exchange energy can be diagonalized without affecting in any way the matrix elements
relevant to our absorption problem, and should hence not be involved in the moments of any order.
As soon as Bj; depends on the subscripts, this statement is no longer true, for then the exchange
energy does not commute with the dipolar part of the Hamiltonian.

The fact that (21) contains terms of the form A2B? and A B?, rather than just B*, shows that the
exchange (i.e., A) terms influence the fourth moment, even though they do not enter in the second
moment. This behavior is possible only if the absorption tapers off less sharply in the wings than the

8 Compare, for instance, I. Waller, Zeits. f. Physik 79, 381 (1932).
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Gaussian distribution would predict, but at the same time is peaked more sharply in the immediate
vicinity of the center of the line, so that the original value of the mean square is unaltered. The half-
width, and also the width between the points of maximum slope, is then smaller than given by (16).
A rough, schematic illustration of the situation is given in Fig. 1; here the solid and dashed curves
are, respectively, exclusive and inclusive of the effect of exchange coupling. It is thus not surprising
that experimentally (see Section V) the absorption lines caused by electronic spin are often sharper
than one would predict from dipolar interaction alone. Just how much the ‘“‘exchange narrowing”
amounts to cannot be inferred just from the second and fourth moments alone, since a detailed
theory of the line shape which we do not have at present would be necessary. We shall allude to this
question briefly in Section VI.

Explicit Computation of the Fourth Moment for a Simple Cubic Lattice. In order to evaluate (21)
more explicitly, we shall assume a simple cubic grating, since this is the simplest to calculate, as
well as one of the commonest to occur. We shall, for the present, neglect terms of the type 4AB3,
and also the purely dipolar contribution to the fourth moment, as sums of the type AB? or B* will
be small compared with those of the A2B? variety if exchange is preponderant. When this order of
approximation is made, we can replace 4, by 4 (cf. Eq. (6)), thus making the 4 terms arise entirely
from exchange. We shall make the usual assumption that the exchange coefficients A4 are negligible
except between neighboring atoms, and have a constant value 4 when 7 is a neighbor of k. We shall
furthermore disregard the dipolar terms connecting atoms separated by distances greater than 2d,
where d is the grating spacing. The resulting error amounts to only a very few percent, since the
sums converge rapidly. The distance occurs to the inverse sixth power in expressions of the type
A2B?, inasmuch as B~7—3. Furthermore in (21) the great bulk of the long-range terms in A2B?, i.e.,
those in the triple sum, involve only the difference of the B’s sharing the same terminal atom, and
then the convergence is even better, since (Bji—Bri)2~r;i* as r;;— o, if k is a neighbor of j. In
calculating grating sums, it is highly advantageous to have only such differences involved, and it
is for this reason that we have grouped the terms in the way that we have in (21).

When the summations in (21) are explicitly performed with the simplifications mentioned in the
preceding paragraph, it is found that

B (AvYn = 4.9 X 10284 A [3.S(S+1) Mt + At + At —0.187]
+1g8d A (452 (S+1)1— ES(S+1)T-81[M At +Net—3],  (22)

where d is the spin-lattice constant, i.e., the distance between neighboring magnetic atoms.
If the Gaussian assumption (15) were valid, the value of (Ar*)y would be 3[(Ar2)y ]2 The formula
for (Av?)y is given in (13). Hence

(Avt)y  0.1242
3[(arn]e giptd—

In calculating this ratio, we have omitted the contribution of the second line of (22), which is smaller
than the first and which vanishes entirely if S=%. The value of 4 at which the ratio (23) equals
unity is a measure of amount of exchange coupling required to distort the shape of the line appre-
ciably. (In this connection it should be remembered that the numerator of (23) omits the purely
dipolar contributions which alone are sufficient to give a ratio about unity.) Simple dimensional
examination of (21) shows that this critical value of 4 is given by a formula of the type 4 = cg?8%/d3,
where ¢ is a dimensionless constant. From (23) it is seen that the value of ¢ will depend on direction.
When the field H is along the 100 axis (X axis), ¢ equals 2.6, while for the 111 direction ¢ becomes 1.1.
The phenomenon of ‘‘exchange narrowing’ should hence be somewhat more pronounced for the
111 than the 100 application of the field, but the resulting anisotropy in the line shape is probably
not large. (Incidentally, it appears to be purely an accident that the subtractive constant is 0.187
in both (13) and the first line of (22).)

Dhf A+ Ag*—0.187 1. (23)
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We have tacitly supposed that dipolar interaction alone does not cause significant departures from
the Gaussian distribution. This assumption may be tested by calculating the fourth moment by
means of (21) with omission of all But dipolar terms. In this connection, it should be noted that in
(21) the dipolar coupling not only enters through the B constants, but also through the A4’s, since
by (6) the value of A4 is —3B;; when there is no exchange. Thus it is no longer allowable to neglect
all the 4 j; except those joining neighboring atoms, although such terms have a distinctly dominant
effect. When A4 j;, is replaced by — 3Bji, the expression (21) can be written

(A= {3(ZiBj?)? — 3N 'Zj1=Bp*(Bju— Bri)* — §ZiB'[ 8+3(S?+5) 1]} {3S(S+1) 2 (24)

If only the first right-hand member were present, the fourth moment would have precisely the
Gaussian value. Even for a simple cubic lattice, explicit evaluation of (24) would be laborious for an
arbitrary angle between the applied field and the principal axes; also the angular dependence in the
resulting analytical formula would be cumbersome, involving the direction cosines to the eighth
rather than fourth power as in (22). We have therefore calculated (24) for a simple cubic lattice for
the special case that H is directed along the 100 axis. Then we find that (24) becomes

(At =3[ (Ar2)n]2[1—0.160—0.021(S2+S)~1]. (25)

If S=%, Eq. (25) yields a root mean fourth deviation [{A»*)s ]}, which is 1.25 times the root mean
square [(Av?)y]}. With a Gaussian distribution, the ratio would be 1.32 instead of 1.25. The de-
partures from Gaussian form caused by pure dipolar interaction are thus not great. They tend to
blunt the absorption curve, rather than peak it more sharply as the exchange corrections do. For a
rectangular shaped curve, the ratio would be 1.16.

Rough numerical examination of (24) for the case that H is along the 111 direction indicates
that for this orientation the departures from the Gaussian form are smaller than for the 100. The
ratio of the root mean fourth to root mean square deviation is about 1.30.

If exchange effects are present, and if H is directed along the 100 axis, the fourth moment is the
sum of the expressions (22) and (24), with \y=1, A;=X3=0 in (22). The existence of terms of the
form AB® when (6) is substituted in (21) implies that this additivity is not rigorous. However, the
contribution of the terms of structure 4 B3 turns out to be small, and may be considered zero within
the accuracy to which we have evaluated the grating sums.

IV. CALCULATION FOR A CRYSTAL WITH TWO MAGNETIC INGREDIENTS

It is not difficult to extend the analysis to a grating which contains two different types of atoms,
having, respectively, g-factors g and g/, also spins S and §’. This situation arises when the crystal
contains two species of atoms, both with nuclear (or both with electronic) spin. A further example
of particular interest is encountered when a small percentage of atoms with electronic spin is added
to a crystal whose nuclear resonance is being studied.

With two ingredients, it is necessary to distinguish which type of atom is active in the resonance.
Without loss of generality we can assume that the atoms with unprimed spin are responsible for the
absorption at the wave-length being utilized. It is supposed throughout the present section that
the two g-factors are sufficiently different so that the resonances for the two varieties of atoms do
not overlap. This condition is abundantly fulfilled when one of the spins is nuclear and the other
electronic. In applying our formulas, the same definition of the magneton 8 must be used for both
ingredients; hence g will be different by a factor of the order 10? for the nuclear and electronic con-
stituents. If both spins are nuclear, their g-factors will in general differ, so that our calculations are
applicable. It is not necessary that the spin quantum numbers S and S’ be unlike. If both spins are
electronic, both g and g’ are presumably nearly 2, though there can be deviations from the ideal
value 2 because of spin-orbit interaction. Then one must be careful to see whether g and g’ differ
sufficiently to separate the two resonances and make the present calculation relevant. The separation
can, of course, be increased by augmenting the applied magnetic field. A limiting case which we do
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not calculate, but which might ultimately prove of interest, and which could be treated by the
general mathematical methods of the present paper, is that of atoms with identical g-factors but
unlike spin quantum numbers. The general case in which the difference between the two Larmor
frequencies is comparable with the dipolar broadening would present an intricate mathematical
problem.

We shall throughout use primed and unprimed letters to distinguish the two varieties of atoms.
Since the unprimed component is responsible for the resonance, the x component of moment S to
be used in (4) or (17) involves only the summation Z;Sz; over the unprimed atoms. A point par-
ticularly to be emphasized is that in constructing the Hamiltonian function 3¢, it is essential to
exclude matrix elements of the type AM;=+41, AMy=—1, or AM;=—1, AM;»=+41. Here M;,,
M, denote the magnetic quantum numbers appropriate to separate spatial quantization of atoms
jand &', respectively. The effect of such elements would be to create a subsidiary absorption line at
a Zeeman frequency (2g—g')BH/K', and also to modify very slightly the irrelevant absorption
at g’8H/h due primarily to the primed system. These elements should thus be excluded, just as the
heavily bracketed part of (2) was dropped in Section II to avoid inclusion of the subsidiary lines in
Fig. 1. Generalized to the present problem, Fig. 1 would contain two main lines of frequency
gBH/h, g'BH/h respectively, and a variety of minor ones, of frequency (2g—g’)B8H/h, 2gBH/k,
(g+g)BH/h, etc. We are essaying the calculation of the width of the main line at g8H/k.

In virtue of the remarks made in the preceding paragraph, parts of the Hamiltonian function
having factors of the form (Sz;44Sy;) (Szxr —2.Sur) = S;+.Sk— or S;_Si4 should be omitted, although
they must be retained when both letters are primed, or both unprimed. In a scalar product such as
S, Sir = Sz; Sz + Sy; Sy +S2;Szir only the term Sz;Sz- is relevant. Hence, when one letter is primed
and the other unprimed, even more of the dipolar terms should be discarded than those bracketed
in (2). The effective exchange and dipolar potential coupling together two unlike atoms j,k’ is thus
Cjk'Sszzk' where

Ciwr = A e+ (1= 3v,ur?) gg' 82w (26)
The total Hamiltonian to be employed in place of (5) is
+ 2155 (A wSj - S+ Bjrwr SejrSars) + 21 Cinr S2pSarr. (27)

Here A+, Bj are to be understood defined as in (6) except for the addition of primes. The com-
mutator U=3CS,—S.3C is given by the expression

U= ’I:gﬁHZijj+i2k>ijk(Sijzk+SykSzj) +‘i2j, k’Cjk’SujSzk’,
which replaces (9). One finds that

U—-Usx= (5C U-—- UﬁC) 0+El'2k>j { 2le'Bijszszzl’ +2Ckleijkaszsz'
+Ajk(le' - Ckzl) ( - SszszzV +Sz,'Sszzzl) }
+zjzl’>k’ {Ak'l' (lec' - le') (Sijuk'Szz' - Sy,Szk'Syz') +2 Cjkl ijijSz,c/Szll } + Ej, k:Cjk:'szj'Szklz,

where (3¢U— U3C), denotes the value which would result were there no primed atoms, and which
is given by the right side of (18).

The same procedure that was used previously, based on Egs. (4), (17), and (19), can now be
employed to calculate the second and fourth moments. The following expressions are finally obtained
for the mean square and mean fourth power frequency deviation:

(Arn=3S(S+1)h 22, B2 +3S' (S’ + 1) 225 Cip-?, (28)

AN =R {Ar o+ NTES(SH+1)I[3S(S'+1) 1202k {6Bi?(Cir2 4 Crar?)
+24 32 (Civr — Ciar)*+4BjxA ji(Civr — Crr)?} + N1 2,205 [ 2410 (Citr — Civr)?
+6Cn2Ci ¥ J[5S(S'+ 1) 2+ N71Z5 0 Canet- 3[S'(S'+1) — 315" (S +1).  (29)
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Here N is the number of unprimed atoms, and
hA[(¥*)aJo denotes the right side of (21), or in
other words the mean fourth power deviation
which would result were the coupling to the
primed system completely absent. The expression
(29) would have the value corresponding to the
Gaussian hypothesis only if we could omit from
(29) all terms except the two with factor 6, also
from (21) all terms except that with factor 3, and
if, in addition, we could disregard the exclusion
of equal indices, replacing a sum of the type
Z.Zesb by 1244, ¢, etc. Actually, of course, these
conditions are not fulfilled.

The results (28) and (29) doubtless appear
rather formidable, but have several interesting
implications, which we shall now summarize.

(a) All other things being equal, dipolar
coupling between unlike atoms is less effective
than that between like ones in broadening the
lines. This prediction follows from the fact that
the mean square broadening (28) involves the
coefficients Bj; and Cj, symmetrically, along with
the fact that the definition (6) of Bj involves a
factor $ not contained in the dipolar part of the
expression (26) defining Cj;. Hence the con-
tributions of like atoms to the mean square are
enhanced by a factor 9/4 as compared with
those of unlike ones, apart from any allowances
for diversity in magnitude of the g-factor or of
the spin quantum number. This greater effec-
tiveness of coupling between like atoms has its
physical origin in resonance, and is expressed
mathematically by the irrelevance of more
terms of the Hamiltonian when the atoms are
unlike.

(b) Exchange interaction between unlike
atoms tends to broaden absorption lines. This
prediction is a consequence of the fact that the
definition (26) of Cj includes a term involving
the exchange coefficient 4, whereas that (6)
of Bj; does not. Hence exchange coupling be-
tween dissimilar atoms, unlike that between
similar ones, contributes to the mean square
broadening (28). This diversity in behavior
has arisen because 4;S;-S; commutes in matrix
multiplication with the x component of moment
S =24Sz, whereas 4 ;Sz;Sz does not.

(c) Both dipolar and exchange interactions
between atoms of the primed system contribute
to the fourth, but not to the second moment.
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This one sees from the presence in (29), but
absence in (28), of terms containing A4 ;4. The
definition (6) of 4 j+ includes both dipolar and ex-
change members. Hence there will be a narrowing
effect and deviations from the Gaussian struc-
ture, in case either the exchange or dipolar
interaction between the primed atoms is suf-
ficiently large compared to the dipolar coupling
between unprimed atoms, and also to both the
exchange and dipolar interactions between
unlike atoms.

(d) Exchange interaction between the un-
primed atoms does not contribute to the second
moment, but enhances the fourth moment, even
if the dipolar broadening is caused primarily
by interplay between unlike rather than ex-
clusively unprimed atoms, i.e., by the addition
of “foreign atoms.” This statement expresses the
presence in (29) of terms of the form 4 ;2C;?,
which will be more important than those of the
form Ajszjzz in (21), if Ek:C,-kr2>>EkB,~k2.

A distinction should be noted between effects
(@), (b) and (c¢), (d). Namely, (a), (b) are both
operative on the mean square, and do not neces-
sarily imply that the Gaussian assumption is a
bad one. On the other hand, (c), (d) involve
mechanisms influencing only the fourth and
higher moments, and hence are consequential
only if there are significant deviations from the
Gaussian distribution.

Exchange integrals involving nuclear spins
are presumably negligible. Hence only item (a)
is of interest in experiments on nuclear resonance
in materials devoid of any electronically para-
magnetic atoms. A possible, but infrequently
occurring exception is that the dipolar mechanism
in (c) might make the broadening smaller than
one would compute from (a) with the Gaussian
hypothesis if the nuclei of the ‘‘foreign’ atoms,
i.e., those of the primed system not responsible
for the resonance, are numerous and also have
g-factors or spins materially greater than those
of the primary (unprimed) atoms. Effect (b)
of consequence only if both components have
electronic spin.

Items (a) and (c) are of particular interest in
case experiments are made on the broadening of
nuclear resonance lines by the addition of a
relatively small number of foreign atoms with
electronic spin. Then g'/g is of the order 103,
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TasLe I. Calculated and observed r.m.s. frequency devi-
ations in CaFy.*

Direction Awa(cale.) Avs(calc.) Awz(obs.)
100 14.4 ke 3.60 gauss 3.6840.20 gauss
110 10.0 2.24 2.2540.20
111 6.1 1.53 1.77+0.20

* The experimental measurements are by Pake and Purcell.

and Eq. (28) shows that, as one would guess, the
foreign atoms will begin to influence the width
of the absorption line when they are about 10—¢
as abundant as the atoms responsible for the
nuclear resonance. The broadening influence of
the impurity will, however, be somewhat smaller
than one would expect by simple extension of
the formulas for a one-component system. In the
first place, as already mentioned, the diversity
in the definitions (6) and (26) of B and Cj
diminishes the second or foreign part of (28) by
a factor 4/9 compared to what one would expect
by extrapolation of the first part. Far more
important, however, is the fact that, as soon as
the impurity becomes abundant enough to influ-
ence the line shape, the dipolar, not to mention
the exchange, coupling between the foreign atoms
enhances the fourth moment very materially,
and hence makes the effective line-breadth con-
siderably less than one would calculate from the
mean square with the Gaussian hypothesis. One’s
first reaction is perhaps that any dipolar inter-
action between the foreign atoms is a higher
order effect because of their unabundance. We
have seen that only a small amount of paramag-
netic impurity is needed to influence the mean
square breadth of the nuclear resonance. In-
spection of the structure of (29), however, shows
that the dipolar coupling between the foreign or
primed atoms yields contributions to the fourth
moment of the order (N’/N)?%g?%’¢/d'2, as com-
pared with terms of the order (N'/N)%gig’4/d'?
from the square of the contribution of the foreign
atoms to the mean square. (Mathematically, this
statement is a consequence of appearance of
terms of the form Az -2Cj? coordinately with
those of the form Cjs2C;p? in the sum of type
22>k in (29), and by definitions (6) and (28)
one has |Ak:1'l~(g’/g)]C,-kr[ if Ak'1'=0.) The
dipolar interaction between the impurity atoms
hence necessarily makes the line shape non-
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Gaussian if they are abundant enough to be the
main broadening agency.

V. COMPARISON WITH EXPERIMENT

As yet, the experimental data available to
test our theory are rather meager. However, the
rapid development of radiofrequency and micro-
wave spectroscopy leads us to expect greatly
enhanced evidence in the future.

Diamagnetic Crystals with One Type of Nuclear
Spin. The simplest case theoretically is that of
a crystal with a single variety of nuclear spin,
and devoid of any electronic paramagnetism.
Since we have assumed throughout that the
influence of the crystalline field is negligible, it
is essential that the nuclei be devoid of quad-
rupole moments unless the field is cubic. Other-
wise a significant part of the broadening may be
caused by the interaction of the quadrupole
moment with the crystalline electric field. (A
crystalline field which is of cubic symmetry will
not, however, interact with a nuclear quadrupole
moment.)

If there are no quadrupolar complications, the
broadening of the resonance line should be due
solely to the dipolar coupling between the
nuclear spins, inasmuch as exchange forces
involving nuclear spins are negligible. The
mean square deviation of the frequency from its
central value should then be computable from
(13).

Calcium fluoride is a crystal par excellence for
testing the theory of pure dipolar broadening
mentioned in the preceding paragraph. The only
spin is that of the fluorine nucleus, and the
fluorine nuclei are arranged in a simple cubic
lattice. Furthermore, the spin of the F nucleus
is 1, so that there can be no complications arising
from quadrupole moments. The nuclear reso-
nance absorption by a single crystal of CaF, has
been measured by Purcell, Bloembergen, and
Pound.”

The directional effects are most simply tested
in a preliminary way by study of the variation
of the peak absorption at the center of the line
when the orientation of the magnetic field rela-
tive to the principal axes of the crystal ischanged.
The peak is easier to measure than the breadth,

7E. M. Purcell, N. Bloembergen, and\R. V. Pound,
Phys. Rev. 70, 988 (1946).
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and exhibits the salient features of the direc-
tional trends. With the Gaussian assumption
(15), the peak absorption should be inversely
proportional to the r.m.s. line breadth, and so
should have an angular factor which is the
square root of the reciprocal of that given in
(13). The angular dependence calculated on this
basis when the magnetic field is rotated through
various positions in the 110 plane is shown by
the dashed line in Fig. 2, taken from the paper
by Purcell, Bloembergen, and Pound. The
measured peak absorption is shown by the solid
line. The constant of proportionality is deter-
mined so as to give agreement in the 001 direc-
tion.

On the whole, the accord between theory and
experiment in Fig. 2 is satisfying. Exact agree-
ment cannot be expected, since the Gaussian
assumption on which the theoretical curve is
predicated is not rigorous. Since, experimentally,
only the relative rather than absolute values of
the peak absorption are known, measurements
of the type shown in Fig. 2 do not provide a test
of the calculated absolute magnitude of the line
breadth.

In order to examine the absolute value of the
width, and in order to study its directional de-
pendence in a refined fashion not contingent on
the Gaussian hypothesis, the r.m.s. width has
recently been directly determined experimentally
for three angles by Pake and Purcell.® The
ingenious technique which they employed is
described in the following paper; it involves a
quite accurate determination of the line shape,
so that the various points on the absorption
curve can be weighted in accord with their r.m.s.
frequency deviation and integrated. The com-
parison of theory and experiment is given in
Table I. In making this comparison we follow
the customary practice of expressing the fre-
quency in terms of the magnetic field which will
produce a Zeeman shift equal to the frequency
interval in question. We also, however, include
the values of the theoretical line widths in kilo-
cycles. The abbreviated notation Av,, used in
Table I and the ensuing discussion, has the sig-
nificance Av, = ((Av™)y,) /"

Pake and Purcell have pushed the comparison
of theory and experiment a step further by

8 G. Pake and E. M. Purcell, Phys. Rev. 74, 1184 (1948).
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measuring the root mean fourth frequency devi-
ation for the 100 direction. The observed value
of the ratio Avy/Avsis 1.24 ; our theory gives 1.25.
The rectangular, triangular, and Gaussian ap-
proximations to the line shape would yield ratios
1.158, 1.245 and 1.316.

The agreement is certainly gratifying, espe-
cially when it is recalled that no undetermined
constants are involved. Still, the good accord
cannot be regarded as too much of a surprise, for,
theoretically, in an ideal crystal one cannot
envisage any important mechanism for broaden-
ing other than the dipolar one, whose moments
we calculate rigorously. We believe that our
example of CaF, is the first case of a substance,
either solid or gaseous, where it has been possible
to make an unambiguous comparison of a
theoretical and observed line breadth with a
high degree of accuracy.

It is to be emphasized that in Table I we com-
pared the theoretical value of the r.m.s. fre-
quency deviation with the same quantity
observed experimentally, and not with half the
frequency difference between the points of
maximum slope in the absorption curve. For a
Gaussian curve, %Avn.. and Ay; would be
identical. The observed values of 1Avy.1., vi2.,
4.4, 3.5, and 2.4 gauss for the 100, 110, and 111
directions are considerably higher than Aw,. This
fact shows that the Gaussian model is not an
accurate one. In the 100 direction, the ratio
1Avm.e1./Ave is 1.22. This value is reasonable; it

F1G. 2. Peak absorption intensity as a function of direc-
tion in a CaF, crystal. The solid curve gives the measure-
ments of Purcell, Bloembergen, and Pound. The dashed
curve is calculated from the theoretical r.m.s. breadth,
under the assumption that the lines are Gaussian.
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is a little nearer the ratio 1.0 for a Gaussian
shape than that 1.73 for a rectangular one. The
ratio Avys/Avs of root mean fourth to root mean
square frequency deviation was likewise inter-
mediate between the Gaussian and rectangular
models, but somewhat closer to the former.

We saw in Section III that the deviations of
the fourth moment from the Gaussian value
should be smaller for the 111 than the 100
direction. It is tempting to examine whether this
fact will explain the somewhat different angular
variation of the peak intensity in Fig. 2 than
that provided by the Gaussian model. The cor-
rections calculated on this basis, however,
operate in the wrong direction. A rectangle has
a value of peak intensity lower by a factor (7/6)}
than that for a Gaussian curve of the same Ay,.
Thus the greater deviations from the Gaussian
shape in the 100 direction would tend to in-
crease, relatively, the prongs of the dotted curve
in Fig. 2 in the 111 orientation. Dr. Pake tells us
that probably the discrepancy in Fig. 2 is to be
explained in terms of the fact that the crystal
is not ideal. The mean square frequency devia-
tion is considerably smaller for the 111 direction
than for other nearly adjacent orientations, and
the peak absorption higher. Hence, if the crystal
is not perfectly cut, what one thinks is the 111
axis is not really this, but a sort of mixture of
nearby directions. As a result, the measured
value of Av, for supposedly the 111 axis may be
too high, and the peak absorption too low, in
accord with the trend in Table I and Fig. 2.
The estimates of experimental error in Table I
relate to the uncertainty in the integration to
obtain the root mean deviation; they do not
include any error caused by crystal imperfec-
tions. The good agreement for the 111 and 110
directions suggests that the error attendant to
the integration has been overestimated. The
existence of crystalline imperfections does not
immediately explain why the ratio 3Avm.q1./Avs
actually has a value (1.36) for 111 greater than
that (1.22) for 100. The closer validity of the
Gaussian model, which gives unit ratio, for the
111 direction would offhand suggest that even
with crystal imperfections a trend should be
expected which is the reverse of the observed.
However, the value of Awvn... is sensitive to
small perturbations, and the maximum slope of
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the curve may well come from a spurious wing
contributed by a microcrystal not perfectly
aligned.

Diamagnetic Crystals with Two Types of Nuclear
Spins. In paragraph (a) of Section IV it was
pointed out that, because of less resonance,
dipolar coupling between nuclei of unequal
g-factors is less effective in broadening the lines
than the corresponding dipolar interaction
between like nuclei of comparable magnetic
moment (more accurately, of magnetic moment
equal to the geometric mean of that of the two
dissimilar components). Unpublished work of
G. Pake on the fluorine resonance in KHF; con-
firms this prediction. The second moment has not
been measured with as high precision as in CaF,.
However, his data show clearly that without the
theoretical reduction factor 4/9 caused by the
dissimilarity of the moments in the H-F inter-
actions, the calculated second moment would be
much too high to agree with observation. (X-ray
measurements do not fix the positions of the H
atoms, but chemical and other evidence indicates
that they are on lines connecting F nuclei; if H
is midway on an F —F line the calculated moment
is too high without the reduction factor; it is
increased further if the proton is not at the
midpoint but instead resonates between two
unsymmetrical locations.)

Nuclear Resonance in Crystals with Paramag-
netic Impurities. If atoms with electron spin are
added to an otherwise diamagnetic crystal, but
not to so great an extent that electronic absorp-
tion masks the nuclear, then the nuclear reso-
nance lines should be widened. However, the
discussion at the end of Section IV shows that
the action of both the exchange and dipolar
forces connecting electronic spins make the
effective half-width much smaller than that cal-
culated from the second moment on the assump-
tion of a Gaussian distribution. Unfortunately,
no adequate data are yet available to test the
theory on this subject. Bloembergen, Purcell,
and Pound do indeed find that the widening of
nuclear resonance lines in diamagnetic liquids by
the addition of paramagnetic ions is smaller than
the Gaussian model would lead one to expect.
These authors, however, show that this behavior
is explicable on the grounds that the paramag-
netic ions migrate rapidly in the liquid, thus
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diminishing the coherence and effectiveness of
the dipolar forces coupling together nuclear and
electronic spins. Thus there are two alternative
mechanisms, both of which appear adequate to
explain why paramagnetic impurities are not
more potent in widening nuclear resonance lines
in liquids. Probably the Bloembergen-Purcell-
Pound migration effect is the dominant factor,
for reasons to be discussed near the end of
Section VI. The migration mechanism would not
be relevant if the measurements were made on
crystals rather than liquids, and so experiments
are obviously desirable on nuclear resonance of
crystals with paramagnetic atoms substituted
for diamagnetic in a small percentage of the
lattice points.

Absorption Arising from Electronic Spin in
Paramagnetic Crystals. A number of experi-
ments® ! have been performed by now at various
laboratories on resonance absorption by electron
spin in paramagnetic crystals. In several in-
stances, the line breadth is considerably smaller
than one would calculate from dipolar broaden-
ing alone if one makes the Gaussian hypothesis
and so uses Egs. (14) and (16). Some examples
are given in Table II. These discrepancies are,
we believe, to be attributed to the phenomenon
of “exchange narrowing,” of which the theory
was developed in Section III. We there showed
that exchange interactions between atoms with
electron spins makes the mean fourth power
frequency deviation considerably larger than
one would calculate with the Gaussian hypothesis
from the mean square broadening caused by
dipolar interaction, and that consequently the
lines are more peaked and so effectively nar-
rower than one would at first expect.

In connection with Table II it should be
noted that part of the line broadening may
originate in other causes than the dipolar
mechanism. In particular, the crystalline Stark
effect has a widening action in manganous salts,
as does anisotropy in the g-factor in the cupric
salts, whose effect we shall discuss elsewhere.l!
The broadening caused by this anisotropy is
proportional to the magnitude of the applied

® E. Zavoisky, J. Phys. U.S.S.R. 10, 170, 197 (1945).

1 R. L. Cummerow, D. Haliday, and G. E. Moore,
Phys. Rev. 70, 433 (1946), 72, 1233 (1947).

Y For preliminary abstract see Phys. Rev. 73, 1249
(1948).
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TaBLE II. Approximate observed values of the width
between the points of half the maximum absorption, con-
trasted with the values calculated from dipolar coupling
under the assumption that the curve has a Gaussian shape.

Avy Observed* Awj Calculated

CuCl;-2H,0 125 gauss 750 gauss
CuSO,5H-0 175 475
MnS0.4H,0 400 1500
MnSO, 300 3500

* See references 9 and 10.

field, and hence can be reduced by using rather
low resonant frequencies. Hence in an endeavor
to eliminate as much as possible all but dipolar
broadening, we give in Table II the half-
breadths for copper furnished by the measure-
ments of Zavoisky? at 200 cm, rather than the
larger ones yielded by the data of Cummerow
and Haliday," also Arnold and Kip,!? at about
3 cm.

When it is taken into account that other
factors besides dipolar coupling may be re-
sponsible for some of the line width, the need of
invoking the exchange effect to reduce the
dipolar broadening becomes even more patent.

An additional piece of evidence may be men-
tioned in favor of the basic correctness of our
model of “exchange narrowing.”” Exchange forces
are relatively short-range, and so should be an
effective factor only in materials with a fairly
high concentration of magnetic ions. Actually,
only in such compounds do the measured line
widths prove conspicuously lower than those
computed under the assumption of a Gaussian
distribution. Glaring discrepancies such as those
reported in Table II do not appear for the alums,
with their many water molecules of hydration.
Also, in Table II, the anhydrous salt MnSO,
shows the greatest disparity between experiment
and the Gaussian theory. Precisely this behavior
is to be expected, since with no waters of coor-
dination the paramagnetic ions will be closer
together, and the ‘“‘exchange narrowing’’ con-
sequently greater.

Non-Resonant Paramagnetic Absorption at Low
Frequencies. A number of experiments have been
performed in Holland by Gorter and others!® on

12R. D. Arnold and A. F. Kip, Phys. Rev. to be pub-
lished ; abstract in 73, 1247 (1948).

B For a survey of this subject, and references, see
Gorter’s book, Paramagnetic Relaxation (Elsevier Publish-
ing Company, Inc., Amsterdam and New York, 1947).
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absorption at low frequencies, either in the
absence of a magnetic field, or in a weak field
comparable with the dipolar interaction. Here
again there is evidence for “‘exchange narrowing”’
inasmuch as in magnetically concentrated ma-
terials the line breadth turns out less than that
calculated by a Gaussian treatment of the
dipolar effect. This subject has been briefly dis-
cussed in a letter to the editor by Gorter and
the writer, and we shall not pursue it here since
the present paper aims to treat primarily
resonant absorption wherein the Zeeman fre-
quency is much greater than the line width. The
adaptation of the mathematical methods used
in the present paper to the non-resonant, low
frequency case will be made in a future paper by
Miss Wright.

VI. RELATION TO THE RELAXATION THEORY OF
BLOEMBERGEN, POUND, AND PURCELL

A very interesting explanation of nuclear ab-
sorption and relaxation phenomena in gases,
liquids, or in solids with molecular rotation has
been presented by Bloembergen, Pound, and
Purcell.?2 These authors point out that the migra-
tions of atoms in fluids change the distances
between spins and also the orientations of the
axes connecting them. In molecular solids col-
lisions alter the orientations of the molecular
axes and hence of spin-spin axes if the molecule
involves more than one spin. All these factors
spoil the coherency of the action between the
different electron spins, and so make the per-
turbing effect of the dipolar coupling in broaden-
ing the lines less than one would compute from
the Gaussian model. As Gorter! has noted, the
mechanism presented in the present paper has
considerable analogy to that employed by Bloem-
bergen, Pound and Purcell, provided that in our
case we regard the coherency as spoiled by spin
wavesrather than collisions or migrations. Itis well
known that exchange, as well as dipole inter-
action, has the effect of making the spatial com-
ponents of individual spins cease to be constants
of the motion, and gives rise to a continual
turning over of spins, which can be envisaged as
waves of spin reversal being propagated through
the crystal. Bloch showed that at low tem-

4 C. J. Gorter and J. H. Van Vleck, Phys. Rev. 72, 1128
(1947).
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peratures this wave picture can be taken literally;
at higher temperatures, the term ‘‘spin wave” is
to be construed only in a generalized sense as
meaning that the spins are in a constant state
of upheaval because of the exchange forces. It is
for this reason that exchange narrows the lines.

The calculation of the fourth moment can be
given in rather general terms so as to apply to
fluids. We shall show that the results of Bloem-
bergen, Pound, and Purcell,? can be interpreted
in terms of our moment criteria. Let ¢ symbolize
the coordinates other than spin variables which
are involved in the dipolar potential. The ¢'s
then specify the orientation of the line joining
two dipoles, and their distance of separation.
The complete Hamiltonian function of the
mechanical system will include a portion 3,
which commutes with the total spin moment
responsible for the resonance, but which does
not commute with the ¢’s. For example, 3C,
might be the intermolecular coupling which
reorientates molecules at collisions, or even
simply the translational kinetic energy associated
with the migrations of ions. Then a sort of
relaxation time for a variable ¢ may be defined by

1 Tr[3Cg—gsc,]?

T —h*Trg? (0

This quantity 7, is essentially the same as that
which Bloembergen, Pound, and Purcell denote
by the same letter. If 3C, is large compared with
the dipolar part of the Hamiltonian, or, more
precisely, if 1/7.2>(Av?)y, then the mean fourth
power deviation as calculated from (17) and (19)
will be of the order

<AV4>AV = (AV2>AV/7'¢2- (31)

According to the theory of Bloembergen, Pound,
and Purcell, the half-width will be materially
lower than [(Av2)y ¥ if 1/7.2>(Av?)s. Inspection
of (31) shows that this is precisely the condition
that the fourth moment appreciably exceed the
Gaussian value 3[(A»?),]2. Both approaches,
i.e., the relaxation and moment methods, thus
agree as to the conditions under which narrowing
phenomena should appear.

Instead of thus applying moments to fluids,
one can, vice versa, try to adapt quaitatively the
relaxation theory to spin waves in crystals. In
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this fashion one can obtain an estimate of the
order of magnitude of the half-width when
exchange narrowing is important—something
we could not do by the method of moments.
According to the theory of Bloembergen, Pound,
and Purcell, the half-width is of the order
(A2 if 1/7.2>(Av?)s. As applied to our
problem of spin interaction, the variables ¢ must
be considered as including functions of the spin
coordinates, and the Hamiltonian 3C, symbolizes
the exchange energy. The relaxation time for the
spin waves furnished by (30) is then of the order
h/A, where 4 is the exchange integral. Analogy
to the relaxation theory thus suggests that the
effective half-width is of the order A{Av?),/A.
Too much reliance, especially quantitatively,
should not be placed on this estimate, as it is
derived in a rather superficial way, and conveys
little more information than one might con-
jecture from dimensional considerations.

The action of the spin waves associated with
exchange forces only influences energy transfers
internal to the spin system, and so does not help
in securing thermal equilibrium between this
system and the rest of the universe. In this
respect there is a difference between the adapta-
tion of the relaxation theory to the spin system,
and its original use in connection with atomic
migrations. With the latter, energy balance is
secured by energy transfer between the spin
system and the translations or rotations of atoms
or molecules, which thus serve as a thermostat
if the relaxation time 7, for this transfer is suf-
ficiently short. If 7, is small enough to permit
applicability of (31), 1/xr should be com-
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parable with the half-width Av; of the absorption
line and of the order (Ap2)p7.. In the experiments
of Bloembergen, Pound, and Purcell on nuclear
resonance in liquids with paramagnetic im-
purities, it is found that Ay as measured by
direct observation of the line width is very nearly
equal to 1/xr; when 7, is determined by
measurements of incipient saturation or de-
partures from thermal equilibrium caused by
use of excessive power. This fact suggests that
the narrowing of nuclear resonance lines in
liquids is caused primarily by migration effects,
for one would expect to have 1/7,<KAy; if the
narrowing were due mainly to dipolar or exchange
coupling between paramagnetic ions as sug-
gested in paragraph (c) of Section IV. In mon-
atomic crystals, on the other hand, 1/7; is
millions of times smaller than Ay, and then our
adiabatic calculation of the line breadth is well
warranted.

In closing, it should be stressed once more
that the theory of dipolar broadening of reso-
nance lines in crystalline solids as developed in
the present paper is entirely an adiabatic one,
regardless of whether there are modulations by
exchange forces. Our calculations thus throw no
light on the mechanism which keeps the spin
system in thermal equilibrium with the rest of
the universe in crystals.
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discussions. Also he wishes particularly to thank
Dr. George Pake for his interest and cooperation
in testing experimentally the predictions regard-
ing the various moments.



