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An intuitive explanation is given for the electromagnetic shift of energy levels by calculating
the mean square amplitude of oscillation of an electron coupled to the zero-point fluctuations
of the electromagnetic field. The resulting disturbance of the charge and current density of the
electron gives rise to various observable effects which can be estimated in a simple classical
fashion. The effects treated are the Lamb shift, the correction to the g-factor for the orbital
and spin angular momenta of the electron, and the correction to the Compton scattering cross
section at low energies. A simple explanation is also given for the peculiar ultraviolet divergence
noticed by Pauli and Fierz in their treatment of the infra-red paradox.

I. INTRODUCTION

T has been pointed out by Bethe! that the
displacement of the 2S level of hydrogen ob-
served by Lamb and Retherford,? can be simply
explained as a shift in the energy of the atom
arising from its interaction with the radiation
field. In order to obtain this result, it is necessary
to subtract from the usual infinite result an in-
finite energy which is essentially the electro-
magnetic self-energy of the electron. The residual
energy shift gives the experimental result, after
the introduction of a plausible cut-off in the
integral over quantum energies. It is the purpose
of this note to point out the existence of a simple
picture of the origin of this residual finite level
shift which is capable of extension to other phe-
nomena in which virtual emission and absorption
of quanta gives rise to formal divergences. In
many cases it yields a simple understanding of
the phenomenonand, in addition, asemiquantita-
tive calculation of the magnitude of the effect.
Since Bethe's subtraction removes the classical
electromagnetic self-energy, the remaining phys-
ically significant energy must be thought of as
arising from the purely quantum-mechanical as-
pects of the system. The quantization of the ra-
diation field manifests itself qualitatively through
the existence of fluctuating field strengths in
empty space, and it is therefore natural to inquire
into the effects produced on mechanical systems
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by these fluctuations. The most obvious effect is
the spontaneous emission of radiation from
atoms in excited states. This phenomenon can be
thought of as forced emission taking place under
the action of the fluctuating field. Another effect
which is equally simple is the existence of a
fluctuation in position of a free electron. This
may be thought of as a Brownian motion of the
electron in equilibrium with a hohlraum, which
motion persists when the temperature is reduced
to absolute zero. It may be expected that this
fluctuation in position will disturb the charge and
current distribution arising from an electron in
an atom, and hence give rise to observable
effects. Weisskopf?® has pointed out that the inter-
action of this fluctuation with the field which
produces it gives a natural explanation for a part
of the infinite self-energy of the free electron. In
this paper we shall assume that the position
fluctuation is a real concept, while we shall think
of the energy of interaction between the field and
particle fluctuations as having no physical reality.
We propose to give a discussion of these effects
which is as nearly intuitive as possible, postpon-
ing any attempts at formal justification to the
last part of this paper.
II. THE MEAN SQUARE FLUCTUATION IN
POSITION OF A FREE ELECTRON

Our starting point is the observation that the
quantum-mechanical zero-point variation of the
radiation field in empty space gives rise to fluc-
tuating electric and magnetic fields whose mean
square values at a point in space are given by the

3V. F. Weisskopf, Phys. Rev. 56, 72 (1939).
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well-known relation

0

2hc
(Bt =(BYw=—r f k3dk.
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T

(1

In this equation the variable & refers to the
wave number of a quantum, and the contribution
to the mean square fluctuation arising from fre-
quencies in the range cdk is therefore explicitly
displayed. Equation (1) can be simply derived
by ascribing to every normal mode of the radia-
tion field an energy which is just the zero-point
energy for an oscillator with the frequency of the
normal mode. The total energy can be written
either as the volume integral of the ordinary
electromagnetic energy density or as a sum over
normal modes, and Eq. (1) merely states the
equality of these two forms.

It will now be assumed that an otherwise free
electron is acted on by these fluctuating fields.
The electron will be assumed to move with non-
relativistic velocities so that if q is its position
vector, the equation of motion is

m(d*q/dt?) =¢E. 2)

The vector E is the fluctuating field specified by
(1). Since Eq. (2) is linear, we can regard it as a
classical equation for the quantum-mechanical
expectation value of q. For a given harmonic
component of E the solution of (2) is obvious.
We perform this integration, find the resulting
value of (¢®)n, and sum over frequencies using (1).
We then obtain a quantity {(Ag)?)w, defined as
the mean square fluctuation in position of a free

electron
(40 2e / h\? pedk
L L
* 7 hc \mc ko B

3)

The upper and lower limits of integration are
infinity and zero if the preceding assumptions
are literally adhered to. The divergence at the
upper limit of the integral in (3) is certainly fic-
titious since the equation of motion (2) neglects
the spatial dependence of a given Fourier com-
ponent of the electromagnetic field. This spatial
dependence would give rise to a longitudinal
recoil of the electron in addition to the transverse
oscillation which we have included. This recoil
will become important for light with a wave-
length shorter than the Compton wave-length of
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the electron. We therefore assume that the upper
limit is given by
k=mc/h.

(4)

This assumption will be further supported in the
last section of this paper.

The lower limit is strictly zero, and for a free
electron we therefore have the result that the
mean square fluctuation in position is infinite.
It should, however, be remembered that the
divergence arises from very large, but very slow
low frequency fluctuations. These contributions
will be suppressed by the presence of any sort
of binding, and the lower limit %, will be deter-
mined in every case from consideration of the
details of the electronic motion. This point will
be discussed more carefully in a later section.

III. THE LAMB SHIFT

The magnitude of this mean square fluctuation
in position will be very small for any reasonable
ko, but an observable effect will arise when the
electron moves in a potential with a large curva-
ture. This can easily be seen in the following way.
Consider the motion of an electron in a static
field of force specified by a potential energy V(q).
The coordinates of the electron consist of a part
which varies smoothly in time with the orbital
frequency plus a part which fluctuates randomly
in time. We designate the smooth part by q and
the random part by Aq. The instantaneous po-
tential energy is then given by

V(q+Aq)
=[1+Aq-V+3(Aq-V)*+---]V(q). (5)

The effective potential energy in which the
particle moves will just be the average of (5)
over all values of Aq. Remembering that Aq has
an isotropic spatial distribution, we obtain

(V@+Ag)n=[1+3{(A0 W+ - - JV(g). (6)

We thus see that the existence of the position
fluctuation of the electron will effectively modify
the potential in which it moves by the addition
of a term proportional to the Laplacian of the
potential energy. This correction will suffice if
V2V is sufficiently small, but in general it must
be remembered that the effective potential energy
is to be obtained from the original potential
energy by the application of an integral operator
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with a displacement kernel, which is just the
distribution function for Aq. This point will be
amplified in a later section.

Now consider the perturbation of the levels of
the hydrogen atom caused by this modification
of the potential energy. We take for V(q) the
static potential of the nucleus

82

V(ig)=—— ™
r

The expansion (6) does not converge for this
potential, but for the time being it will be as-
sumed that the first correction term in (6) is
sufficient, the justification being left until later.
We obtain the correction to the potential energy
by combining (3), (4), and (6)

AV(q) = e (mc)

The correction to the energy of a stationary
state of the atom with wave function ¢(q) will be

462 e2( )
3 he\mc

This expression will be recognized as identical
with the expression derived by Bethe for the
level shift. The quantity hck, should clearly be
taken equal to the average excitation energy
(17.8 Rydbergs) introduced by Bethe,! in order
to obtain approximate agreement with the experi-
mental result of Lamb. This value for the lower
cut-off occurring in the integral over quanta
seems implausibly large from the arguments ad-
vanced thus far, but it will later be shown by a
simple argument to be very reasonable.

It should be noted in passing that from the
nature of the effect the sign of the energy shift
is clear, it being obvious that the fluctuation in
position must always act to weaken the effect of
the potential energy.

We must now discuss the validity of the seem-
ingly inadmissible omission of powers of the
Laplacian higher than the first from the expan-
sion (6). Suppose that the probability of finding
the instantaneous fluctuation Aq in the volume
element dAq is

log——
oghc 05((1) (8)

1 S 2
oghc 0| ¥(0)[2. 9)

P(Aq)dAq. (10)
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Returning to the derivation of (6), we can write
(V(ag+Aag)w= f dAqP(Aq) V(g+Ag). (11)

We are actually interested in the integral over-
all space of the product of (11) with |¢(q)|?, in
finding an energy shift

f dq|¥(@) | X V(a+A)n

- f dq f dAQP(AQ) V(g+AQ) ¥ (@)% (12)

Taking Aq and q' =q+Aq as variables of integra-
tion we obtain for this average

f dq'v(q) f dAQP(AQ) [¥(q' —Ag) |2 (13)

We then see that by requiring only the weak
condition that |¢(q)|? does not have too large a
curvature we can obtain for (13)

f dqV (@) { |¥(q) [2+3{(AQ) ) V2| ¥(q) |2}

- [aalv@ 1+ K@% V@ (14

The second line is obtained by an obvious inte-
gration by parts. The second term represents the
correction to the energy of the system and gives
a result identical with that previously obtained.

IV. LOW ENERGY COMPTON SCATTERING

The general picture thus far developed can be
used to give valuable insight into many interest-
ing phenomena. We shall examine briefly several
simple processes involving the interaction of elec-
trons and radiation. In each case, the first non-
vanishing approximation to the energy, or the
second non-vanishing approximation to the
transition probability will diverge if calculated
on the usual theory. The preceding arguments
concerning the Lamb shift strongly indicate that
the physically real and finite parts of these di-
vergences will always manifest themselves as a
spreading out of the electronic charge and cur-
rent by the fluctuation in position previously
calculated.
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As the simplest example of a phenomenon in
which the position fluctuation modifies a transi-
tion probability, we consider the non-relativistic
Compton scattering. For simplicity, we consider
the effect to be completely classical, since this
must give the correct non-relativistic answer. A
free electron executes a steady forced oscillation
under the action of the incident light wave and
emits a scattered light wave of the same fre-
quency. The effect of the position fluctuation is
twofold. The electron behaves now like a dis-
tributed charge with a mean square radius
{(Ag)*)w. It therefore interacts less strongly with
the incident wave and radiates a weaker scattered
wave. To find the magnitude of this reduction
in the interaction between the electron and a
light wave, we merely consider the change in the
phase factor for the wave introduced by the
averaging over the position fluctuation of the
electron. This yields

{expik- (q+Aq))n =expik-q([1+1k-Aq
—3(k-Aq)*+- - D
=exp7’k'q[1 —%k2<(Aq)2>Av]r (15)

where ( )» indicates an average over the position
fluctuation. The correction, as in the case of the
Lamb shift, involves the product of the mean
square position fluctuation with the Laplacian
of the space function describing the interaction.
We see that the amplitude of oscillation and the
amplitude of the scattered wave will each suffer
a fractional reduction equal to

3R (A0)" ).

The resultant reduction will be twice as large
and the reduction in the scattered intensity or
cross section will be twice as large again, so that
for the fractional change in cross section, we have

(16)

—3k(89)")n

4 e2( )
" 3k hk.{

We argue that the angular distribution will re-
main unchanged, since the scattering retains its
dipole character.

There remains the problem of determining the
lower cut-off k,. We observe that frequencies of

17
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fluctuation higher than the frequency of the light
wave will effectively spread out the scattering
charge, while frequencies below this limit will
only displace the scattering charge bodily in a

random fashion. We therefore place k=% and
obtain
Aa 4 ¢? ( ) (18)
- 18
I 37 he

We see that the correction goes to zero strongly
at low frequencies, and that for quanta of two-
hundred kilovolts energy, where the formula (18)
is probably still adequate, the fractional decrease
becomes about one part in two thousand. The
increase with energy indicated in (18) cannot be
expected to continue much farther, so that an
experimental verification of the result (18) seems
out of the question.

V. THE INTERACTION BETWEEN A SPIN
AND A MAGNETIC FIELD

A further interesting illustration of the utility
of the viewpoint of this paper, as well as a useful
example of its limitations, can be found in the
effect on the Zeeman splitting of an atomic level
produced by the interaction of the electron with
the radiation field. In this case, fluctuations of
the radiation field change the effective potential
energy of interaction between the external mag-
netic field and the spin and orbital magnetic
moments of the electron. A simple calculation of
the effect can be given by a method analogous to
the one previously used. Consider a simple sys-
tem which consists of an angular momentum
with an associated magnetic moment. For defi-
niteness we take the system to be an electron
spin which is free except for the action of the
fluctuations of the radiation field. Let (%/2)¢ be
the angular momentum operator for the spin.
Then the equation of motion for e is

19
at mc (19)

where B is the instantaneous magnetic field in-
tensity arising from the field fluctuations. If we
consider thee quation of motion for the quantum-
mechanical expectation of o, we obtain the same
equation, but with ¢ interpreted as a unit
classical vector.
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We solve Eq. (19) by making use of the fact
that for vanishing e, ¢ is fixed in direction. We
call the fluctuating correction to this fixed vector
Ae and obtain

e
Ac=—DBXao,
mc

(20)

where ¢ is constant in time. We follow the same
procedure used for obtaining ((Ag)?)s in the first
section of this paper. This yields

<(Aa)2>~—a2— ~(;l—;) f kdk,

where ((Ad)2)y is the mean square fluctuation in
the unit spin vector. The upper limit of the
integral has been made « rather than infinity,
but the question of evaluating « will be deferred
for the moment.

We define the mean square angle of fluctuation

((A0)*)n
2 e?
—. 22
rhc(mc) (22)

Now, as in the case of the Lamb shift, we find
the effect of this fluctuation on the potential
energy of the spin in a magnetic field. This energy
is, if the external magnetic field has magnitude
B and is in the Z direction,

(21)

(8= ((a d) ((Aa)")u

eh ehB
—0a,B=—-|0a]|cosb,
2mc 2mc

(23)

where 6 is the angle between the spin direction
and the z axis. We see that the fluctuations
merely affect the average value of cosf. This
effect can easily be found by the use of some
simple spherical trigonometry. Let 8 be the angle
between the 2z axis and the average spin direction.
Let 0 be the angle between the instantaneous spin
vector and the z axis. Let A6 and ¢ be the colati-
tude and azimuth angles of the instantaneous
spin vector with respect to the average spin vec-
tor. The effect of the fluctuations will then be to
replace cosf in (23) by (cosf)s, where the brackets
indicate an average over the fluctuations of the
spin vector. We have

(cosf)a =(cosh cosAf+sind sinAf cos¢)s. (24)

The indicated average is easily performed by
remembering that the average of cos¢ must van-
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ish because of the isotropy of the fluctuation.
Furthermore, A6 will be assumed small so that
cosAf is well represented by the first two terms
in its series expansion. We obtain

(cosbn = cosf[ 1 —1{(A0)%)x]

B et shk\?
=cos()[1— ——) ]
2mwhec \mc

We then see that the correction to the orienta-
tion energy of the spin consists in a reduction in
the magnitude of the energy proportional to the
energy itself. It is therefore convenient to think
of the effect of the interaction with the radiation
field as consisting of an alteration of the magnetic
moment, u, associated with the spin. We have

Au

(25)

(26)

o 21rhc

In this case the lower cut-off in the integral over
quanta is unimportant, since no contribution
arises from small values of k. The magnitude of
the effect is, however, correspondingly more sensi-
tive to the value of the upper cut-off. We first
consider the case where the magnetic moment p
is associated with the orbital angular momentum
of an electron in an atom. Here the upper cut-off
is supplied in a natural fashion by the fact that
Eq. (19) is valid only for magnetic fields with
wave-lengths so long that there is no serious
retardation over a distance of the order of the
atomic radius. We therefore set

k=1/a=(e?/kc)(mc/h), (27)

where a is an average orbital radius for a valence
electron, taken to be equal to the Bohr radius.
Equation (26) then becomes

(Au/w) = —(1/27)(e*/he)?, (28)

so that for an orbital moment, the effect under
consideration is completely negligible.

The situation is different if we consider the
case of the intrinsic magnetic moment of the
electron. Here it must be assumed that the mo-
ment can be concentrated to a radius equal
roughly to the Compton wave-length of the elec-
tron, since a wave packet consisting of positive
energy states only and possessing a definite spin
can be made to occupy a volume of this radius.
Under these conditions, quanta with wave num-
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bers higher than mc/k will not act coherently on
the spin and we have « equal to the reciprocal
Compton wave-length. Hence, for a spin, Eq.
(26) becomes

Ap/u= —e*/2nhc, (29)

where the exact numerical factor is, of course, not
to be taken too seriously. Unfortunately, al-
though the magnitude of the correction seems,
from recent molecular beam experiments,* to be
nearly correct, the sign of the effect should be
reversed. This unsatisfactory result of our quali-
tative considerations is probably to be ascribed
to our complete neglect of the relativistic nature
of the electron spin. By a careful relativistic
calculation, Schwinger® has recently shown that
the correct sign will indeed follow from a reason-
able theory. The effective reduction in the mo-
ment which is indicated by our simple non-
relativistic theory seems to be more than com-
pensated by an effective increase in the moment
which arises, according to Schwinger, from the
magnetic interaction of the electron with the
filled negative energy states of the vacuum.

VI. QUANTUM-MECHANICAL TREATMENT
OF ((Ag)®n AND JUSTIFICATION
OF THE LOWER CUT-OFF

We shall now attempt to give a more formal
justification for some of the assertions thus far
made, and in particular we propose to give a
rigorous quantum-mechanical meaning to the
quantity ((Aqg)?)w, which has thus far been rather
loosely treated in an almost purely classical
fashion.

We begin by writing the Hamiltonian for an
electron moving non-relativistically under the in-
fluence of an electrostatic field and the radiation
field. We neglect retardation in the interaction
between the electron and the radiation field, and
assume unit quantization volume for the field

2

H =—?L-|— V(@) +X axtarhck
2m k

21r c

- Z (e;, p)(axtait). (30)

mc

4J. E. Nafe, E. B. Nelson, andI I. Rabi, Phys. Rev
71, 914 (1947) D. E. Nagle, R. S. Julian, and ]J.
Zachanas, Phys Rev. 72, 971 (1947) P. Kusch and H. M
Foley, Phys. Rev. 72, 1256 (1947).

5 J. Schwinger, Phys Rev. 73, 416 (1948).
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Here p and g are the vector momentum and co-
ordinate of the electron, V(g) is the electrostatic
potential energy, a;* and a; are the usual occupa-
tion operators for a normal mode of the field with
wave number &, and e is a unit vector in the direc-
tionof polarizationof thequantum. Thetermin the
square of the vector potential has been omitted
since it does not affect the Lamb shift.

The Hamiltonian (30) has been carefully
studied by Pauli and Fierz® in connection with
the resolution of the infra-red paradox, and we
follow their treatment, in its essentials. We first,
rewrite (30) by completing the square indicated
by the last two terms

=£—+ V@+E [“" " me hck3) J

X[ k“'—‘ ) €y ]ﬁck
hck?

—_— J— 2

— §k: (e G
The last term, which has been added to complete
the square, is just Bethe’s subtraction term, as
can be seen by replacing the sum by an integral

e? 27 2e? 2 @

P
2 —(eep) 3—_2;

m2c® k& k? T mi

dk. (32)

We now adopt the point of view that the Hamil-
tonian (30) is incorrect and should be modified
by the addition of the explicitly divergent term
(32). The resulting theory should then be free
from all divergences of classical origin. We write
the Hamiltonian as

pz
H=—+V(q)+2 AstArhck, (33)
2m k
with 4; and A4t defined by
A k=g —— )
hck?
(34)

e
A k+ = dk+ _—— )
hck?

6 W. Pauli and M. Fierz, Nuovo Cimento 15, 167 (1938).
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If we define new variables P and Q by
P=p,
ie 2wh\?} (35)
Q=q+— X (—;3*) ex(ar—art),

mc k C

we see that the capitalized variables are related
to the small variables by a contact transforma-
tion. We write the Hamiltonian in terms of the
new variables, replacing capital letters by small

letters
27h
) er(ar—art) )

+ Z axtarhck.
k

p? e
H=—+ V( - z

2m k
(36)
It is finally convenient to change to field vari-

ables which are the real coordinates and mo-
menta of harmonic oscillators. We thus obtain

P2
He 4 Va+a)+ T HPE+ARQ, (77
m k
with
e Ok
Aq=—(4m)} T ei—. (38)
mc k k

The general character of the consequences of
this Hamiltonian is easy to deduce. We assume
that for all quanta with frequencies above &y, the
corresponding radiation oscillators execute their
unperturbed motion. Quanta below this cut-off
will be arbitrarily excluded for the time being,
and it will be further assumed, in order to avoid
the necessity of discussing the infra-red paradox,
that the limit &, is placed sufficiently high that
no quanta can be emitted. The effect of the
second term in (37) will then be only to produce
elastic deflections of the electron. We see that in
a calculation of the probability of such a deflec-
tion, by the use of the Born approximation, the
potential energy term in (37) is effectively re-
placed by its average over the coordinates of all
the radiation oscillators. This average can be
easily calculated by considering the Fourier

7 A similar transformation of the Hamiltonian seems to
have been used by H. A. Kramers (unpublished).
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transform of V(q). We take

V(q) =fdlU(3~)expi3\.-q,

V(g+Aq) = f daU(2) expid-q (39)

. o
X I;Iexp(:rec(tlr) ey 9».)—];-) .

To obtain the effective potential energy, we must
average the product at the end of the integrand
over the unperturbed Gaussian wave functions
for the ground states of the radiation oscillators.
The integrals are easily done, yielding

(V(q+AQ))w= fd?.. U(2) expid-q

XHexp(—w(ek 1)2—(7”6) 3)

= f dAU(X) expid-q

1 e2/7h\?2
-2
3w hc \mc
"dk
—)\2) (40)

This expression can now be rewritten in several
interesting ways

(V(q+AQ)w= fd?. U(2) expix-q
X exp — N{(Ag)n
=exp(§((4Q) ") V().
The differential operator appearing in (41) is in

reality an integral operator which can easily be
written explicitly as

3 3
vatson=|———] [y
Va+a={ | [ava)

3lq—q’|?
o~ amm)

The displacement kernel occurring in (42) is
clearly just the distribution function for the
quantity Aq, previously assumed in Eq. (11). It
is interesting to consider from our present point

(41)
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of view the somewhat unexpected results en-
countered by Pauli and Fierz in their treatment
of the infra-red paradox by means of the Hamil-
tonian (37). They found that the correction of
order €? to the elastic scattering of a particle by
the potential V diverged if no upper cut-off were
made in the sum over quanta. They were able to
show, however, that if the correction were calcu-
lated exactly from the approximate Hamiltonian,
the elastic scattering cross section became iden-
tically zero, even though no quanta could ac-
tually be emitted. Both results were difficult to
understand at the time because the removal of
the electromagnetic self-energy had presumably
rendered the theory convergent. We now see that
the residual divergence is just that occurring at
the upper limit of the integral over quanta in our
expression for the mean square fluctuation in
position of the electron. To the order e?, the
resulting infinite position fluctuation will give
rise to an infinite correction to the scattering
potential and therefore to the cross section. On
the other hand, the integral operator (42) really
has the effect of reducing the potential to zero
if ((Ag)*a is taken to be infinite. This gives zero
scattering cross section in an exact calculation.
Both difficulties will clearly be removed, as indi-
cated in the last section of this paper, by the
inclusion of recoil, which gives an automatic
upper cut-off. It is, of course, necessary, as has
been pointed out by Lewis,? to make the appro-
priate subtraction for the electromagnetic self-
energy just as has been assumed in obtaining the
Hamiltonian (37).

We now turn to the consideration of the sig-
nificance of the lower cut-off k¢. From the Hamil-
tonian (37), we can immediately arrive at a
formal justification for our earlier intuitive argu-
ments. We consider, for simplicity, the ground
state of the system, which for vanishing e goes
over into a state whose wave function is the
product of the ground state wave function of the
atom with the ground state wave functions for
all the radiation oscillators. In order to obtain
the Lamb shift for this state, we must calculate
the energy change to the order e? produced by
the term added to q in the argument of the poten-
tial energy. This can easily be done and leads in
fact just to Bethe’s result for the energy shift,

8 H. W. Lewis, Phys. Rev. 73, 173 (1948).
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as it must. For our purposes, however, we observe
that the radiation oscillators can be divided into
those with frequencies higher than the character-
istic frequency of the electronic motion and those
with lower frequencies. The high frequency oscil-
lators are not particularly affected by the coup-
ling with the electron, and the part of the energy
shift arising from them is to be considered as
that due to averaging the potential energy over
the unperturbed ground state wave functions of
these oscillators. The low frequency oscillators
are, according to the original form of the Hamil-
tonian, to be thought of as driven by the elec-
tronic motion rather than the reverse.

To demonstrate the correctness of this view-
point, we make a Taylor expansion of the poten-
tial energy to the order e? and write the terms
which appear as perturbations

V(q+Aq)—V(q)

1
=_e_(4,,)s > —Quler-v) V(q)
mc k k

(L) 4T oY@, @3
o) 42 k(e V) PV(q). (43)

The energy correction to the order e? can be ob-
tained by considering the effect of the first term
on the right-hand side of (43) in the second order
of the perturbation theory and the second term
in the first order. We obtain

e\? B |(0|lex-VV|n)|2
AE=41r(——) B LA bl
mc v n 2ck3 Eo—E,—hck

e\? 3
+iar( =) T 0lenrv]o, @
mc/ k& 2ck?

where the index # refers to the nth atomic state,
and the unperturbed atomic state is denoted by
the index 0. We then replace the sums over radia-
tion oscillators by integrals and do the integrals
over the angles of k and the sum over polarization
directions. The resulting expression is

1 e/ h\? podk
AE=———(—) f —[(0[\72V[0)
3w hc \mc o k

25 ©[|VV|n)-(n|VV|0)
»  Eo—E.—hck

The first term in (45) is immediately recog-
nizable as the energy shift which would be ob-

}. (45)
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tained by our original semiclassical argument if
the position fluctuation were taken to be that for
a free electron. The assumption of course is al-
ways to be made that the formally infinite upper
limit of integration is in reality the reciprocal
Compton wave-length. The second term can be
given a simple interpretation by studying its be-
havior for small and large values of k. We first
assume that hck<|Eo—E:|, where E; is the
energy of the lowest intermediate atomic state
that occurs in the sum over #. We can then ex-
pand the integrand of the second term in
powers of k

0|VV|n)-(n|VV]0)
n Ey—E,—hck

1
=2y (olvvln)~(anVl0)lE

+———-(E0_En)2+0(k2)}- (46)

The first two terms in (46) can be simplified by
the use of the equations of motion and the com-
mutation relations. We obtain

O|VV|n)-(n|VV]0)
n Eo—'En'—th

=—(0]|v2V|0)

2ck
+—h—(0|P2l0) +0(%%). (47)

We then see that the apparent logarithmic
divergence at the lower limit of the integral in
(45) is removed. The largest surviving contribu-
tion to the integrand for low frequency quanta is
just the low frequency contribution to the class-
ical electromagnetic self-energy. This cancella-
tion will approximately persist until the series
expansion used in Eq. (46) becomes poorly con-
vergent, that is until the quantum frequency
becomes comparable with the orbital frequency
of the electron. For frequencies higher than this
the situation will become quite complicated until
the quantum energy becomes larger than the
highest energy effectively occurring in the sum
over intermediate atomic states. For quantum
energies so high that the sum in the second term
of (45) effectively converges before the denomi-
nator begins to differ much from kck, we see that
the importance of this term in comparison with
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the first term decreases with increasing k. As a
result of this limiting behavior of the second
term for small & and large k, it is convenient to
represent the energy shift by the expression

1 et/ h\2 prdk
AE=_—-(—)f——(o|v2V10), (48)
3w hc\mc ko R

where the lower limit &, is adjusted to give the
correct value for (45).

This effective lower cut-off can apparently be
evaluated only by doing the indicated sum, but
a useful general property can easily be deduced.
For a harmonic oscillator, the sum over states
reduces to a single term. The atomic energy
difference occurring in this term is just that
corresponding to the orbital frequency of the
electron; the transition between the two limiting
types of behavior for the sum takes place for a
quantum frequency equal to the orbital fre-
quency, and ck, will therefore be very close to
the orbital frequency.

This simple behavior holds only for a harmonic
oscillator. As the potential becomes more con-
centrated near the center (approaching the
Coulomb potential, for example), the matrix ele-
ments of VV appearing in the sum over states
will become important for states lying higher and
higher above the unperturbed atomic state. The
first terms in the sum will always have energy
differences corresponding to the orbital frequency
of the electron, but the first terms become rela-
tively less and less important as we approach the
Coulomb potential. The quantity ko, which
marks the transition between the two limiting
forms for the sum, will accordingly rise higher
and higher above the orbital frequency. A careful
evaluation of the effective lower cut-off for the
case of the 2.5 level of hydrogen gives, according
to Bethe,! a value of 17.8 Rydbergs or approxi-
mately twenty times the orbital frequency. This
seemingly high value is now not surprising in
view of the foregoing arguments.

VII. JUSTIFICATION OF THE UPPER CUT-OFF

In this section we shall attempt to give a quan-
tum-mechanical derivation of the expression for
the mean square fluctuation in position. We shall
include the effect of retardation but not the effect
of relativity. In this way, the existence of the
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upper cut-off in the integral over quantum ener-
gies will be given some formal support. We
assume the complete non-relativistic Hamil-
tonian for a spinless charged particle coupled to
the radiation field, but otherwise free

2

p
H=—-+Y aytarkck
2m &

N e > 21rh0)5( )

— — e .

mc & \ kV +P

X (ar exptk-q+ait exp—ik-q)

2whc
2mc2[ ( ) o

2
X (ar expik-q+ait exp —ik- q)] . (49

In analogy with the semiclassical derivation
given in the first part of this paper, we assume
an electron at rest and calculate its motion in the
first approximation under the action of the
coupling with the field. The unperturbed wave
functions for the problem are

exp(iP-q)
(N}

where P is the wave vector for the wave function
of a free electron with definite momentum and
(k1, kg, - - +) is the wave function for the radiation
field with the indicated quanta present. The zero-
order wave function has no quanta present and
has in it a range of electron momenta, so that
the position of the electron can be approximately
given. We have

(kly k2, t ')’ (50)

exp(iP-q)
V=% A ().
P (V)
The electron density, averaging over the coordi-
nates of the radiation oscillators, is

exp(i(P—P’)-q)

(S1)

(52)

([¥[m=2 2 Ap*Arp

P P

We now assume that the coupling between the
electron and the radiation field is turned on.
Each wave function occurring in the sum (51)
will be perturbed, and the electron density (52)
will be accordingly altered. We proceed to calcu-
late the perturbed density to the order e2. The
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third term in our Hamiltonian will enter to the
first order in the correction to the wave function.
It cannot enter to the second order, since this
would either lead back to the zero-order wave
function, or to one referring to two quanta, which
is orthogonal to the zero-order function and will
therefore give no contribution in the averaging
over the radiation field coordinates. The last
term in the Hamiltonian gives no contribution
for the same reason. It is interesting to note that
any subtraction term added to the Hamiltonian
to render the theory convergent will give no
contribution for the same reason again. A second-
order correction to the wave function does, how-
ever, arise from the renormalization necessitated
by the first-order correction.

The wave function referring to definite electron
momentum becomes

expiP- q 2whe (ex-P)
o ( ) Ep—Ep_—hck
exp(¢(P—Kk)-q) . eh? 2whe
(V)i 2m2c k kV
% (ex-P)? eXp(ip'Q)(_ ). 63)
(Ep—Ep—r—hck)? (V)}

The averaged electron density then becomes
exp(i(P—P’)-q)

(|[¢|9n=2 T Ap*4p
P P
e2h? 2whe e.-P
Xt T (
2m?*® ¢ RV \Ep—Ep_;—hck

ek-P’ 2
- ) ] (54)
Epl —Ep'_k—hck

We now assume that P and P’ are always small
compared with the reciprocal Compton wave-
length. The energy denominators become

mP* m(P—k)?
Ep—Ep_y—hth=——————Jick
2m 2m
kk  hk-P
=—hck(1+———— ) (55)
2mec  mck

The last term in (55) is always very small com-
pared with the first term, so we shall ignore it.
The electron density becomes, changing the sum
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to an integral and doing the sum over polariza-
tions and the integration over angles,

exp(i(P—P’)-q)

([¢|m=2 X Ap*Ap
P P’
1 e2y h\?
X 1———(—) P—-p)
37 he \mc
® dk ) (56)
T
0 hk \2
Rl 14—
2mc

This can be rewritten in a more transparent form
2e fh\*

I+——{—
w he \mc

® dk
o ——
0 hk \?
k 1+——)
2mc
exp(i(P—P’)-q)

<l‘l’l2>kv=

X2 2 Ap*Ap

P P

(S7)

From this we see that the effect of the coupling
between electron and radiation field is to spread
out the electron density function, the mean
square spreading distance being

2e¢/h )2 f"’ dk
1{'h6 0 k 2
k(l-’r———
2x
h )2 fuo
(1+-)

+[ =5

0 k 2

k(1+—-)
2«

((AQ) =

42e2

x ke

(58)
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We make our usual assumption that only fre-
quencies above some lower cut-off kg are effective
when the electron is bound, and therefore omit
the second term in (58). The integral over k can
be performed without difficulty, yielding

<<Ag>2>~———( )log— (59)

where ¢ is the base of the natural logarithms. We
therefore see that the inclusion of the retarda-
tion leads to an upper cut-off which is about
three quarters of the crude value () originally
assumed.®

The derivation just given has some attractive
features. It gives a convergent result for the
physically meaningful part of the reaction of the
field on the electron, without the necessity of
subtracting two infinite terms. The result (59)
suffers, however, from the obvious disadvantage
that a non-relativistic Hamiltonian was used to
obtain convergence in a region where the non-
relativistic assumption is clearly seriously in
error. It would seem to be of the greatest interest
to apply the method just used to the calculation
of {(Ag)®w in the hole theory. Such a procedure
i$ seen to be scarcely unambiguous, although it
is apparently again possible to obtain the phys-
ically interesting results without the introduction
of the usual subtraction terms. It is hoped that
this point can be treated in detail in a later paper.
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*W. E. Lamb has pointed out (unpublished) that the
inclusion of recoil in a non-relativistic calculation of the
line shift in hydrogen gives a convergent result,



