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for Po-o,-energies. It dehnitely does not occur
even at 16 Mev O,-energy. '

5. Mg"(n, n)Si's process is exoergic by a mass
defect of +2.31+0.8 TMIJ. It is energetically
possible that the y-radiation could belong to this
process. The question could be decided by exact
experimental determination of the excitation
function and the absolute yield of this trans-
mutation.

6. Mgms(an, )Si"t,his transmutation having a
mass defect of —j..5&0.9 TMU may be con-
nected with the y-radiation as well, but it is as
little investigated experimentally as process (5).
Ke are intending in the near future to carry out
measurements about the yield and the excitation
function of the neutron emission of Mg, when
bombarded by Po-n-particles.

SUMMARY

Mg hemispheres were bombarded by a very
pure Po-o.-source of small diameter from the
center. The excitation function of the short-
living artificial radioactivity belonging to the
process Mg" (a,P)AIss has been investigated (Fig.
3). The absolute yield of this transmutation has

been determined very carefully. It has a value of
1.4X 10 ~ transmutations/bombarding a-particle
of 5.3 Mev energy, in a thick Mg layer consisting
of the natural isotope mixture of the Mg isotopes.

The excitation function of the y-radiation,
which is excited in Mg by Po-o.-particles, was
investigated (Fig. 5).

The absolute yield of the y-radiation has been
determined very reliably by direct comparison
with the ThC"-y-radiation of a ThC+C'+C"
preparation of exactly known strength. The
absolute yield of the y-radiation excited in a
thick Mg layer of natural isotopic composition
under bombardment of full energy Po-o.-particles
amounts to 5.2X10 ' 7-quanta/n-particle.

A discussion of the origin of the y-radiation is
given. Four of the six possible processes can be
excluded by considerations of energy, or by the
comparison of the absolute yields as well. Two
remain as possible origins of the y-radiation,
Mg"(a,n)Siss being the most probable by con-
siderations of energy.

Further investigations in these processes are
intended at this Institute.
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A finite but non-vanishing value for the self-energy of the photon, corresponding to a finite
rest-mass, can be deduced from the new invariant formulation of quantum electrodynamics
developed by Tomonaga and Schwinger, in the e order approximation. The implications of
this result are discussed.

INTRODUCTION

HE new development in quantum electro-
dynamics has led to the conviction that the

anomalies of the hydrogen 25 level and of the
magnetic moment of the electron can be ex-
plained in terms of field-dependent parts of the
electronic self'-energy. ' Accordingly, it seems that

' J. Schwinger and V. %'eisskopf, Phys. Rev. 'H, 1272
(1948);J. Schwinger, Phys. Rev. 78, 416 (1948),

the concept of electromagnetic self-energy now

acquires a more than merely mathematical sig-
nificance. However, the field-dependent terms
can, at best, be defined as finite parts of the still
diverging, total self-energy of the electron which
has to be eliminated from the Hamiltonian by a
formal readjustment. Therefore, there is still but
little hope for a final and satisfactory solution. of
the self-energy problems within the framework of
the conventional quantum theory of fields.
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Nevertheless, just these fundamental questions
ought to be examined with particular care.

Even more involved than the electron self-
energy problem is that of the photon. It is well
known that, according to Dirac's theory of the
positron, a photon can virtually create and re-
absorb electron-positron pairs, which process
gives rise to a self-energy that is divergent even
in Heisenberg's elaborate subtraction formalism. '
On the other hand, Schwinger claims that, in his
new formulation of quantum electrodynamics,
the photon self-energy vanishes identically. '
However, the proof which Schwinger presented
in his report at the Pocono Manor Conference,
March 30—April 2, 1948, is highly objectionable. *
Indeed, as we wish to show, if the same method
of calculation is applied as is used by Schwinger
in computing the electron self-energy, the self-
energy of the photon turns out to be finite but
not zero, whereas other methods of calculation
yield infinite values.

A non-vanishing self-energy, or rest-mass, of
the photon, formally appearing in the theory, is,
of course, a very undesirable feature since, even
if it can be subtracted, it will destroy the gauge-
invariance of the theory at least at some stage
of the mathematical development, so that the
electromagnetic potentials will appear as being
observable quantities. Moreover, the subtraction
of the lowest order self-energy terms ( e') will
entail higher order corrections whose physical
significance is rather doubtful.

THE FUNDAMENTAL EQUATIONS

The quantum theory of the electromagnetic
field, as developed by Schwinger, is based on the
generalized multiple-time formulation of the
quantum theory of fields which was first proposed
by Tomonaga. ' Considering the electrons as
specified particles e = 1, 2, ~ ~ . , Dirac, Fock, and
Podolsky' introduced a state functional 0 de-
pending on the individual time coordinates t„of
the electrons as well as on their space and spin

'%. Heisenberg, Zeits. f. Physik 90, 209 (1934).
3 J. Schwinger, Phys. Rev. (to be published).* Note added irI, proof, October l, 1948: Professor

Schwinger kindly informed me of a new derivation of his
previous result. But this new argument again involves an
integration by parts which, in my opinion, is not legitimate
mathematically.

4 S. Tomonaga, Progress Theor. Phys. 1, 27 {1946).I P. A. M. Dirac, V. Fock, and B. Podolsky, Physik.
Zeits. Sowjetunion 2, 468 (1932}.

coordinates. In Tomonaga's theory, where all
particles are described by quantized wave fields,
every volume element (at x, y, z) is associated
with an individual time t(xys), the function t(xys)
defining a surface o. in the four-dimensional x, y,
s, t space. The state functional + is supposed to
be a function of 0, i.e. , of the function t(xys), and
the Schrodinger equation determines the change
of 0'(0) in the event that the surface a is dis-
placed infinitesimally only at a particular point
of the surface.

Let the surface be shifted at the point x = (ct,
x, y, s) over a volume d4x=cdhdxdyds, and the
corresponding change of %(0) be denoted by
d4x8%'(o)/8~(x), then the generalized Schrodinger
equation reads:

ihc(8e(0)/Bo (x)) =Se(x)+(0), (1)

where 3'. is the Hamiltonian density representing
the interaction of electrons and the electro-
magnetic field:

j„=electric current density produced by elec-
trons and positrons, A„=electromagnetic poten-
tials explicitly depending on space and time co-
ordinates according to the wave equations'

(8'/Bx„')A„(x)=0,

and the invariant commutation rules

LA„(x),A.(x')]= (kc/i)b„.D(x x') (4)— .

Both j„andA„areoperators, operating on the
field variables (occupation numbers) of which

+(~) is a function. In order that (1) be integrable,
X(x) must commute with X(x) taken at any
other point S on r. This condition is satisfied for
all spacelike surfaces (i.e., when each two surface
points are spacelike to each other).

In addition, we have the supplementary con-
ditions

(8A„(x)/Bx„)%() =0,

for all points x on the surface 0. As in the Dirac-
Fock-Podolsky formalism, it is convenient to re-
quire more generally

Q(x', 0)%'(0) =0,

where x' is now an independent space-time point,

tl zq =ixo=ict. Similarly for all four-vectors.
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not necessarily lying on a, 0 being an operator Hamiltonian is
reducing to aA„/ax„for surface points, satisfying

zthe wave equation —[S(a), X(x)]= )~d'x'e(x', a)
2 4hc'

(a/ax„')Q(x', ) =0,

and the compatability conditions
&&[j.(x')A. (x'). j.(x)A.(x)] (14)

THE SELF-ENERGY OF THE PHOTON
[Q(x', a), Q(x", a)]=0, (8)

Disregarding terms independent of the A„'s,
'ihe(aQ(x i a)/aa(x))+ [Q(x ~ a) i ~(x)]=0 (9) i.e., neglecting the commutators (4), the essen-

tial terms in (14) may be written
The last condition is sufficient (but not neces-
sary) to ensure a(Q(x', a)%'(a))/aa(x) =0, in i
agreement with (6). An operator Q satisfying all, d'x e(x a)[J~(x)~ 2~(x)]A~(x)A~(x) (15)

4kc' &
requirements is

aA„(x') 1
Q(x', a) = +— da„j„(x)D(x' x), (1—0)

ax„' c &.

(da„=four-vector surface area at x: in a par-
ticular frame of reference do ~ =d02 ——d~3 ——0,
da4 = Qfxdyds) .

The perturbation method, as applied by
Schwinger, starts with a unitary transformation

4'(a) =e 'ei'y(a),

Since we want to study the energy of photons, in
the absence of electrons and positrons, the oper-
ator [j„(x'),j„(x)] may be replaced by its
vacuum expectation value which is easily de-
rived by expressing the current densities in terms
of the electron wave operators:

M, (x' —x) ahi(x' —x)
&Lj.(x') j.(x)])-.=4~e'e'

aa(x' —x) aa, (x' —x)
+

S(a) = d'x'e(x', a)3'.(x').
2kc ~

(12) aa(x' —x) am i(x' —x)

Here

+1 for points x' earlier than a,x, a) = —1 for points x' later than a,

and the x' integration is meant to be extended
over the entire four-dimensional space (between
two hxed surfaces in the in6nite past and the
infinite future). Inserting (11),with

e '8=1 —z5 —-'S'+2 l

+p'h(x' —x)2 i(x' —x), (16)

where 6 and h~ denote the two invariant delta-
functions involving ii = mc/h, as specified below
(cf. (20), (21)). Subtracting, finally, from (15),
the vacuum value (no photons present), we ob-
tain the operator corresponding to the photon
self-energy density

into (1), the terms )inear in e cancel, because of ~. lf =
4hc' ~

d'x'e(x', a)&[j„(x'),j.(x)])-
hc(aS(a)/aa(x)) =3C(x), X IA„(x')A.(x) —(A„(x')A.(x))-.) (1&)

and the Schrodinger equation for p, up to second-
order terms in e, reduces to

According to (2) and (12) the new second-order

Let us calculate the expectation value &~„ir).
for a state in which we have only one photon of

ihc(ay(a)/aa(x)) =-,'i[S(a), K(x)]y(a)+
&A„&x)A.(x)).-&A.(x')A. (x))...

= C„„(x)cosxg(xi' —xi). (18)
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Hence, putting we obtain

a)' —z~=b, and o(~', n) = —8o/Idol

(which is justified because the function (16)
vanishes identically for space-like vectors $):

e' t ko
(Kself)~ C~~ d $ cosKx)i '

ac

»(r)» (S)»h)» (&)
X +

tlat ~4 ~h cIG

(K„ii),=

We note

(folio (1 1$ ) tlo

xexpl —
I

—+—
I I

8 p
4 (a p) ) CIK~BK~

( 8'
—b„„l4aP +Ii'

I exp
Biiio ) .4(u+p)

'ZK)I

16~'ac ""& ~ Ipl (a+p)la+pl

1Kg Z K)t» (5) » i(t)
+Ii ~(h)~i(k) ~ (19)

If the $-space integration is carried out by in-

troducing polar coordinates and integrating first
over the invariant hyperboloids (q' =const. ( (0),
the integral proves to be divergent even if the
singularities of the invariant delta-functions on
the light-cone ($$=0) are removed (smeared out
over a narrow region). The strongest singularities
are of the type

exp = exp
-4(n+ p)- -4(u+ p)-

( i 1
xl

E 2(n+ p) 4(a+p)' )
and here we may put K&'=0 and drop the term

Kp, K because KpK C„,=0 on account of the
supplementary condition (5) (vanishing of the
longitudinal components). If we symmetrize the
integrand in a and p

+(p 1(n pal

Only by introducing integral representations of
the delta-functions and carrying out the inte-
grations in a particular order mill one be able
to arrive at finite values for the self-energy.

Following Schwinger's procedure in his calcu-
lation of the electron self-energy, we insert in (19)

to I'+" (
h(g) =

I dn exp
I

ia$„'+-
4ni

' (21)
i I+" P ( ili )

Ai($) = ' dp expl ipse„'+-
Ipl & 4p) .

and integrate first over the g-space, while keeping
u, p fixed. Observing that

the result is

1 e'
(3',.ii), = —C..) da) dp

32m' hc

P q 1
xl +

lpl) (u+p) I +pl
ip, ' (1 1)

Xexp —
I

—+—
I

4 (a p)

( 4iap
X

I

— —Ii' I. (23)
a+p )

In order to carry out the remaining integra-
tions, let us introduce new variables

a —p Ii' (1 11
=y —I-+- I=,

n+p 4 Ln p)
r Z

' d'$ exp(ipse, ') =
~

d$o exp( —igloo)

Xg dg. exp(+ipse, ') =

for lyl (1.
dndP dydz n P Izl+

(n+ p)'
Af' ~ This was also done by Schwinger in his Pocono Manor

(22) lecture, but he apparently overlooked the remaining term
vlvl
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From (23) we obtain

e
(~self)c P ~em

32%' kc
&+' &+" 1 (

dy
~" dz e'*{ —-1 }.

{z{ ( s

The imaginary part of the integrand has a singu-

larity at s=0( +s-'), but since it is an odd

function of s, it may be regarded as giving no
contribution to the integral. Keeping only the
real. part,

the result (24) or (25) is accepted, this would be
achieved by

e'
7=

4x' kc

However, the new Schrodinger equation would
no longer be compatible with the supplementary
conditions (6). In order to ensure the compati-
bility, it is easiest to construct the amended
Hamiltonian and supplementary conditions by a
unitary transformation from the old ones.

The transformation
&+" ds

e'*{ ———1 }

is/ E. s

%(o) =e '~&'+'(o)

leads to the new Schrodinger equation

(26)

d ( sins)
d»—{

—
} =2,

&p dsh s ) with

zhc(&&+'(o)/8o(x) ) =3C'(x, &r) 4'( )o, (27)

1 e'
(~eel&)c = 8 +em

8~' kc
(24) ge—'&r&.&

3."(x, o) = e' &'3.'(x)e—'~&'& ihce—'~& & . (28)
&&o(x)

fl'(x', o) =e'~& &Q(x' o)e *'~&' (29)

0'(x', o)&1'(o) =0, (30)

and the compatibility requirements are, of course,
fulfilled; indeede2 p2

8x2 I&c &&
2 [fl'(x', o), 0'(x", o)]=0,

and, on account of (9),
4x' kc 8

C„„asdefined by (18) (with x'=x), is equal to
Defining

the electromagnetic energy density of the photon
state considered, divided by ao'. Therefore, a
photon of momentum kx, having the total energy the conditions (6j become
kc&&o ——hc } x } in the zero-order approximation,
appears in the second-order approximation as
having the energy

This corresponds to a "photon rest-mass"
amounting to one electron mass divided by
(137m.)» (because, in the Heaviside units used

here, e'/4s. hc = 1/137).

{0'(x', o)+'(o) I
Bo(x)

get.U(rr) ge—sU(rr)

e—iU(&r) +eiU(&r)

ELIMINATION OF THE PHOTON
SELF-ENERGY

In order to restore Maxwell's equations, one
might try to replace the Hamiltonian (2) by

+ 3C'(x, o) 0'(x', o)@'(o),.Vc

which vanishes according to (30).
If we choose

j.
~(x) = —i.(x)A.(x) —

o vA. '(x), 7
U(o) = d'x'o(x', )Ao„'( ),x

4kc ~
(31)

and to determine the constant y such that the
new term in K cancels the self-energy term. If with the same meaning of the symbols as in (12),
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so that
8 U(o)

kc = —',yA„'(x),
Bo(x)

and if we consider y to be small of the second
order (~e'), the transformed Hamiltonian (28)
becomes, up to third-order terms inclusively,

K'(x, o) =X(x) —-', yA„'(x)
+iLU(o), X(x)]+.. . (32)

The second term is the one that will be cancelled
by the photon self-energy term, after the trans-
formation (11), (12), now applied to 4' instead
of +. The first and third terms may be written

(33)
with

B„(x)=A„(x)+i[U(o),A„(x)], (34)

or, according to (4) and (31),

clear, that the third term in X'(32), as a correc-
tion to the first, reflects a wrong rest-mass of the
photon. Of course, this term is again unwanted,
since it would acct mainly the low frequency
phenomena, and should be transformed away.

The introduction of the rest-mass term also
destroys the gauge invariance. It is true that the
Schrodinger equation (27) is formally gauge
invariant in the' sense that the change of gauge
A„~A„+83./Bx„is equivalent to a unitary trans-
formation, so that the inverse transformation re-
stores the Schrodinger equation in its original
form. But the operators corresponding to ob-
servable quantities, such as the field strengths
BA„/Bx„—BA,/Bx„,are not invariant under these
transformations. One may, however, expect that
in the second approximation, where Maxwell's
field equations are re-established, a gauge-
invariant formulation will become possible.

B„(x)=A„(x)+-',y d'x'o(x', o)

&(A„(x')D(x'—x). (35)

Here 0. is meant as a spacelike surface passing
through the point x; since D(x' x) vanishe—s for
all spacelike vectors x' —x, B„(x)is independent
of cr. If x is varied, cr has to be varied accordingly.
From (34) and (31) it is easily derived that B„(x)
obeys, up to terms ~e', the equation

(8'/Bx, ')B„(x)=yB„(x); (36)

thus B„(x)may be represented as a superposition
of plane waves exp(ip&xq), with pP= —y. (This
follows also from (35), if plane waves exp(i~&,xq)
are inserted for A„.) Accordingly,

LB„(x),B.(x')]= (kc/i)b„„h„(xx'), —(37)

where h~ is the modified D-function obeying the
differential equation (36). This result makes it

CONCLUSION

The results of the last section are hardly en-
couraging in view' of higher approximations. We
have tried to take the quantum theory of fields
seriously, without admitting any ad hoc subtrac-
tions inconsistent with the principles of quantum
mechanics. The outcome shows that the em-
pirical fact, that the photon has no rest-mass,
does not fit naturally into the framework of
quantum electrodynamics. It seems questionable
to what extent the predictions of such a theory
in higher order effects are trustworthy.

Finally, it should be remembered that the pair
creation of other charged particles (mesons, pro-
tons) is likely to contribute to the photon self-

energy. Therefore, the phenomena involving
electrons, positrons, and photons only, can hardly
be expected to be quite independent, in the
higher order eR'ects, of the existence of other
particles and their nature.


