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When a direct current bias is applied to a multicrystalline
barium titanate ceramic, an alternating voltage can excite
resonances in the ceramic. Four modes of motion have been
excited—a longitudinal mode at right angles to the applied
field, a radial mode of a circular plate at right angles to the
applied field, a thickness longitudinal mode, and a thickness
shear mode. The first three are excited when the a.c. field
is applied in the same direction as the d.c. polarization, but
the fourth is excited when the a.c. field is at right angles
to the d.c. polarization. The amount of motion is larger
than in magnetostrictive materials, and it appears that
barium titanate may be an important electromechanical
transducing element.

All of these modes can be accounted for on the basis of
a second-order electrostrictive effect. Two electrostrictive
constants are involved and these have been evaluated as

Q2= —2.15X10"2(cm*/ (statcoulombs)?);
Qu=46.9X1072(cm*/(statcoulombs)?).
Using these constants, the measured electromechanical

coupling factors for the four modes are evaluated, and
these compare well with the calculated values.

A theoretical explanation of this effect is given which
depends on the fact that when a given domain becomes
ferro-electric it loses its cubic structure and becomes tetra-
gonal. In this process it expands one percent along the
tetragonal axis and contracts one-half percent along the
other two axes. In the ceramic piece all directions for the
tetragonal axis are equally probable, but an applied field
can cause the domains in the direction of the field to grow
at the expense of domains perpendicular to the field. This
growth is accompanied by an increase in the thickness of
the crystal and a decrease in radial dimensions. The
measured ratio of 3 to 1, compared to the 2 to 1 ratio ob-
served by x-rays for a single crystal, is accounted for by
the nature of the ceramic material which does not join up
for all grains. This does not prevent the ceramic from
increasing in thickness but does cut down the radial con-
traction.

Experimental measurements of the electrostrictive
effect are given, and it is shown that the displacement is
proportional to the square or products of the electric dis-
placements in the ceramic.

I. INTRODUCTION

HEN an electric field or electric displace-

ment is applied or generated in a solid
dielectric, a change in shape occurs which is
proportional to the square of the voltage or
electrical displacement. Electrostrictive effects
are usually very feeble compared to first-order
piezoelectric effects that occur in many crystal-
line materials. However, in the case of the
ferro-electric materials rochelle salt and barium
titanate, electrostrictive effects? may be quite

1In the present paper, a strain that is proportional to
the square or product of two fields or electric displacements
is called an electrostrictive strain. This is contrary in some
cases to a usage started by Mueller, who calls the square
term a ‘‘quadratic piezoelectric effect” when it depends on
a strain caused by a spontaneous polarization or an applied
field acting on a piezoelectric constant. On this definition
the strain in rochelle salt that is proportional to the square
of the electric displacement would be a ‘‘quadratic piezo-
electric effect” because it depends on the orthorhombic
crystal becoming monoclinic in the ferro-electric region and
generating new piezoelectric constants which give a strain
proportional to the spontaneous polarization times the
applied electric displacement. The electrostrictive effect in
barium titanate is not of this type (see reference 2) and is
in every way the analog of a magnetostrictive effect in a
ferromagnetic material.

2W. P. Mason, Phys, Rev. 73, 1398 (1948).

large and are of considerable interest. The
thickness expansion is about as large as can be
obtained by the direct piezoelectric effect in
rochelle salt and is somewhat larger than can be
obtained with magnetostrictive materials. Fur-
thermore, the variations of the properties of
barium titanate with temperature are not nearly
as large as for rochelle salt. Hence such materials
may be of use for various types of transducers.
If the alternating variations are small compared
to the d.c. polarization, a remanent polarization
is sufficient to keep the device operative. How-
ever, for the largest displacements or voltages,
the remanent polarization may become dis-
charged and it is necessary to put on a steady
d.c. biasing voltage to make the device operative.

II. METHODS FOR MEASURING THE FUNDA-
MENTAL CONSTANTS

When a constant voltage bias is applied to a
multicrystalline barium titanate ceramic, an
alternating voltage can excite resonances in the
ceramic. There are four effects that have been
measured. These are a radial vibration of a disk
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ELECTROSTRICTIVE EFFECT IN CERAMICS

of the material,? a length vibration of a bar cut
from such a disk, a thickness vibration in the
direction of the applied field,* and a thickness
shear mode.® The first three motions are excited
when the d.c. field is applied in the same direc-
tion as the a.c. field, while the fourth is excited
when the d.c. polarization is at right angles to
the a.c. field. Since, if there are two sets of plates
at right angles to each other, the a.c. field cannot
be made uniform through its direction of
application, this mode has to be excited by
exciting a remanent polarization by the d.c.
field and then taking off the plating in this
direction. In fact for all of these modes the d.c.
biasing voltage can be applied and then taken off
and the device will still operate by means of the
remanent polarization.

A typical method for measuring such reso-
nances is shown by Fig. 1. Here a source of high
voltage, such as a high voltage transformer and
rectifying tube, with the output connected
through high resistances, is put directly on the
ceramic piece, while the a.c. voltage is applied
through two 4-microfarad condensers in series.
At the resonant frequencies of the ceramic, which
are usually above 100 kilocycles, the impedances
of the condensers are less than 1 ohm while the
shunt impedance of the high voltage source
being 10 megohms is much higher than the im-
pedance of the ceramic. Hence by this method
one obtains a measure of the electrical im-
pedance of the ceramic and can determine the
effect of putting a high electrical bias on it.

If one measures the impedance of a freshly
made ceramic on which no electrical bias has
been placed, the impedance is that of a con-
denser and no resonances can be excited. How-
ever, if one puts a bias of 30,000 volts per cen-
timeter on the ceramic disk of the material, for
example, having the dimensions

radius =2.5 cm; thickness £=0.025 cm, (1)

Fig. 2 shows a measurement of the resonant and
antiresonant frequencies as a function of the
applied voltage, as the voltage bias is decreased
to —30,000 volts per cm. Upon reversing the

3 Shepard Roberts, Phys. Rev. 71, 800-895 (1947).

*W. P. Mason, Phys. Rev. 72, 869 (1947).

5W. L. Cherry, Jr. and Robert Adler, Phys. Rev. 72,
981 (1947).
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F1G6. 1. Measuring circuit for studying resonances and
electromechanical coupling factors in barium titanate
ceramics.

direction of the bias the ascending curves shown
are obtained. It is obvious that we are dealing
with a hysteretic material for which the previous
history determines the response. Since the elec-
tric displacement follows a similar hysteresis
curve when plotted against the voltage, it is
obvious that the response is determined by the
electric displacement rather than the electric
field. When the field is reduced to zero a polariza-
tion remains and this determines the resonant
and antiresonant frequencies of the material.
From the data of Fig. 2 and the measured
dielectric constant shown by Fig. 3, one can
calculate the electromechanical coupling (which
determines the percentage of energy stored in
mechanical form to the total input electrical
energy), the electrostrictive constant, and the
value of the elastic constant controlling the
radial vibrations. The method for deriving the
fundamental elastic, electrostrictive, and electro-
mechanical coupling constants for radial vibra-
tions is discussed in the appendix. It is shown
that the resonant frequency for a material having
a Poisson’s ratio 0.27, which is near that for
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F1G. 2. Resonant and antiresonant frequencies as a
function of the biasing voltage for a disk 5 centimeters in
diameter.
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F1a. 3. Dielectric constant at room temperature as a func-
tion of the biasing voltage.

barium titanate, is given by the equation

2.03 Y, )* @
p(1—a9/ "’

where a is the radius, Yy=Young’s modulus,
p=density, and o¢-Poisson’s ratio. In the disk
whose data are given by Fig. 2, ¢=2.5cm, p=35.5,
and 0=0.27. Hence the value of Young's
modulus for zero biasing field is 1.12X10%2
dyne/cm?. The value of Young’s modulus is
increased slightly with bias, being 1.18 X102 at
30,000 volts per centimeter.

It is shown in the appendix that the electro-
mechanical coupling factor k is determined in
terms of the separation of resonance and anti-
resonance frequency, Af, the resonant frequency
fr, the first root R, of the frequency determining
equation, i.e., R;=2.03, and the value of Pois-
son’s ratio by the equation

AffR2—(1—0?)
et
fr 140

For ¢=0.27, the value of the factor multiplying
Af/fr is equal to 2.51. Hence from the data of
Fig. 2, the electromechanical coupling factor can
be calculated and is shown plotted by Fig. 4. It
follows a regular hysteresis loop, indicating that
the remanent polarization is annulled when the
voltage gradient is about 7500 volts per cm
negative. For a smaller initial polarizing field,
the coercive field is less.

These results indicate that for an applied d.c.
voltage, since the strain is proportional to the
square of the electric displacement, if we plot
it against the field, the characteristic butterfly
loop of a hysteretic material will result as shown
by Fig. 5. Actual d.c. measurements with a

2ma

k? )
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bimorph unit with the field applied to only one
side give values which follow this type of curve
very well. The calculated constant comes very
close to that measured by a.c. measurements as
discussed in the next section.

Similar a.c. measurements have been made for
the thickness longitudinal mode, the thickness
shear mode, and the longitudinal length mode,
and the coupling factors are shown plotted by
Fig. 4. The frequency constant for the longi-
tudinal thickness mode for a zero bias is 2550
kilocycle-millimeters. From this one obtains the
elastic constant from the formula

f=Q/20[(\+2u)/p ]} (4)

(A +2u) =1.42X 102 dynes/cm?2. (5)
This and the value of Young’s modulus

Y0=1.13X102 dynes/cm?
=p(3N+2u)/ (N +p)  (6)

allow one to solve for the two Lame’ elastic con-
stants. These are

A=5.2X10" dynes/cm?;

as

u=4.5X10" dynes/cm?, @
and from these the values of Poisson’s ratio is
o=N2(\4p)=0.27 (8)

as quoted above.

To obtain the thickness shear mode, one has
to polarize the ceramic in one direction and then
remove the plating. An a.c. field perpendicular
to this will generate a thickness shear mode with
a coupling shown by the single point of Fig. 4.
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III. PHENOMENOLOGICAL THEORY OF ELECTRO-
STRICTIVE EFFECT IN BARIUM TITANATE
CERAMICS

Since in a barium titanate ceramic any crystal
symmetry is lost by the distribution of crystal
axes in all directions, any first-order piezoelectric
effects are annulled and all the modes of motion
must be due to second-order electrostrictive
effects. In the experiments of Section II it was
shown that the electromechanical coupling was
determined by the electric displacement rather
than the electric field, so that we take as the
independent variable the stresses and the electric
displacements. All the measurements were made
under adiabatic conditions so that all constants
can be considered as adiabatic.

In terms of a tensor notation the internal
energy residing in the body can be expressed in
the form

dDm ’l:, ]= 1, 2, 3
dU=T;dS;ij+E,—+T4dS, 9
47 m=1,2,3

where T;; are the six stress components, S;; the
six strain components, E,, the fields, and D,, the
electric displacements, T the absolute tempera-
ture, and .S the entropy. The strain components
are defined in the usual tensor form

1 au.‘ au,-
Sij="( +"—'),
ax.-

where #; are the displacements along the x; axes.
In order to avoid using the factor 1/4w, we made
the substitution

(10)

S =Dp/A. (11)

dm is then measured in statcoulombs per square
centimeter.

For the present purpose, since we are going to
take T, 6m, and S as the fundamental variables,
we introduce a potential H;, called the elastic
enthalpy, defined by the equation

Hy=U—S;Ti; (12)
Hence
dH,= —S;;dT;j+ Endé,+TdS, (13)
and
Si,'=—6H1/6T,~,-; E,,.=6H1/65,,.; (14)
T= 8H1/6S.

IN CERAMICS
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Since for adiabatic conditions S does not vary,
the dependent variables of interest, S;; and E,,
can be written in the form

S.‘j(Tkz, 6,,); Em(Tkz, 61;)- (15)

Expanding these functions about the position
of zero strain and zero electric field, we have up
to second-order terms

e ot —| —— 2 4Td T,
a6,  2WoTwaT,,

3S;;
AT+

aS.; 1 S
S.‘j = [
Tw

tf

] 3°S.;
+2 AT ds,+ d&nd60]+ .-
3T 11064 35,03,

0En
— " 4TidT,

9Em 9Em 1
Em=—-—dT“+—drSn+—[
0TdT

0T 36, 2!

*E., ?En,

aT1ddon+ d&,.dﬁo]—I- <o (16)
9T 1196, 96,90,

+2

For the present purpose some of these partial
derivates can be set equal to zero. Since there is
no direct piezoelectric effect on account of the
uniform distribution of the crystals in all direc-
tions

9*H, 9*H, dEn 0

aSi;
 96,0Ty; 9T, Ty

36n

17

Furthermore the ceramic can be described as
soft electrically but not mechanically. Hence not
much change in the elastic constants with stress
will occur and 82S;;/07 40T ,=0. There is a
slight change of elastic constants with electric
displacement as shown by Fig. 2, but it is small
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TaBLE I. Terms not ruled out by symmetry in the isotropic case.

612 8182 8201 8183

822 8381 8283 832 832

Sii Qun 0 0 0
S12 0 Quu—Quzz  Quu—Quas 0
Sa1 0 Quu—Quzz  Quu—Quz 0
Sis 0 0 0 Quu—Quse
S22 Quaz 0 0 0
Sa1 0 0 0 Quu—Quaz
Ses 0 0 0 0
Saa 0 0 0 0
Sas Quaz 0 0 0

Quaz 0 0 0 Q122
0 0 0 0 0
0 0 0 0 0
0 Quui—Quae 0 0 0

Quu 0 0 0 Quae
0 Quui—Quae 0 0 0
0 0 Quui—0Quze  Quu—Que 0
0 0 Quu—0Qnz2  Quu—Quaz: 0

Qua2 0 0 1

and is neglected here. Hence we can set

9255 3H, 9*H,
0Tds.  0Twdd.dT;;  0T40T1ddn

0E,,
a Tija Tu

=0. (18)

This leaves only three second-order partial
derivatives, two of which are related, and these
we designate as

325, &H,
06,08, 06.00.0T; 9T :00,95,

03H,

3’E,,
0T ;006

= 2Qij noj (19)

?En
06,08,

= Omnn-

The two remaining first-order derivatives of
Eq. (16) determine the elastic compliances and
dielectric impermeabilities according to the
equations

aS;; 0E.,
=5Pju;
0T x: 96n

=13Tmm

(20)

where s, are the elastic compliance constants
measured at constant electric displacement and

T.. are the dielectric ‘“‘impermeability”’ con-
stants (inverse of dielectric constants) measured

at constant stress. For the most general case
there are 21 components of sP;;; and 6 of the
impermeability constants. For the isotropic case
considered here, symmetry conditions insure that
there are only two elastic compliances and one
dielectric impermeability. For the most general
case there are 36 components of the electro-
strictive tensor Qi; .o and 27 for the correction
Oumno to the dielectric constant. For the isotropic
condition, the off diagonal term of the type

Q 62511 d Q 32522
1122 = an 2211 =
6522 1

21

are obviously equal since the expansion along x;
for an electric field along x; is equal to an ex-
pansion along x, for a field along x;. Hence the
tensor is symmetrical and has the same number
of components as the fourth rank elastic com-
pliance tensor sP;;:. For the isotropic case sym-
metry rules out all terms except those shown by
Table I. The terms on the left are the strains
generated by the products of the electric dis-
placements shown by the top column. Since
Sij=S;; and §;8;=39;0;, three columns and three
rows are redundant. The fourth rank tensor for
the elastic compliances will have the same terms
with Q1111 replaced by s1111 and Qi122 replaced by
s1122. For the top variable line 82 is replaced by
T, 6182 by T2, etc.

To simplify the method of writing these
equations, the usual one-index matrix symbols
are used for the stresses and strains and the
usual two-index compliance, electrostrictive, and
impermeability constants are used; the electro-



ELECTROSTRICTIVE EFFECT IN CERAMICS

strictive equations become

1139

S1=512T 14512 (To+ T5) + Q1182+ Q12 822+ 852
Se=51P[T1+ T3]+ 512 T2+ Q11822+ Q12 6:2+ 852
S3=51P[T1+ T 2]+ 512 Ts+ Q11852+ Q12[ 6:2+ 857

Ss
Sm =-E- = (SuD —SmD) T&+ (QII_QIZ) 8152

Ss

Siz= , = (5112 —512°) Ts+ (Q11— Q12) 183

Si

Sas =—2‘ = (SuD —512D) T4+ (Qu—Qm) 0203

(22)

Ei =6[47B81"+0118:]—2[Qul 61T 1+ 82T 6+ 63T s )+ Q12 61(T+T5) — (T602+T585) 1]
E3=6[4mB11 T+ 01182] — 2[Quu[ 82T 2+ 81T 6+ 83T s ]+ Qe[ 82(T1+ T'5) — (6: T+ YR
E;=63[4mB1T+01185]—2[ Q[ 85T 3+ 61T 5+ 82T 4 |+ Qua[ 65(T1+ To) — (6, 5+ 8:T4) 7]

In this equation an extra term O;; has been
added to represent the decrease in dielectric con-
stant with applied field, which as shown by Fig. 3
is considerable.® Over a temperature range, the
complex dielectric constant varies’ as shown by
Fig. 6. The equations for the various modes can
be derived from Egs. (22).

The simplest mode to consider is a longitudinal
mode for a long thin bar generated by a field
perpendicular to the length. If we take the
thickness as lying along z while the length is
along x, the equations reduce to

S1=51PT 14 Q1264%;

Eo= 6l 4nBu"+0185]—20138sTs. 2D

For the case of interest here §; consists of a part
839 due to an applied field or a remanent polariza-
tion plus an alternating component due to an
applied a.c. voltage. As far as the alternating
components go we can write these two equations
as

S1=51PT 1+ Q12[ 283085 ];

4
E3= 53[41”3111'-'-011530]—2Q12630T1. (2 )

To reduce this equation to the standard form?

¢ This measurement was made by Gordon Danielson of
the Bell Telephone Laboratories.

7A. Von Hippel, R. G. Breckinridge, F. G. Chesley, and
Lazlo Tisza, Ind. Eng. Chem. 38, 1097 (1946).
(1;455)e' for example, W. P. Mason, Phys. Rev. 70, 705

used in solving piezoelectric crystals, we have to
express the stress T’ in terms of the strain S; and
field Es. By eliminating §; the alternating part
of the electric displacement from the last
equation and substituting in the first part of
Egs. (24) we have

S1 2Q12530E3

suf  (4mBuT+011830)s1:F '

(25)
E; 201263051

= + y
47B115' 4 011830 s1iP[47B1151+ 011830

03

6[x102 06
N\,
x

] \

1

' \
w ] \

H T
z ! \
< H \
< + t
Z ,’ v ©
o b4
o 0 \' S
v
H T .03
5 €
3 +
3 ] TAN b
a + 1 .02

/ L
] = Pa
J
Y \ v
7 .01
I it I
075 10 a6 a6 ES 726 160
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Fi16. 6. Dielectric constant for zero bias as a function of the
temperature.
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where
4Q1225302
511D=$11E|:1—k2:] where k2= .
[4mBuT+ OndseJs1i?
401225302

471151+ 011830 =4mP11 T+ 011830 —

S11
= (4mB11T+ 011830) (1 — k?).

Substituting the last relation in the last of Eqgs.
(25), the two equations become

Sl 2Q12530E3
suf  (@mBuT+ 011530)3115"
E; 21203051
1

47BuS1+0nd3y  suf[4nBuT+ Ondso]

These have the same form as the piezoelectric
equations (37) of reference (8), and hence the
same considerations exist if we set the equivalent
piezoelectric constant equal to

2Q1253o
dy/ =—— . 27)
47!',311T+ Ouéd3o

This can be evaluated as in the piezoelectric case

by measuring the resonant and antiresonant

frequencies of the device, the dielectric constant,

and the density. The coupling is given by Eq.

(50) of reference (8).

T A 4—7%) A
T, 00 1 g

4 fr

Br=— —

4 fr

while the piezoelectric constant is given by

2Q12530 suf 3
ds) = = ( ) ’
47FB11T+011530 41!‘1311T+0n330
or

k
Q12=T(511E(4Wﬁ117'+ Ondso)t.  (29)

30

Measurements have been made for the coupling
of a long thin bar as a function of the applied
voltage, and the results are shown by Fig. 4. The
frequency constant for such a bar is 2.28X10°
kc cm. With a density of 5.5 this corresponds to a
compliance constant (inverse of Young’s modu-
lus) of 0.88X1072, The dielectric constant as a

W. P. MASON

function of voltage is given in Fig. 3. Hence one
can calculate the value of Qi3, and the value is
approximately

Q12=—2.15X1072in c.g.s. units.

The negative sign is obtained from expansion
measurements which show that the bar contracts
in length when a voltage is applied normal to the
length.

The same constant Q;; drives the radial mode
of a disk, but since this requires a transformation
to cylindrical coordinates, the equations are dis-
cussed in the appendix. It is there shown that
the coupling is (2/(1 —¢))? times as large as that
for the longitudinal mode. This agrees well with
the experimental curve of Fig. 4.

The coupling for the thickness mode is also
shown by Fig. 4. The effective piezoelectric con-
stant for a thickness mode can be evaluated from
Eq. (22) by setting S;=3S,=0, since no sidewise
motion occurs, and solving for T3 and 83 in terms
of S3 and E;. The resulting equations are

T3=Sscu,®
2830 Q11— (25122 /5112 +512P) Qm]CuEE
4717+ Ondso

33

(30)
E;

fg=——
471153+ 011630
N 2611E[Qu - (2512D/511D +5‘12D)Q12:| 03053
[47B1uT+Ondso] '

where
cu?
cnf= ’
1—k2
2 483°[ Q11— (25122 Q12/511° + 512°) Jre1s B
4rBnT+ Oudso

’

and
4mB1153+ 011830 = (4wB11 T+ 011830) (1 — k2).

Hence the equivalent piezoelectric constant for
this case is

2[ Q11— (25122 /5112 +5122) Q121830
47BuT+0nudse .

daa' =

(1)

From the coupling measurements of Fig. 4 one
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finds that

2515P
— 0:1,=5.3X10"2,

s1P 4510

Qu— (32)

Since s1; and sz are given in terms of the ¢ elastic
constants by

cuiitciz Au
S11= = ;
culcutcis) —2¢1®  u(3N+24)
(33)
—Ci12 -\
S12=

cn(entcia) —2¢12? 2#(3)\"{'—2”),

we have from the Lamé elastic constants of Eq.

™

511=0.88X10712; s513=—0.236X10"12. (34)
Hence the value of Q1 becomes
Qu=+46.9X10712 (35)

which is of opposite sign and about 3 times as
large as Q..

The fourth mode of motion that can be gener-
ated in a rectangular bar is the thickness shear
mode which occurs when the alternating voltage
is applied at right angles to the d.c. electric dis-
placement. This mode was tested by taking a bar
5 cm long, 0.5 cm wide, and 0.25 cm thick, ap-
plying a voltage of 30,000 volts per cm and
using the remanent polarization generated for
this case. Since it is difficult to establish an
electric displacement along the 0.5-cm direction
with plates normal to the large faces, these were
dissolved off and the a.c. field applied along the
width (0.5-cm direction). The frequency of the
measured resonance was 566 kilocycles, which
agrees well with the shear elastic constant of Eq.
(7). The coupling for the shear mode is higher
than that for the thickness longitudinal mode.
This is what one expects from Egs. (22), sixth
equation, from which one obtains the equation
for a shear mode

2(Q11— Q12) d30uE
T4=S4uE— Qu Q12 Ok o
4rpuT+ O30
E, 2(Q11—Q12)530#ES

b=
4mB115+0ndse  4mB11 T+ Oudso

(36)

4y

1141

where
c1f —ciof c1l? —c1?
e -( Ja-m;
2 2

B 4(Q11 - 012)2530“1:
4mB1 T+ Ondso )

Inserting the values given previously for Qii,
Q12, 1, and 83y (i.e., a remanent polarization equal
to 0.85 times that for a 30,000-volt/cm field), one
obtains a coupling of 48 percent which agrees
well with experiment. Hence the phenomeno-
logical theory accounts quantitatively for all the
modes of motion observed, and allows one to
measure the electrostrictive, elastic, and dielectric
constants pertaining to the ceramic.

IV. THEORETICAL EXPLANATION OF EFFECT

The ratio of about 2 to 1 between the thickness
effect, and the fact that the radial effect is a con-
traction, allows one to obtain a mechanism for
this effect. Barium titanate above 120°C has a
cubic structure, having the form shown by Fig. 7.
Here eight barium atoms form the corners of the
cube. Since each barium atom is shared between
eight adjacent cells, this gives a total of one
barium atom per cell. Six oxygen atoms occupy
the face-centered position on the six sides, and
since each is shared between two adjacent cells,
this represents a total of three oxygen atoms per
cell. Since the titanium atom is much smaller
than the other atoms, it is relatively free to move
between them.

As the temperature is lowered below 120°C,
the titanium atom moves from the center to one
of the six positions near the six oxygen atoms.
Since the cell was neutral when the titanium was
in the center, a dipole moment is introduced by

Q - BARIUM @ - OXYGEN @ - TITANIUM
UNIT CELL FOR BARIUM TITANATE ABOVE 120°c

F1G. 7. Unit cell for barium titanate above 120°C.
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DATA ON UNIT CELL AXES OF BARIUM TITANATE AS A
FUNCTION OF TEMPERATURE (DATA FROM H.D. MEGAW)
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Fi1G. 8. Unit cell dimensions as a function of the
temperature.

the motion of the titanium and the cell acquires
a permanent dipole; the domain in which the
cell is situated becomes ferro-electric.

When the crystal becomes ferro-electric, the
cubic form is lost and the crystal becomes tetra-
gonal with the axis in the direction of the tita-
nium motion 1 percent longer than the other two
axes. Figure 8 shows the cell dimensions as a
function of temperature, as determined by Miss
McGaw.? Along the ferro-electric axis the cell
dimension increases from 4.0A to 4.026A, at
room temperature, while the other two axes
decrease from 4.0A to 3.86A. The total volume
of the unit cell remains unchanged for the
crystal, but the axial ratio has changed to 1.01.

For a polycrystalline material the dominant
mechanism for producing the electrostrictive
effect is the following. As the ceramic material is
prepared, all domains (which can exist below
120°C) are equally distributed in all directions
and no residual polarization can occur. The effect
of a large d.c. field is to change the direction of
polarity so that more domains are lined up in
the direction of the field rather than in other
directions. This change in the direction of a
domain occurs not by physically changing the
orientation but rather in changing the direction
of the ferro-electric axis from one of the six
oxygens to another of the six. When the field is

19271-)1. D. McGaw, Proc. Roy. Soc. 189, 261-283 (April,

MASON

taken off, the local field caused by the lining up
of the domains remains and is sufficient to keep
a large share of the domains lined up. Now when
domains are lined up in the direction of the field,
the plate expands in this direction by % percent
times the percentage of domains whose direction
of polarization is changed. At the same time the
radial dimensions contract. For the crystal, x-ray
measurements show that the sidewise contrac-
tion is half as much as the thickness expansion.
However, for the ceramic, since —Qi2/Qn
=2.15/6.9=0.31, the amount of sidewise con-
traction is less and a volume electrostrictive
effect exists. This is probably due to the fact
that the crystal domains are not bonded at all
points, and a contraction of domains can occur
without causing a corresponding contraction in
the body, whereas an expansion along the ¢ axis
carries the material with it whether it is bonded
at all points or not. The two effects—the thickness
effect and the radial effect—are both of a con-
siderable magnitude.

When a small a.c. field is applied in the
presence of a d.c. field or remanent polarization,
the following process probably occurs. The a.c.
field in itself is too small to reverse any complete
domain, but it can cause molecules on the
common planes of differently directed domains to
change from one domain to another and hence
cause one domain to grow at the expense of
other domains. If the a.c. field is opposed to the
d.c. field, some molecules of the domains directed
along the thickness will be lost to other domains
directed in different directions and the crystal
will become thinner. When the a.c. field is added
to the d.c. field, these molecules and more too
will be directed in the direction of the field and
the plate becomes thicker. Since the change in
molecule direction will, in general, lag the applied
field, a large dielectric hysteresis occurs just as
for rochelle salt, and the mechanical resonances
have a poor Q. The radial vibration is accounted
for by the contraction of the domains in direc-
tions perpendicular to the ferro-electric axis, and
this process should generate a radial motion
about half as large as the thickness motion,
which agrees with experiment.

The value of the total increase in thickness,
about 5 to 7 parts in 10* for 30,000 volts per cm
applied gives a method for estimating the
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number of domains lined up by the d.c. field.
Since the plate could expand by % percent if all
the domaing were lined up, the percent lined up is

5 to 7X10~*

P =7.6 to 10.6 percent
6X10~

37)

over the average value for an isotropic condition.

APPENDIX

Equation for an Electrostrictive Material in
Cylindrical Coordinates

To obtain the equations of motion for a
cylindrical plate, Egs. (22) for rectangular co-
ordinates have to be transformed to cylindrical
coordinates. In cylindrical coordinates the vari-
ables are the radius vector r, the angle 6, and the
dimension along the cylinder designated by z. In
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terms of the x, y, z rectangular coordinates
rr=x%49?%,; (38)

The direction cosines between the 7, 6, and 2
directions and the x, y, and z directions are then

tanf=y/x; z=z.

x y 2

r| cosf sinf O
6| —sinf@ cosfé O
zl 0O 0 1

(39)

Making use of the formula for the transformation
of a tensor from one coordinate system to another,
x4 0%y

— 4L kly
axk ax;

a, b~

(40)

letting a, b refer to 7, 6, and 2z and noting that
dx,/0x) are the direction cosines of Eq. (39), the
stress tensor becomes in cylindrical coordinates

T,r=c08%0 T11+2 sinf cosf T 1o+ sin?6 T s,
Too=sin%0 T11—2 sinf cosf T 12+ cos?6 T sy,

T,-a = sin0 cosf [T22 - T11]+ [C0520 —sin20]T12,

T, =cos8 T13+sinf T3,

To.= —sin@ T 13+ cosf T,

Tzz = T33-

The strain tensor transforms in a similar manner.

(41)

Conversely, the rectangular stress and strain components are related to the cylindrical components

by equations of the type

9x; 0X;
i =————Sab, (42)
0Xq 0Xp
and
S11=c08%0 S,.— 2 sinf cosb S,s+sin2g Sg,
Sa=sin20 S,,+ 2 sinf cosf S,s-+ cos?0 S,
533 = Szzy (43)

S12=sinb cosb (S, —Sss) + (cos?6 —sin?§)Sys,

S13=cos0 S;,—sinf Sp.,
Sas3=sinb S,,+cosf Ss..

In solving the equations of motion it is necessary to know the values of the strains in terms of the
displacements in the 7, 6, and z directions. Denoting these by

ur, ug, and u,,

Love!? has shown that the strain components are given by

ou, 10us u,
Srr= ; =—""—T—,
ar r a0 r
dug ue 19u,
=T ) rz =
ar r r 06

(44)
ou,
zz— az
(45)
ou, ou, 10u, OJue
H 8z = — -
9z ar r 06 Oz

10 Love, Theory of Elasticity (Cambridge University Press, London, 1934), fourth edition, p. 56.
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The other necessary equations are the Newton’s law equations transformed into cylindrical coor-
dinates. From Love's! Theory of Elasticity, these are

oT,, 10T,y 0T, T.r—Tos
R ]
dz 7

dr r a0

0T, 10T ang 2T,-a

pliy=

plig=——+ +—t—, (46)
dr r a0 0z 7
aTrz 1 aTﬂz aTzz Trz
pli,= +- + + :
ar r a6 9z 7

These equations give enough relations to solve the case of the electrostrictive disk of barium
titanate in radial vibration. Equations (22) give the electrostrictive and elastic equations in rec-
tangular coordinates. Transferring these to cylindrical coordinates by means of the tensor relations
of Egs. (41) and (43), we find

Srr =512 T+ 512 (Too+ T2e) + Q118,24 Qu2[ 862+ 6.2,
Ses = SlzD[Trr+ Trz]+sllDT00+ Q12(5r2+ 5z2) +Q11502,
Szz = SIIDT25+SI2D[TM'+ Tﬁﬁj+ Q11522+ Ql2[6r2+ 502:|v
Sre= (5112 = 5192) a4+ (Q11— Q12) 6,6,
Sro= (SuD ""SIZD)TTO—"' (Qu - Q12) 8,04,
So. = (8111) "S1zD) T0z+ (Qu - Qm) 0902,

where §,, 8, 6. are the electric displacements divided by 4 for the 7, 6, and z directions. The electric
relations become

Er = 5r[47rBllT+ Ollar] - 2[Qll(arTrr+ 60Tr0+ azTrz) + QlZ[sr(TBG'*‘ Tzz) - (60T1‘9+ 6z;:rrz) :Dy

(47)

Ey=8s[4mB1:T+ 01180 ] — 2[Q11(86 T 06+ 8, T o+ 6. T 6.) + Qo[ 06(Trr+ Ts) — (8: Tro+8.T6:) 1], (48)
Ez = 62[47611T+0116z] - ZEQll(aszz'*' 6r’--r‘rz"*" 59T02) + Ql2[5z(Trr+ TOO) - (61Trz+ 60Tﬂz)]]'
For the radially vibrating disk
Ug =0, (49)
and we have also
To,=T,=0. (50)

We assume that the thickness along z is very
small compared to the wave-length. Since the
stresses on the surface are zero and the thickness
very small, we can set

T..=T,.=0. (31)

To insert in the equation of motion (46) we need
to have the stresses expressed in terms of the
strains, and for the electrical boundary condi-
tions it is better to use the fields rather than the
electric displacements. Furthermore, for small
alternating fields superposed on a large d.c.

These are the same assumptions as those made
for a longitudinal long thin bar discussed in
Egs. (23) to (29) and hence the results are com-
parable. Since a field is applied only along the 2
direction, §,=8=0. The remaining equations
then become

Sy =512 T e+ 5152 Too+ Q1262
Sao = S12DTrr+ 511DT00+ leazz,
E,=68,[4mB11 T+ 0118 ]— 2Q128.[ Trr+ T .

1 See reference 10, p. 90.

(52)

electric displacement, which may be caused by
an applied field or a remanent polarization, we
can replace 4, by

0, =0z0+ 3;87"”, (53)

where 68z is the steady electric displacement if a
field is applied or the remanent polarization Py
if the field is taken off. Then solving these three
equations simultaneously, the alternating com-
ponents of stress, strain, and displacement are
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given by the equations

suf 5197 2Q12520Ez
Trr=[ " 2jI'Srr'—I: . 2]500_ y
suf —s1F s1¥ —s51.F (473117"*‘011520)(511E+512E)
suf S1f 2Q1252(>Ez
Too= " 3]500— " Z]Srr— f
s11F —51.F suF —s15F (47B11 T+ On1820) (5115 +512F) (54)
Ez 2Q12620
6;’—— + [Trr+ Teo],
4mBuT+0ndz0  4mB1T 4 Ondzo
where
s1P s19P 4Q122620>
suf= ) 512E=——; ki= .
1—k2 1 suP . (41FB1lT+ 011520)511E
—— R
S12

k1 is the electromechanical coupling factor for a longitudinal mode given by Eq. (25). We note that
since 1/s1;%= Y, the Young’s modulus, and —s12%/s11% =0, the Poisson ratio, that the first two
equations of (54) can be simplified to

Y,F 2Q12020E. Yo"
T, = ( )[:Srr+0500]_ )
1—¢? (4Wﬁ11T+0115z0) (1 —'0') (55)
ZleazoEz YOE

Y. E
Too=(1 )[Soa+63rr:|—

—a?

(4mB11T + Ondzo) (1 —o).

Now noting that since the plating on the surface is an equipotential surface, E, is not a function of 7,
then when Eqgs. (55) are inserted in the equation of motion, (46), and the relations for a radial motion

ou, Uy
Srr = ’ SM = (56)

ar 7

are used, the equation of motion becomes

a: r ar

Yo ro%u, 10u. u, %u,
[ ]= = —wpl,. (57)
1—¢?

The last term results for simple harmonic motion.
Since this is a Bessel’s equation of the first order, a solution is

Y. E
(1—ap

No Bessel’s function of the second kind is required since the displacement u, vanishes at the center
of the disk. At the boundary when  =a the radius of the disk, the stress T,,=0. From (55) we have

wr

u,=AJ1( ), where v= (58)

7

YOEAI:O-’J (wa) (1*0‘)]1(0)0/‘0)] 2Q12520E;Y0E (59)
N 1—0’2 v ’ v a (47rﬂ11T+011520)(1—0')'
Hence
2Q12820E (1
Ao Q12820E.(1+0) ' (60)

@ @ —0)J1i(w
conrous{in(7) -4 )
v v

a
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From this data we can evaluate the stresses T, and T as

- F]O(w—r)—(l_a)h(wr/v)

? v r
11—

)

2Q128:o YoEEz
(41r[3117'+ 0115:0) (1 - (7)

Trr =

(61)
( ow  fuwr (1—0)J1(wr/v)
Za(%)+—==
2Q12620E2Y0E v v v
" (4#511T+011620)(1—0') wJ (wa) (1—0').]1((.00//7))
Il —-)-—
L v ? a

The next step in the solution is to obtain the electrical impedance by a.c. methods. This can be
obtained by substituting the values of T, and Ty in the last of Eqs. (54) and integrating over the
surface of the crystal. Since the value of §, at the surface is equal to the surface charge this will
evaluate the total charge Q and we have

27 a Ez.n.a'z 2Q12620 27 a
0= f d6 f surdr = + f a6 f P TortTosldr. (62)
0 0 (4mB11T+Oudz) (47BuT+ Ondzo) Vo 0

Introducing the value of T, and T from Eq. (61) this integral becomes

¢ w
14 r—Jo(wr /v)dr
Eora? 1 80rabn Ve¥ (140) s o(wr /v)

O b1 Ono) | @rpnm 4 Omi (1o | 1 $ 69
02(;.,0(0)0«/11)—(—;——)Jl(wd/v))

Performing the integration and employing the substitution
1 rl 8Q1226202 Y E ] 1
(41"6117""—0116:0)'_ (47611T+011320)(1 "'0’) 41rﬂ11RC+ Onazo’

(64)

where 81:%¢ is the radially clamped impermeability constant, i.e., the impermeability when the plate
is prevented from moving radially, we have

E.ma? [' k? (140)J1(wa/v)
0- i+ | (65)
(47B1RC+ 011510)‘_ (1= (wa/v) Jo(wa/v) — (1 —a)J1(wa/v)
where the coefficient of coupling for a radial mode becomes
k2 800" ¥o? (66)

o (41!'3117""' 011520) (1 —'0')'

Comparing this with the longitudinal mode, given by Eq. (25), we see that the radial mode has a
higher coupling by the factor

(2/1—=a)t. (67)
Since the admittance of the plate is equal to the current into the plate divided by the voltage across
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the plate, and for simple harmonic motion

1=dQ/dt= jwQ,

1147

(68)

the impedance of the electrostrictive plate is given by

1 s

jwra? k?
Jwm [1

Z E - (41r;311‘“'+011630)l I.

The resonant frequency occurs when
(wa/v)Jo(wa/v) —(1—0)J1(wa/v) =0. (70)

For a value of ¢=0.27 found from the elastic
measurements, this equation has the lowest root

(wa/v) =2.03=R;. (71)
Hence the frequency is given by the equation
fr=(2.03/2ma)(Ys¥/p(1=aM))t.  (72)

The antiresonant frequency occurs when the
expression in brackets in Eq. (69) reduces to
zero. This occurs at a frequency somewhat above
the resonant frequency. To determine the fre-
quency separation Af, between resonance and
antiresonance, we develop the function Jo(wa/v)
and J;(wa/v) in a MacLaurin’s series about the
root R;. This gives

d
Jo(wa/v) =J o(Rx)+’a;[fo(wa/v)](m/»)=R1Af +--
2ra
=Jo(R1) ———J1(R)Af+ - - -,
v

(73)
9
J1(wa/v) =]l(Rl)+-a;[]1(wa/v)](m/,,)=nlAf+ e

J1(Ry)

2ma
=J1(Ry) +-—[J0(R1)— ]Af—i—- -
)

1

Inserting these values in Eq. (69) and setting
the numerator equal to zero, the frequency
separation Af becomes

Af (B/(1=k))(1+0)
fr  Re—(1—o?)

(74)

+1 —k? (wa/v) Jo(wa/v) — (1 —a) J1(wa/v)

140)J1(wa/v) ] (69)

Hence solving for the coupling factor k2, we find
to a first approximation

k2

R12_ _0.2
=i‘f[_L_)]. 75)

fR 1+0‘

For ¢=0.27 the value of the factor multiplying
Af/fr is equal to 2.51. Comparing this to the
factor for a longitudinal crystal given by Eq.
(28), which is #2/4=2.47, it is seen that the same
equations are very nearly applicable. By using
Eq. (75) the coupling can be evaluated by
measuring the separation of resonant and anti-
resonant frequencies and the frequency fg. The
resonant frequency and the density give the
elastic constant by employing Eq. (72). From the
measured value of k., the measured value of the
dielectric constant, which is the inverse of

1

€11= ’

(76)
O11629
611T+

v

one can determine Q1262 from Eq. (66). By taking
a known value of field for which €; has been
measured, 8z is determined by the equation

E, Egell
a (41['/3117'—*-0115:0) - 41!" )

0z

By observing how the coupling varies around a
hysteresis loop, one can evaluate the remanent
polarization.



