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The heat transfer in liquid helium II by internal convection is calculated on the basis of
Tisza's two-fluid model. One arrives at the following differential equation for the heat current
density, q:

curl curlq = —A grad T.

Here T=temperature, h. =(ps)2'1/g„ is a numerical constant depending on temperature and
pressure only (ps=entropy density and p„=the viscosity of the "normal" fluid). Comparison
with the measurements of the heat transfer in very fine slits by Keesom and co-workers shows
only partial agreement. It appears that the heat conductivity of helium II in narrow slits, even
in the limit of very small flow, cannot be described by the usual laminary flow solutions of hy-
drodynamics within the two fluid model, even if one introduces further assumptions such as
viscous slip and an Ohm's law type resistance.

I. INTRODUCTION

HE measurements of heat transfer in liquid
helium II published recently by Keesom

and Duyckaerts, ' Mellink, ' and Meyer and
Mellink, ' have shown that in extremely fine
capillaries or slits (diameter 0.15—19ti) and for
sufficiently small heat input the transported heat
becomes proportional to the temperature difference.
According to previous measurements it appeared
that the heat current is proportional to (grad T) &

(Keesom'). It now appears that this cube root
dependence on the temperature gradient is re-
stricted to heat flow in wider capillaries and to
larger currents. The new results are of interest
insofar as for the first time they seem to give
qualitative support to general ideas promoted
by Tisza' and H. London6 interpreting the enor-
mous heat conductivity in liquid helium II by
a mechanism of "internal convection. " This
mechanism implies a heat current proportional
to gradr. Since this result seemed to be in con-
tradiction to every available experimental evi-
dence so far the theory had never been developed

f The work reported here was carried out under Contract
N7onr-455 with the Oftice of Naval Research.
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Inc. , Amsterdam, 1942}.
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in detail. It might now appear desirable to com-
pare the theoretical expectations with the new
experimental data.

According to the view in' question, liquid
helium II is described as consisting of two mutu-
ally interpenetrating fluids having densities p„
and p„respectively. The "normal" ffuid (n)
carries almost all the entropy of helium II and
has ordinary viscosity, whereas the "superfluid"
(s) has no viscosity and negligible entropy
(it, =0, s, 0). In first approximation the two
fluids are considered as uncoupled, the macro-
scopic motion of each being described by its
own hydrodynamic velocity field v„and v„
respectively.

The "two-fluid" model was originally derived
from the idea' that the condensation mechanism
shown by an ideal Bose-Einstein gas might be
responsible for the transition from helium I to
helium II at the X-point. The Bose-Einstein
condensation exhibits the unique example of a
system of two mutually interpenetrating phases
one of which has zero entropy. However, the
model in question may, of course, be employed
without going into the details of any molecular
theory. As a macroscopic nzodel it has proved
capable of accounting for a number of the pe-
culiar properties of liquid helium II.

It leads to a very simple solution of the ap-
parent paradox that viscosity experiments per-
formed with superfluid helium flowing through

' F. London, Nature 141, 643 (1938);Phys. Rev. 54, 947
(1938).
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thin capillaries gave no measurable viscosity at
all (Kapitza, ' Allen and Misener') while experi-
ments using a rotating disk immersed in super-
fiuid helium showed a quite normal viscosity of
the same order as that of ordinary liquid helium I
(Keesom and MacWood").

It was further possible on the basis of this
model to give an interpretation of the so-called
fountain (or thermo-hydrodynamical) effect as
caused by an essentially reversible mechanism
of the type of the thermo-electric effects. ' ' More
precisely, the model of Tisza implies that two
containers filled with liquid helium II and con-
nected with each other by extremely fine capil-
laries will be in equilibrium, if a temperature
difference AT maintained between the containers
is accompanied by a pressure difference,

Ap= psAT,

where s=entropy per gram, and p=density of
liquid helium II. This "thermo-hydrodynamical
pressure difference" has subsequently been quan-
titatively confirmed by the measurements of
Kapitza" and of Keesom and co-workers ' "

Going beyond this result, Tisza inferred from
the same model the possibility of a peculiar
form of wave motion in liquid helium II in which
temperature and entropy density perform peri-
odic Quctuations, quite analogous to the pressure
and density fluctuations in ordinary sound.
These "temperature waves" represent density
waves of p and p, separately with a phase
difference of I80' to each other so that p„+p, is
approximately constant. The same mechanism
was again derived by Landau" who called it
"second sound. " The phenomenon was subse-

quently observed by Peshkov" and later by
Lane and co-workers. " These authors found
very close agreement between the measured and
the theoretically predicted dependence on tem-
perature of the propagation velocity of these
temperature waves. Especially these experi-

P. Kapitza, Nature 141, 74 (1938}.
~ J. F. Allen and A. D. Misener, Nature 141, 75 (1938}.
~o%. H. Keesom and G. E. Mac%ood, Physica 5, 737

(1939);8, 65 (1941}.
u P. Kapitza, J. Phys. USSR 5, 59 (1941).~ L. Landau, J. Phys. USSR 5, 71 (1941).
~IV. Peshkov, J. Phys. USSR 8, 381 (1944); 10, 389

(1946)."C. T. Lane, H. Fairbank, H. Schultz, and Vf. Fair-
bank, Phys. Rev. FO, 431 (1946); V1, 600 (1947}.

ments furnish a very sharp test of the validity
of the general assumptions which are at the basis
of the model under discussion.

However, the second sound waves are not able
to transfer much entropy since they pro-
pagate nothing but the mechanical energy of
their excitation which is extremely small, while
the entropy density undergoes only periodic
local fluctuations. Thus the second sound is not
directly responsible for the "heat superconduc-
tivity" in liquid helium.

If one has a capillary or a fine slit connecting
two vessels of liquid helium and maintains a
temperature difference between them and thus
also has a pressure difference according to (I),
the normal Quid will not be entirely immobilized

by its viscosity. A stationary state will be
reached when a certain circulation of the two
fluids is established: Superfluid carried by the
thermo-hydrodynamic force will go from the
cooler to the warmer container. There it will be
excited into the normal fiuid state, in which state
the excess helium will return with viscous flow

to the cooler container. Here its excess heat con-
tent will be carried away by the thermostat and
the excited normal Quid will fail back again into
the superfluid state. As only the normal fluid is
supposed to carry entropy, a stationary heat
flow will be established carrying heat from the
warmer to the cooler container. This is the
mechanism of heat transfer' ' which we shall
call "internal convection" and which we are
going to discuss in greater detail in the present
paper.

II. THE DIFFERENTIAL EQUATIONS OF
INTERNAL CONVECTION

The differential equations by which the model
of the two mutually interpenetrating fluids has
been described are still somewhat uncertain. In
particular, the experimentally observed existence
of something like an upper limit for the super-
flow has not yet found a satisfactory mathe-
matical description within the theory. However,
in the limit of small deviations from equilibrium,
that is, if one neglects all except linear terms in
the velocities v„and v. and in the derivatives of
the other quantities entering into the equations,
Tisza's assumptions definitely lead to the fol-
lowing set of equations:"
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Conservation of mass:

a(p~+p~)a~ = dlv(p~v~+pIV~) ~

density vector

q =psTv„.

conservation of momentum:

a(p, v, +p„v )/at= —gradp
—v„(curl curlv„—4/3 grad divv ), (3)

where v„ is the coefficient of viscosity of the
normal component and p is the pressure.

Conservation of entropy:

a(ps)/Bt = —div(psv„). (4)

It should be noted that in Eq. (4) terms have
been omitted which would express an irre-
versible increase in entropy such as that due to
the dissipation of kinetic energy caused by the
viscosity of the normal component, since such
terms are quadratic in the velocities.

Finally:

av. /at = —p
' gradp+s gradT.

The derivation of Eq. (5) implies some assump-
tions which might still appear very much open
to argument. We will not enter here into such a
discussion but rather take Eqs. (2), (3), (4),
and (5) as the presumably simplest expression
of the thermo-hydrodynamics of liquid helium II
for small velocities. In particular Eqs. (3) and
(4) express the assumption that viscosity and
entropy are only attributed to the normal com-
ponent. Equation (5) generalizes the equi-
librium condition (1), making a very far-reach-
ing step by attributing a thermo-hydrodynamical
force to every volume element of the liquid in
which a temperature gradient is being main-
tained. It is this Eq. (5) which is responsible
for the appearance of temperature waves in the
theory.

By subtracting p times (5) from (3) one ob-
tains:

p.a(V, —V„)/Bt =ps gradT
+(s„/psT)(curl curlq —4/3 grad divq), (6)

similarly, Eq. (2) minus s ' times Eq. (4) gives

p, div(v, —v„)=ps/s

/Bsl . Ias)
I

—
1 &+] —

I p (7)
EBT), &ap),

In (6) we have written q for the heat current

Eliminating v, —v from (6) and (7) we ob-
tain the wave equation of the temperature waves
of Tisza and Landau plus an attenuation term:

p„a(1/s) .. 4 V„B(1/s)
T=div grad T ——— F . (9)

pg BT 3 p BT

where
A grad T= —curl curlq,

h. = (ps)'T/q„

is a new characteristic coeScient.
Equation (10) replaces the usual equation

X gradT= —
q

of ordinary heat conductivity. One might call
(10) the differential equation of "heat super-
conductivity" or, more appropriately, of "in-
ternal heat convection. " It expresses quanti-
tatively the idea of H. London and Tisza that
entropy is being transferred by a movement of
the two phases relative to each other.

Whereas in ordinary heat conductivity

curly=0,

as follows directly from the usual heat conduc-
tion equation, we see that according to (10) a
temperature gradient can be maintained in
helium II only if curly/0. This is a consequence
of the fact that in the present form of the theory
the only resistance to internal convection at small
velocities is the viscosity of the normal phase.

The bolndary conditions derive from those of
the normal phase. "

s„„=0; psTo„~= —X,(gradT)~, .i;d,

where E, is the heat conductivity of the adja-

"L.Landau, J. Phys. USSR 8, 1 (1944).

Here we have omitted the term (Bs/BP) rp which
entails a coupling between the temperature
waves and the pressure (ordinary sound) waves.
This is very small since (as/ap) r = —(a V/B T)„
is very small for liquid helium II.

In case that conditions of stationary heat trans-
fer are reached, we have to go back to Eq. (6).
Since under those conditions divq =0, we obtain:
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cent medium. This means

q =g(1—4x'/d'),

where q is the mean value of q taken over the
cross section of the slit. Hence

h. grad T= —12q/d' (12)

and accordingly the mean "heat conductivity"
is given by

Z=g/~gradT~ =Ad'/12=(ps)'Td'/12' . (13)

Similarly for a circular capillary of radius R
one calculates as mean heat conductivity

g/I grad T
I
=«'/g

The entropy density of helium between 1'K
and the X-point can be approximately repre-
sented by the empirical formula

/&i =0 i gx = +o(grad T)x sofia

For a slit af mdtro d one obtains as solution the
parabolic current distribution of laminary vis-
cous flow over the cross section (—vd ~&x ~& id) of
the slit in the form

DI. COMPARISON WITH EXPERIMENT
AND DISCUSSION

a. Critical Velocity

In comparing the "mean heat conductivity"
given by Eq. (13') with the experimental data' "
one must take care to confine oneself to the re-
gion of presumable validity of the linear theory,
i.e., to the region of sufficiently small heat cur-
rents where q is proportional to gradT. In the
narrowest slits (d&.75p) no deviations from the
linear law are observed within the range of the
given data (grad T~10 ' deg. cm '). As the
width d of the slit increases, deviations appear
first at temperatures close to the )-point until,
for d) i0p, no linear dependence of q on gradT is
observed even at the lowest temperatures
(T 1.1'K) and for the smallest measured tem-
perature gradients. The values of g at which the
deviations begin in the various experiments can
be determined from the given data only very
approximately. But it appears that the limiting
feature is a critical velocity of the superHow v,
and not perhaps turbulence of the normal Row v„,
as one might think. From Eq. (8) and the condi-
tion of no net How

ps=0. 72 X i0 'Ts'I cal deg. -' em-'
=3X104T5'6 erg deg. —' cm.—' one has

pnVn+ peVe

The viscosity measurements of Keesom and
MacWood by the oscillating disk method actually
determine the product p g„, if one assumes that
p s, as is suggested by general arguments, it
follows that q„ is roughly constant between i'K
and the ) -point and about equal to the viscosity
of liquid helium I, that is, of the order q„~2
X10 '[g cm ' sec. ']. With these values one
obtains for the mean heat conductivity (13) of
the slit of width d:

g ~0. 9X1 O' T"' d'cLaldeg 'cm 'sec ']. (13')

For comparison we give the heat conductivity
of ordinary helium I at 3.3'K:

XH,z ——6X10 'Peal deg ' cm—' sec. '].
Accordingly even in a slit of only 1(}p, diameter
the "mean heat conductivity" of liquid helium II
at 2'K would be i0~ times larger than that of
helium I.

pe
q= psTv = psT v, ———T(T~—" T")v (14—)

pn

where T~=2.19'K is the temperature at the
) -point.

Within the limits of accuracy of their deter-
mination from the experimental data the values
of v, (critical) obtained with the aid of (14) are
independent of the temperature. They depend on
the width d of the slit approximately as d '.

Typical examples of the determination of
v,d (critical) from the experimental data are
collected in Table I. The column headed gXd
gives the mean heat current density multiplied
by the width of the slit. In a slit of given width d
and at a given temperature 1 the region of
validity of a linear law is determined by the
proportionality of gXd to the temperature dif-
ference hT, that is by gXd/b, T=constant. The
braces in Table II indicate the experimental
limits within which in each case the proportion-
ality of g to hT comes to an end. When g Xd/hT
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TA.m, E I. Limits of the linear region; determination
of critical velocities.

d X104
cm T K

qd X1%'
cal/cm

(qd/~T) X10
cal/cm t,d X108

sec. deg. cm8/sec.

0.75

1.15

1.75

9.3

2.097
2.097
2.097

1.989
1.989
1.989

2.170
2.170
2.170

1.960
1.960
1.960
1.960
1.960

1.586
1.586
1.586

1.807
1.807
1.807
1.807

1.962
1.962
1.962

4.03
4.16
6.65

2.2
6.5
8.9

0.57
1.04
1.64

0.58
3.34
6.6
9.4

16.4

3.9
12.6
30.4

5.8
10.1
25.1
35.7

6.1
14.9
31.1

8.5
8.5)

8.2
8.2
7.9

Io.'4)
10.2

11.0
11.0
10.5
10.3
9.9

15.8
15.8)

?2

190
177
133

1.45

0.5
1.3
1.8

0.9
1.7
2.6

0.1
0.63

3.0

0.5
1.6
3,9

2.8
5.8

2.3
2.4
3.9

1.4
4.0
5.4

0.3
0.6
1.0
0.15
0.8
1.7
2.4
4.1

1.2
3.9
9.4

1.8
2.7
6.8
9.7

1.5
3.?
7.8

d X8,(critical)~10 ' cm' sec. '.

begins to decrease the critical velocity has been
exceeded. R„=p„8„d/s„ is the Reynolds num-
ber for the "normal" How. One sees from the
table that in every case R„ is smaller by orders
of magnitude than the value 10' at which
turbulence may be expected to set in; thus the
observed deviations from linear dependence of q
on grad T cannot be ascribed to turbulent How of
the viscous normal phase.

The product dX8, (critical) is seen. to be of
.the order of magnitude

The d ' dependence of 8, (critical) accounts
for the fact that no region of 1inear dependence
of g on gradT has been observed in capillaries
wider than 10'. By virtue of the factor multi-
plying v, in (14) the critical value of q for a slit
of given d approaches zero as the temperature
approaches the X-point. Thus for T~T), a linear
formula can give no more than the slope Bg/
B~gradT~ at gradT=O. This explains the fact
that in capillaries of intermediate width (1 —10')
a region of linear dependence of g on gradT is
observed at low temperatures, whereas at tem-
peratures close to the X-point deviations from
the linear law tend to occur even for the smallest
measured values of grad T.

For the same reason, experimental curves of g
versus T for given values of gradT —curves which
show a maximum in the conductivity between
1.9' and 2.0' and then a rapid decrease as
T—+T~—are misleading, since for any finite value
of ~gradT~ the critical velocity is inevitable
exceeded if one goes sufficiently near the X-point.
This situation is exemplified in Fig. 1 which
shows a typical experimental curve of g versus T
for constant ~gradT~ (heavy curve). The broken
line is the corresponding curve of g (critical)
as given by Eq. (14) with dX8, (critical) =10 '
cm'/sec. One sees that the critical velocity is
exceeded already at a temperature below the
maximum of q. This is quite generally the case.

Cl~cl 3P
0 IO, Grad T 0.002 degJc

Exp.

This is in agreement with the values obtained
from Kapitza's experiments;" it is about 10
times larger than the values found by Daunt
and Mendelssohn" for the transfer velocity in
the supra-surface film. ~

'6 J. G. Daunt and K. Mendelssohn, Proc. Roy. Soc.
Al'VO, 423 (1939);also: A. Bijl, J.de Boer, and A. Michels,
Physica 8, 655 (1941).

~ ¹Eeadded irI, proof: According to K. R. Atkins, Nature
85, 925 (1948) the supra-surface film also has a considerably
larger critical velocity in the presence oF a temperature
difference.

IO 1.4 I8 2.2

FK'. 1. Experimental heat current density g, p as a func-
tion of the temperature T for constant temperature gradi-
ent (heavy curve); the curve plotted refers to a slit of
width d =9.3X10 4 cm and to gradT =0.002 deg. /cm. The
broken curve gives the critical value of q as a function of
T for a slit of the same width. The maximum in the ex-
perimental curve, as well as its decrease as the tempera-
ture approaches the )-point, occurs in the region where
g p )g '&,„1,i.e., outside the region of validity of the linear
theory.
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Hence one cannot expect to explain the decrease
of g towards the ) -point by the present theory.

TABLE II. Comparison of experimental and theoretical
values of the mean heat conductivity.

b. Linear Region'. Experimental Values of X

Representative values of the mean heat con-
ductivity Z, ~. =g/ fgradT f

in the linear region
are given in Table II. They were calculated from
the experimental data of Meyer and Mellink
(M and M) and Keesom and Duyckaerts (K
and D). The corresponding theoretical values,
Z,q„,., are given by Eq. (I3'). In Table II I, is
the length of each slit; Z, , /Z, h„,. gives the
ratio of the experimental to the theoretical value
of the mean conductivity. The last column
roughly gives the power of variation of E, ~

with T.
The accuracy of some of the quantities enter-

ing into the tables might be somewhat doubtful,
the greatest uncertainty probably coming from
the determination of the width d of the slit in
the various experiments. The widths were de-
termined from optical interference measurements
and from measurements of gas Bow through the
slits. Even granting the accuracy of those de-
terminations (Meyer and Mellink estimate the
probable error at 20 percent) they can only
give the average width over the slit; the actual
width may vary considerably in different parts
of the slit. Since the mean heat conductivity
depends rather strongly on the width, this is a
source of considerable error. Another, though
probably minor, source of error is the corrections
applied to the observed heat flows to take ac-
count of losses of various kinds. From Table II
one sees that the values of K. , from Meyer and
Mellink are consistently higher than those from
Keesom and Duickaerts. M and M indicate that
they had considerable difticulty in attaining a
stationary state in &heir experiments, so that
one might suspect that their measurements were
not really made under stationary conditions and
that this is the cause of the discrepancy between
the two sets of data. The only other explanation
one could think of is that this strange discrepancy
has something to do with the length of the slits,
those of M and M being less than half as long
as those of K and D. Such an explanation does
not seem very likely, however: "end effects"
should be expected to be due to Bernoulli terms
which have been neglectful in the linear hydro-

&exp &theor +exp & (+exp)
T('K) (caljdeg. cm sec.) Ktheor kin(T)

L =0.248 cm

d =9.3X10 »cm

(K and D)

"1.586

1.807

1.962

4.45

18.7

43.5

22

103

295

0.20
11.0

0.18
10.3

0.15

'1.223
L =0.275 cm

1.476
d =1.75 )&10-» cln

1.705
(K and D)

0.066 0.032

0.61 0.32

3.5 1.86

2.05

1.92

1.88

11.9

12.1

11.5.1.960 17.2 10.2 1.69

L =0.275 cm 1.799 5.35 1.55

d =1.15X10»cm ~ 1.989 17.1 5.28

(K and D),2.170 24 15.5

3.45
11.6

3.25
3.9

1.55

L =0.1 cm

d =1.0X10-» cm

(M and M)

1.411

1.802

1.948

1.05

12.4

21.4

0,060

1.19

3.06

17.5

10.4

7.0

10.1

7.3

3.6
2.159 31 10.8 2.9

L =0.275 cm 1.403 0.39 0.031 12.5

d =0.75 )(10» cm 1.600 1.85 0.156 11.8

(K and D) 1.2 097 30 2 4 3 7.0

11.8

10.3

1.086
L =0.1 cm

1.274
d =0.5)(10 »cm

1.315
(M and M)

0.124 0,0006 202

0.277 0.0043 64

0.354 0.0064 55

5.0

8.3

8.3
1.659 2.48 0.108 23

L =0.1 cm

d =0.3 X10 4 cm

(M and M)

1.226

1.358

1.558

1.652

0.25

0.48

1.35

1.92

0.00097 260

0.0034 140

0.018 75

0.0365 54

6.4

6.0

c. Temperature Dependence

Except in the two narrowest slits (d =0.3 and
0.5y) ~~ the theoreticat T"' dependence agrees rather

*~ M and M have also made measurements in still
narrower slits (0.15 and 0.2p), but those measurements
were made by a non-stationary method and therefore
have not been used in the present analysis.

dynamic equations. Since such terms are quad-
ratic in the velocities of How one would expect
that if "end effects" are important they would
destroy the proportionality between q and

fgradT f.
Altogether it appears that the listed values of

Z, , /Z&h„„. may be expected to be uncertain

by as much as a factor of 2 one way or the other.
In spite of this the data indicate quite clearly
the general dependence of X on the temperature
and the width of the slit.
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well with the experimerttal data up to about 1 9'.;
the Fit is somewhat better with d(logE)/d(logT)

11.5. This may be accounted for theoretically
if one assumes g„T", as is the case in an
ideal gas and in liquid helium I,***instead of
taking g„=constant as was done in deriving
Eq. (13'). When T approaches the X-point E as
a function of 1levels off very definitely, but in
no case has an actual maximum been observed.
(Note that E is, of course, understood as func-
tion of T always in the limit ~gradT~~O. )

In the narrowest slits the dependence on tem-
perature is rather as 1' or T' up to the highest
temperatures at which measurements have been
made (T~1.7'). No data are available on
whether there is a leveling oft' at higher tempera-
tures in this case also.

d. Absolute Value of X and Dependence on
Width of Slit

A glance at the last column in Table II shows
that the ratio of the observed to the theoretically
predicted mean heat conductivity varies in order
of magnitude from 10' in the narrowest slits
to 10 ' in the widest. This looks rather discourag-
ing; but it should be pointed out that except for
its proportionality to d, which obviously does
not fit the facts, the formula (13), based on the
idea of heat transfer by internal convection,
comes much closer to the experimental data than
would a formula based on the usual type of heat
conduction by "diffusion of energy. " The latter
mechanism would give a heat conductivity ap-
proximately independent of the temperature and
of the order of that in helium I, that is too small

by a factor of about 10-' to 10 '.
Actually there is an increase of the mean con-

ductivity with d in the wider slits (d &~10 ' cm),
but it is not nearly as strong as d'. In the nar-
rowest slits the conductivity seems to be ap-
proximately independent of d.

**~As has been pointed out by Tisza (see reference 5),
the small density of liquid helium and the temperature
dependence of the viscosity of helium I make it appear
likely that in contrast to all other liquids the viscosity of
liquid helium is of the "kinetic" type usually found in
gases. In this case one would expect

pe&~,
where I is the mean free path and I the mean thermal
velocity of the "normal" particles. The product p„l
should be approximately temperature-independent andI ~T&

IV. ATTEMPTS TO ACCOUNT FOR
THE DISCREPANCIES

The discrepancies between the observed values
of X and the predictions of the theory as given
by Eq. (13') are essentially of two types: (c) In
the narrowest slits the observed values of the heat
current density are some hundred times larger than
those predicted by the theory. (b) In tke widest
slits in which a linear dependence of g on gradT
has been observed the heat currents are actually
less than expected from the theory; furthermore at
temperatures close to the X poin-t the conductivity
increases with temperature muck more slowly
thart the theory predicts.

To account for' these discrepancies, one may
attempt to generalize in two respects the equa-
tions by which internal convection has been
described in Sec. 2 of this paper.

Item (a) points to a la,rger conductivity for
the narrowest slits than is given by the theory.
Since it appears impossible to get rid of the nor-
mal viscosity by manipulating the di8'erential
equations, one may conclude that the boundary
condition v„fl 0 is too stringent. One may intro-
duce a slip of the normal Row velocity v„along
the wall of the slit by replacing the boundary
condition v„» =0 by

va[[ ~~vs]//cllV

where X is the outward normal to the boundary
of the slit. The quantity a in (15) is of the di-
mension of a length and should be of the order of
the mean free path of the particles in the normal
phase. From the experimental value of the vis-
cosity one estimates for the mean free path at
the X-point

l„~10 ' cm(T= T&,),

so that one should expect

a l„10 '(p/p„) 10 '(Tq-/T)" cm.

Item (b) indicates the presence of a resistance
to internal convection in addition to the vis-
cosity of the normal Ruid. This additional re-
sistance becomes significant for wider slits. One
may try empirically to account for this dis-
crepancy by formally introducing an Ohm's
law type of resistance into the Eq. (6) describing
the relative motion of the tmo phases. This
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and one obtains for the mean heat current
density:

q=AP —'~gradT~
$ ' sinhP —1, (18)

cosh&+ aP sinh)

where we have put Pd/2=&. Expanding this
expression into powers of f we obtain as heat
conductivity for slits of small width d:

q/~gradT~ =XP-'[aPP+(,' —asks)P+ ]
Ad'

I 1+6a/d —3a'P'+ .
12

One sees that the new assumptions amount
to a correction by a factor

L1+6a/d —3a'P'+ - . j (19)
~r W, Bend end L, Meyer, Phys. Rev. '73, 226 (1948).

means that we repla, ce Eq. (10) by

—gradT= 11 '(curl curlq+p'q) (16)

the function P(T) to be determined empirically.
Band and Meyer'~ have recently fitted the

heat conductivity in a wider capillary by as-
suming a resistance to the relative motion of the
two phases equivalent to a term like the supple-
mentary one in Eq. (16). However, since they
were using data from the region of cube root
dependence of g on

~
grad T ~, their resistance is a

function not only of T but also of tI itself (pro-
portional to g'). Furthermore, they completely
neglect the viscous resistance of the normal
phase, using only the Ohm's law type of re-
sistance; thus in their formula the heat con-
ductivity is independent of the width of the
capillary. Because of its proportionality to g' the
resistance proposed by Band and Meyer cannot
be applicable to the linear region. At any rate it
appears hopeless to try to understand the laws
of motion of the two-phase model of helium II
in the region of supra-critical velocities as long
as one cannot account satisfactorily for the small
heat currents.

Using (16) and the boundary condition (15)
the stationary solution becomes

coshPx
q=AP 'gradT — —i

cosh(Pd/2) +aP sinh(Pd/2)
(I&)

in the formula (13') for the mean heat con-
ductivity. If one takes a and P(T) independent of
d, as they ought to be if they are to have any
reasonable physical meaning, one sees that a
correction factor of the type (19) will not suSce
to bring (13') into agreement with the experi-
mental data: The expression (18) for the mean
heat conductivity still increases too fast with d;
in particular for very narrow slits it is propor-
tional to d rather than independent of d as the
experimental data (of Table I I) seem to indicate.

It is interesting to note that quite formally
Eq. (18) is able to account for the T' dependence
of X in the narrowest slits where one can pre-
sumably neglect the term proportional to d'

compared to 6ad. One can fit the data fairly
well by setting

a~3 10—'T—"cm,
which has the right temperature dependence
for the mean free path of the normal phase
particles. However for two reasons this is not
likely to have physical significance: First, the
mean free path would be larger than the width
of the slit; in that case, however, the whole hy-
drodynamic description of the Row would break
down. Second, the mean free path implied by a
slip of this magnitude is some hundred times
larger than the mean free path corresponding
to the experimental value of the viscosity as
determined in the rotating disk experiments of
Keesom and MacWood. " On the other hand
it should be pointed out that there is no direct
experimental evidence to exclude a slip of this
magnitude: It is true that Keesom and Mac-
Wood failed to detect any measurable slip in
their experiments. However, within the experi-
mental accuracy of their measurements a slip of
the magnitude in question here could not have
been observed.

V. CONCLUSIONS

From the above discussion it appears that the
present data on the heat Bow in helium II in
narrow slits cannot satisfactorily be described by
the usual laminary Bow solutions of the two-
fiuids hydrodynamics even with the additional
assumptions of viscous slip and an Ohm's law
type resistance. On the other hand, since our dis-
cussion was aimed at the limiting case of small
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velocities, when v„ is proportional to gradT, one
cannot have recourse to assuming complications
by turbulent Row either.

It is, of course, possible that the whole con-
cept of the two-fluid hydrodynamics loses its
validity when dissipative processes are con-
sidered. However, in view of the achievements
of the theory in general, it appears unwar-
ranted to go so far, and one will expect that, at
least in the hmit of very small velocities, the
theory should be competent to account also for
dissipative processes.

It might be pointed out that the critical values
of v,d obtained from the present data, as well

as those from Kapitza's Row experiments, are
some ten times larger than those observed in
connection with the supra-surface film (Daunt
and Mendelssohn), the latter being of the order
of Ii/4~m~10 '. Hence it might be argued that
the applicability of the theory is restricted to
still smaller velocities, i.e., still smaller heat cur-
rents than the ones used in the experiments
under discussion. This does not appear to be a
valid argument since for most slits the observed
heat conductivity is larger than that predicted
by the theory. One cannot think of any per-
turbation mechanism which would lead to a de-

crease of the resistance with increasing Qow

velocity. At any rate it would be desirable to
extend the measurements to still smaller heat
currents.

It seems that in order to account for the pres-
ent experimental data in terms of the general
two-Quid theory some features of the theory must
be revised. There appear to be two possibilities
for doing this:

(I) One may have to abandon the idea of
attributing an ordinary hydrodynamic viscosity
to the normal phase of helium II. This would
not be very satisfactory, since it is precisely the
assumption that the normal phase has viscosity

while the superRuid phase has none which in
Tisza's theory explains some of the most striking
properties of helium II (rotating disk experi-
ments versus superfluid flow in narrow capil-
laries).

Or (2) one may have to assume that in the
case of stationary flow through narrow slits the
normal phase of the liquid helium II does not
touch the wall of the slit at all, but that there is
a film of pure superfluid next to the wall. This
alternative is at any rate preferable to the first
one. Allen and Misener" were led to a similar
picture from their investigations of viscous Qow

of helium II in narrow capillaries ("sub-surface
film" ). This assumption would mean that there
are large variations in the densities of the two
phases over the width of the slit when stationary
Row is being maintained.

This possibility is rather difFicult to investi-
gate quantitatively at the present time, since
one does not know the correct hydrodynamic
equations for the two-phase model if one cannot
consider p and p, as approximately constant.

One cannot entirely exclude the possibility
that the phenomena may be describable in terms
of end e8'ects: Terms of the type grad(v, 2),
which have been neglected in the linear equa-
tions, may become large at the ends of the slit.
It would appear that since such terms are quad-
ratic in the velocities they cannot be important
in the limit of small velocities, that is, in the
region of proportionality of v. and v to gradT.
But it could be that the distance within which
v, and v„reach the values they assume within
the slit, is itself proportional to v„so that
grad(v, 2) would actually be linear in v, . However,
also this possibility cannot be investigated quan-
titatively without further refinement of the
hydrodynamics of the model.

' J. F. Allen and A. D. Misener, Proc. Roy. Soc. A172,
467 (1939).


