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The Focusing in Crossed Fields of Charged. Particles at Relativistic Energies
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The motion of charged particles traveling with relativistic energies in a uniform magnetic
field superimposed at right angles to the electric field of a cylindrical condenser has been inves-
tigated. Expressions for the angle at which first-order focusing of a divergent beam of particles
occurs and first approximations to the line breadth as well as dispersion in velocity, momentum,
and energy are given.

INTRODUCTION

HE motion of charged particles traveling
with non-relativistic energies in crossed

electric and magnetic fields has been investigated
by W. Henneberg. ' His formulas are in a con-
venient form and are sufFiciently accurate to be
used in the design of an apparatus employing
ions traveling with kinetic energies which are
very much less than their proper energy. Hom-

ever, if these formulas are applied to systems
employing particles with kinetic energies which
are of the order of five percent or more of their
proper energy, an error may result.

The purpose of this paper is to extend Henne-
berg's results to include particles mith relativistic
energies. The notation used here mill be the
same as that used by Henneberg.

EQUATIONS OF MOTION

The field configuration considered is a super-
position of the electric field E of a cylindrical
condenser and a homogeneous magnetic field H
directed parallel to the cylinder axis. A schematic
cross section of the field is shomn in Fig. 1. The
equations of motion mill be described in terms of

FIG. 1. A schematic representation of the field con-
figuration considered. The positive direction of 8, H, and
y are indicated.

~ This work has been supported in part by Navy Con-
tract Ns ori-76, Task Order IV, Part D.

' W, Henneberg, Ann. d. Pbysik 19, 335 (1934).

y = (eE/mrsas ') s
'*' (4)

**This consideration will be confined to particles moving
in the plane z=0.

~**The zero subscript on an expression in parentheses
indicates that the expression is evaluated at t =0. The zero
subscript on a single symbol not in parentheses denotes the

the cylindrical coordinates r and y with origin
at the center of curvature of the condenser and
2 axis along the axis of the condenser.

In such a field a charged particle of relativistic
mass m and charge e at r, moving mith angular
velocity &a=de/dt and radial velocity r', will
satisfy:**

d(mr')/dt =mrco' eE H—era&/c—, (1)

d(mr'&u ,'Her—'/—c)/dt =0, (2)

d(mc')/dt = eEr'. —

The positive direction of E, H, and y is indicated
in Fig. i.

From Eq. (1) it is seen that the electric and
magnetic field strengths may be adjusted so that
the electric force and the centrifugal force have
a resultant which is just canceled by the radial
magnetic force acting on the particle, thereby
making the radial momentum constant in time.
With the field strengths adjusted so that this
condition is realized, a charged particle traveling
initially anth a velocity vo ——

rococo which has no
radial component will describe a circular orbit
of radius ro.

In order to satisfy this condition for circular
orbits, it is clear that the ratio of the electric
force to the centrifugal force may be any positive
or negative number so long as the radial mag-
netic force is adjusted to cancel the combined
electric and centrifugal forces. Because of this
generality, Henneberg introduced the parameter

y which he defined as follows:
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The notation may be simplified slightly by
making the following substitutions:

~eH/mc[ =h; a [eZ/m[ =8/r (5)

(8 will be positive or negative depending on
whether the electric force acting on the particle
is directed inward or outward. ) It is to be noted
that in this form the spatial variation of E is
stated explicitly.

By expanding the left member of Eq. (1) and
making use of Eqs. (3) and (5), Eq. (1) becomes

r' —(8/r) (r'/c') = rco' 8/r —hrid. —

Integration of Eq. (2) gives

mr'co —-', mhr' = C= (mr'co —-,'mhr') o.

(6)
0

0

FrG. 2. A plot of the angle of focus 4 versus the absolute
value of the field parameter y for three values of the
relative speed of the particle, p=rpeu0jc.

r =rp+nri+n'ro+. . . ,

co=cpo+ncpi+n pop+ ' ' ',
C = Cp+ACI. +OPC2+ '

(12)

If u is small, the terms involving 0. to a power

From Eq. (3) it follows that m may be expressed
as a function of r alone. Then ao may be expressed
as the following function of r,

co = C/mr'+-, 'h,

and eliminated from (6) giving

r' (8/r) (r'/c—') = C'/m' r' 'h'r h—/r-—(9).
FIRST-ORDER SOLUTION: FOCUSING

Consider a source of particles located at r =rp,
cp=0. The field strengths are adjusted so that a
particle with speed rgop will describe a circular
orbit if it leaves the source with zero radial ve-
locity. Particles which satisfy these initial con-
ditions must by (6) satisfy

rocpo = ho/ro+horoppo (10)
as well as

Co = (m) prp'cop —-', (mh) rp'.

The motion of particles which diverge initially
from the circular orbit by an angle n (see Fig. 1)
but have the same speed rpaop may be described
in terms of 0. and the parameters characterizing
the circular orbit. To do this, the variables r and
~ and the parameter C are expressed in terms of
power series in a, namely:

higher than the first may be neglected in Eqs.
(12)

In order to find the diAerential equation r I

must satisfy, terms containing powers of n higher
than the first are neglected and Eq. (9) is
expanded by Taylor's series. That is,

f(ro+«i) =f(ro)+('df/«)o«i
Then upon equating coefhcients of 0.,

r'i 2Co Ci/(m'——) or o' —(3C'/m'ro') pr 1

—(2C'/m'rp') p(dm/dr) pri —
p (h') ori

—-', (hrp) p(dh/dr) or i —(d(8/r)/dr]pri. (13)

This equation may be simplified by rewriting
the expression on the right in terms of cop, y, and

P, where P =rpcop/c. In regard to C' it should be
noted that from Eq. (7) it follows that

(poi) p (Ci/mr') o.——

However, since only particles which have the
speed rpNp are being considered, it is seen that

(rco) p
='

r p (cop+ neo i+n cp p) p

= rpcdp cosci' = rp(cop on cop). (14)

Then (col)p=0, hence Ci=0 and C'= Coo to terms
of first order in 0..

The simplified form of Eq. (13) is

r'i —L1+y'(1 —P')]——coo'ri (15)

The solution of this well-known differential
equation subject to the initial conditions r~=0,
i~=rgop at t=0 may be written at once:

value of the quantity associated with the stable or circular
orbit. The only exception is mo which is taken to be the
symbol for the rest mass of the particle.

rp slncoo)1+y'(1 —P')]&t

[1+y'(1—P')]'
(16)
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So, to terms of first order in a, r becomes equal r'p = 2CoCp/(pip')oro'+ (h/ro) o(ii'/c')p
to ro when the particle has swept through the +(df/dr)pro+~(d'f/dr') pri' (18)
angle

where from Eq. (15) it is seen that

A plot of C versus the absolute value of y is
given for three values of p in Fig. 2.

SECOND-ORDER SOLUTION: LINE BREADTH

When second-order terms are taken into
account it will be found that the image of the
source formed at q =C is "smeared out" on one
side or the other of ro by an amount which
depends on n'. The extent of the smearing out of
the image is referred to as the line breadth and
is denoted by B. As a first approximation of B,
r2 will be found and evaluated at qr =C.

To find the differential equation r2 must
satisfy, Taylor's expansion is applied again to
(9). Here

f(rp+ ar&+ a'r p) =f(rp)+'(df/dr) o(are+a'r p)

+1(dpf/drp) o(aprlp+. . .)

or upon equating the coefficients of a',

(df/dr) o = —[1+y'(1—P') )coo'.

By differentiation and simplification,

(d'f/dr') o ——(2coo'/rp) [3/2+2y(1 —P')
+3y'(1 —P')/2 —2y'P'(1 —.P')]

Then

where

and

r'p =A p y rp+A i sin yt,

A p
————,'[1+y(1 2P')]—rocooo,

y' = L1+y'(1 —P') ]~o'

(19)

where
r p

——ctc sin'yt+ctp(1 —cosset), (20)

3+4y+3y'(1 P') —6yP—'[1+y'(1 P') ]-
Ai —— rpc0p-

2[1+go(1—PP)]

Subject to the initial conditions r2=r'2=0 at
t=0, the solution is

and

3+4y+ 3y'(1 —P') —6yP'L1+y'(1 —P') ]
ci = —ro

6L1+y'(1 —P')]'

3+5y+3y'(1 P') 3y—'(1 —P') 6y—P'L1+—y'(1 P')]-
82 =ro

t [1+y'(1—P')]'
(22)

But now to get the line breadth it is necessary
to evaluate r2 at the time when q =C. To do
this, an expression for ~~ must be obtained. A
simple way to obtain this expression is to carry
out the differentiation indicated in Eq. (2). The
result of this operation may be written in the
form of

cpi = —[1+y(1—P )]cop cosset.

Then set

r =ro+B for q =C, t = T,

where B is the line breadth.
So from (20) and (24)

ctp 1+y(1—PP)
B='2n'ro ——

1+y'(1 P')—
Subject to the initial conditions co&=0 for t =0 By (22) this becomes

it is seen that

coi ———y 'cop'[1+y(1 —p')] sinyt.

Then, by integration,

1+ 'y+y'(1 -P')+3y'—(1 P')—
8 cL rg

L1+y'(1 —P') ]'
DISPERSION AND REDUCED DISPERSION1+y(1—P')

p =coot+a (cosset 1). —
1+y'(1 —P')

(23)

For q =C,
2a 1+y(1—P')

t= T=—+—.
7 poo 1+y (1 P)—t' The expression given in the minutes of the 1947 annual

meeting (Phys. Rev, '73, 1259 (1948}}is int:orrpct,

The line breadth is a quantity which is useful
in the description of the performance of a system.
Still other useful quantities are the dispersion
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TABLE I. Expressions for the angle of focus 4, line breadth B, velocity dispersion D„potential difference between the
plates of the cylindrical condenser V, and the magnetic field strength H for the four field parameters most frequently used.

Magnetic
y=o

i.
2rp'

1

Electric
@~1

v2
Vf (2-p»)»

—4oPrp 4 —3p
(2-@)'

1
2rp

Achromatic
~ = -1/(1 —0')

2(1 —p)»

Hr. 4+8p» —3p4

3
'

(2 —p)»

Wein velocity filter
ro = ~ ~; ro/y = (mc»g/cZ)o

p 1

eZ 1 —p'
1

H
(1 p»)»

3oPm pc»p» 1

eZ (1 —p)»
1= —3aPRH ~

p»

2m pc'p' 1

eZ (1—p»)»

1
=2RH ~

mpc»p 1

erp (1—p')»

mpc'p' R» 1-ln-
e R, (1—P»)»

m pc'p' R» 1
ln—.

e R1 '(1 —p')»

mpc»p 2 —p»

e«(1-p»)»

(R» —R&)mpc»P»2r

eL 1 —p

where
x = —p x+QA,

& =~p[1+y(1 —t~') 3/(1 —0')

(26)

and y' is as defined in connection with Eq. (19).
The solution for initial condition x =0 at t =0 is

x =ay '(1 cosyt)dv—(27)

and reduced dispersion in velocity, momentum,
and energy. The expressions for the dispersion in
velocity and in momentum should become
equivalent in the limit of small velocities. The
velocity dispersion should be equal to P' times
the energy dispersion in the same limit.

Consider first what is meant by velocity dis-
persion.

A particle which leaves the source at ro along
the tangent to the circular orbit not with
velocity v p rpppp but v p+dv w——ill be a distance dx
from ro after it has swept through the angle

q =C. This distance will be proportional to the
fractional increment in velocity, i.e. , dx =D,dv/v p

The proportionality constant D„ is called the ve-
locity dispersion. A first approximation of D, is
obtained by setting r =rp+x and determining r
to the first order, setting y=C and comparing
with r =rp +D,dv/vp.

Setting r = rp+x, v =vp+dv, and applying
Taylor's expansion for functions of two variables
to Eq. (9) results in

Then for y=C, x=2' 'dv. Upon comparison
with r rp ——x=—D„dv/vp it is seen that a first
approximation to the velocity dispersion is

(28)

and

1+y(1-tl')
D„='2ro

1+y (1 tt )

2r p 1+y(1—P')
D

P 1+y(1 P)
It is interesting to note that

D —1 —D —1+D —1

an equality which may be obtained directly from
the definition of momentum.

Expressions for the momentum dispersion D~
and the energy dispersion D may be obtained in
a manner similar to that indicated above. The
momentum dispersion is defined by the following
equation:

dx =Dpp/pp. ,

the energy dispersion by

dx=D„d(mc')/mc'=D dm/m.

The resulting expressions are
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FIG. 3. A plot of the angle of focus C versus the relative
speed P=rgvo/c for three common values of the field
parameter y. A kinetic energy scale for electrons is indi-
cated along the P-axis.

DISCUSSION OF RESULTS

It is well known that for the pure magnetic
case (y =0) the focusing angle is equal to sr inde-
pendent of p, as it is here. Referring to Table I
it is seen that 8 is also independent of p for this
case. This is as it should be since in this case the
mass remains unchanged over the trajectory. On
the other hand, D, should be expected to increase
as P increases, since a small fractional change in
velocity gives rise to an increasingly larger frac-
tional change in mass as p increases.

The symbol U in Table I refers to the potential
which must be applied across the cylindrical
condenser. The general expressions for U and H
are

V = (mpc'/e) (1nRp/8 t) LP'/(1 —P') &jy,
~= (m«'/«p) LP/(1 P')'3(1 y)— —

AI1 three of these expressions vanish when
y= —1/(1 —P'). ft can be shown that drp/ds
=drp/dP=drp/dm=0 for y= —1/(1 —P ).

The reduced dispersion b is a quantity which
serves as a better figure of merit than D or 8
alone. It is defined by

8= lD/Bl a'.

This analysis indicates that a first approximation
of b, is

1+y(1—P')+ y'(1 —P') +y'(1 —P') '

1 p' -1+s3+3'(1 p')+33-'(1 p')-
The expressions for C, 8, D„and b, reduce to

those obtained by Henneberg if p is set equal to
zel o.
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FIG. 4. A plot of the absolute value of the line breadth
divided by the square of the angle of divergence and the
radius of the circular orbit IB~/a'rp pprsus the relative
speed of the particle p =r0co0/c for three common values of
the field parameter y. A kinetic energy scale for electrons
is indicated along the P-axis.

Some of the expressions in this table contain a
dot. That part of the expression to the left of the
dot is the non-relativistic term while that to the
right is the relativistic correction.

The second column of the table refers to the
pure electric case (y=1) which was first inves-

tigated by Hughes and Rojansky. ' The ex-
pressions for C and p are plotted against p in
Figs. 3 and 4. Along the P coordinate the kinetic
energy of electrons in kilo-electron volts is
indicated.

The case for which there is both direction
focusing and velocity focusing was first inves-
tigated by Bartky and Dempster. ' This is the
case for which D.=O, (y= —1/(1 —P')), which
Henneberg refers to as the "achromatic" case.
The expressions for C and 8 are plotted against
P in Figs. 3 and 4 for this case, too.

Prior to the present calculations, Professor
J. S. Schwinger has, in an unpublished note to
Professor K. T. Bainbridge, calculated the rela-
tivistic expression for C for the achromatic case.
Schwinger imposed the condition that drp/ds

vanish. This is equivalent to the vanishing of D,.
The results obtained here are in agreement with
his results. A study of Professor Schwinger's
note was of great aid in the solution of the more
general problem.

It should be pointed out that the power series
given here converge for a limited range of values

'A. L. Hughes and V. Rojansky, Phys. Rev. 34, 284
(&929}.

3W. Bartky and A. J. Dempster, Phys. Rev. 33, 1019
(&929).
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of a. This range of a decreases in extent as yP'
increases. When yp' goes to infinity the range of
0. goes to zero. Consequently, the expressions for
4, 8, and 27 for the achromatic case are not valid
in the limit as P-+1.

The expressions for the Wien velocity filter
are given in the last column of the table. In a
Wien velocity filter a parallel plate condenser
replaces the cylindrical condenser. The length of
the filter, I., i.e. , the distance between source and

image, may be obtained from the limit of roC as
ro-+ ~, with ro/y = (nw'/eZ)0. The calculation of
the relativistic value of t. was also contained in

the note of Schwinger which was referred to
above.

The expressions for B and D, for the Wien
filter result from the same limiting process. The
R~ which appears in the table stands for the
radius the particle would describe if the mag-
netic field alone were present. The minus sign in
the expression for B is included to indicate that
B and D„have opposite signs.

To Professor K. T. Bainbridge, who suggested
this problem, the author is deeply indebted for
valuable suggestions and aid. Henneberg's article
as well as problems arising in the relativistic
treatment were discussed with Professor Bain-
bridge and Mr. F. L. Niemann. Professor E. M.
Purcell and Professor W. H. Furry have read
this article and suggested several changes.
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Contributions to the Nuclear Processes Induced in Magnesium by
Polonium Alpha-Particles

A. SzAI.AY AND EvA CsoNGQR

Institute of Physics, University of Debrecen, Debrecen, Hungary

(Received May 10, 1948)

Mg metal was bombarded in hemispherical symmetrical arrangements from the center by
a strong Po source. The excitation function of the induced AP activity and of the induced
y-radiation was determined with an improved resolving power and accuracy. The absolute
yields were determined carefully. Possibilities for the origin of the y-radiation are discussed.

S is known, Mg consists of 3 isotopes

~

~(3=24, 25, 26) amounting to 77.4, 11.5
and 11.1 percent. Six possible nuclear trans-
formations may occur in the case of the immi-

gration of an O.-particle:

1. Mg" (ap)AP, '
2. Mg"(a,p)AP'
3. Mg"(a p)AP'

4. Mg'4(a, n)Si"
5. Mg" (an)Si,"
6. Mg"(a,n)Si"

and there is the possibility of the inelastic scat-
tering of the a-particle followed by the y-radi-
ation of the excited Mg nucleus.

The main subject of this paper is to investigate
the exact shape of the excitation function and the
absolute yield of the short-living artificial radio-
activity (AP'), and the excitation function,
quantum energy, absolute yield and origin of the
y-radiation at e-energies below 5.3 Mev.

APPARATUS

Po Preparation

The technics of Po preparations used at this
Institute enabled us—by means of a volatiliza-
tion method' to obtain very pure Po-sources
with a strength of about 10 mC or more, on a
highly polished Pt-Ir disk of 3 mm diameter.

Activation Apparatus

The Po-source was located in the center of the
activation apparatus and brass hemispheres of
5 cm diameter, coated on the inside with a thick
pressed Mg metal plate, were placed over it
(Fig. 1).Then the air was removed and CO2 gas
of suitable pressure was let in to keep the e-par-
ticles down to the energy required. The geometry

~ A. Szalay, Zeits. f. Physik 112, 29 (1939).


