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A calculation has been made of the binding energy of a self-trapped electron in NaCl. The
potential well, caused by the ionic displacements, was assumed to be a sawed-off Coulomb
field, the sides being given by (1/xo—1/x)1/r, where the «’s are the dielectric constants. The
depth of the well was calculated by the method of Mott and Littleton. In the present problem,
however, we require a self-consistent solution; that is, the initial wave function which is em-
ployed in calculating the depth of the trapping potential hole must be identical to the one
obtained from this potential hole on solving the Schroedinger equation. The electron is smeared
over a sphere whose radius equals approximately three interatomic distances. The outer
displacements are calculated by a semicontinuum theory, whereas the dipoles of the three ions
nearest the trapping center are calculated from the condition of equilibrium. The optical dis-
sociation energy is found to be 0.68 ev, whereas the thermal energy is 0.13 ev. The low value
of the second quantity presumably explains why self-trapping has not been observed to date.
This energy should be about twice as large in LiF. These results suggest that self-trapping
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should be sought at a very low temperature.

I. INTRODUCTION

HE possibility that an electron can trap
itself in a polar crystal was predicted by
Landau. The trapping potential well is produced
as a result of the ionic displacements induced by
the field of the electron. Formerly this type of
trapping was believed to be a possible explana-
tion of the F centers studied by Pohl.! Experi-
mental studies of the way F centers are produced,
when there is stoichiometric excess of metal in
an ionic crystal, indicate that they actually are
caused by an alternate mechanism suggested by
de Boer. He proposed that the electrons are
trapped in the vacant negative lattice sites.
Further rough estimates of the energy required
to form an F center from a vaporized alkali metal
implies that Landau’s mechanism does not com-
pete favorably with de Boer's on energetic
grounds.
The problem remains, however, to calculate
the binding energy of a self-trapped electron
* This work was started while the writers were connected
with the Training Program of Clinton Laboratory, Oak
Ridge, Tennessee. It was in part supported by Contract
NObs-34144 with the University of Pennsylvania.
** Now at Brown University, Providence, Rhode Island.
1For a recent review of this field see F. Seitz, Rev. Mod.

Phxs. 18, 384 (1946), where a more detailed bibliography
is given.

sufficiently accurately to be sure that this process
does not compete with the other. Further, one
might hope that by a calculation of this type
sufficient information would be gained to predict
under what conditions, if any, self-trapping would
be observed.

A rough set of calculations of the binding
energy of a self-trapped electron in ionic crystals
has been made by Gurney and Mott,? and they
report the binding energy to be several electron
volts. Details of the calculations are not given,
but the problem of a self-consistent solution does
not appear to have been considered. These values
seem extremely high and make it very difficult
to understand why self-trapping has not been
observed during some of the experimentation of
Pohl or his co-workers. Recently, Pekar® has
calculated this binding energy on the assumption
of a continuous medium. His solution is self-
consistent and gives an optical activation energy
of —0.32 ev for NaCl. To calculate this value from
his equations, we have placed the effective mass
of the self-trapped electron equal to the free
electron mass.

2 R. W. Gurney and N. F. Mott, Proc. Phys. Soc. 49, 32

(1937).
38S. Pekar, J. Phys. U.S.S.R. 10, 341, 347 (1946).
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BINDING ENERGY

In view of the importance of self-trapping, we
deemed it worth while to carry through a detailed
calculation of the binding energy. In these calcu-
lations the method developed by Mott and
Littleton* to calculate lattice defects was used.
It is based on the simple and reliable theory of
ionic crystal of Born with appropriate modifica-
tions. The electron wave function determines the
field which causes the displacement of the ions in
the crystal; these displacements determine the
potential hole the electron is found in, and,
finally, the hole determines the wave function.
We thus require a self-consistent solution. Fur-
ther, as we shall see, the electron is smeared out
over several neighboring ions. This implies that
the more distant ions may be more important
than in the calculations of Mott and Littleton
and that the total charge which determines the
polarization of an ion varies with the distance
from the trapping center.

II. THE WAVE FUNCTION

Let us now consider in detail the Schroedinger’s
wave equation for a self-trapped electron in a
crystal, namely,

2
—h—v2\1«+(ET—eVT)¢=0, (1)
2m

where Er is the total energy of the electron and
Vr is the total potential at . The other terms
have their conventional meaning. Vr is a com-
bination of two terms, namely, the undisturbed
potential, which is present whether or not there
is a distortion of the lattice due to self-trapping,
and an additional potential from the distortion.
We may thus write it in the form

VT = VI+ Vr (2)

where V; is the ionic potential, which is essen-
tially the Hartree potential of the ion corrected
for the fact that the ion is in a perfect crystal
and V is the potential due to the lattice distor-
tion. In line with Eq. (2) we write

Ep=E;+E. 3)

We now make the assumption that we may write
the wave function, ¢, as a product of two wave

4¢N. F. Mott and M. ]J. Littleton, Trans. Faraday Soc.
34, 485 (1938).
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functions
4)

x is taken as the undistorted wave function—a
Bloch function for an electron in the conduction
band. We may picture ¢ as modulating x. Ad-
mittedly (4) is just a first-order approximation.
We assume that Vi, Er, and x are related by
the equation

#2/2m)Vix+ (Er—eVi)x=0. (5)
Substituting back into (1) we obtain

(#/2m) VP o+ (B /m)V o (Vx/X)
+(E—eV)e=0. (6)

Let us now examine Eq. (5) so that we may
find a way to handle the second term in Eq. (6).
Tibbs® has calculated x for NaCl. His calcula-
tions follow the standard method of calculating
Bloch functions in solids.® Tibbs employed the
calculations of Prokofjew? on Na and of Hartree?
on Cl to determine the ionic fields, but added a
term to take care of the Ewald potential. Its
form is

¥ =px.

Ar*+Bri+1.748¢*/a,

where 7 is the radial distance, 4 and B are con-
stants, different for Na and Cl, “a’’ is the
distance between nearest neighbors, and 1.748 is
Madelung's constant. The positive sign goes
with Na, and the negative with Cl. 4 and B are
evaluated so that the Ewald term is zero at the
point where the ionic spheres (Tibbs replaced
the ionic polyhedrons by spheres) are in contact,
and the potential is due only to the overlapping
ions. By numerical integration Tibbs found the
energy for which the condition

x(CD)/x(Cl) = —x(Na)/x(Na)

is satisfied at the boundary of the ionic spheres.
Tibbs’ value of Er is 3.2 ev.

We recalculated x using more recent ionic
fields, which include exchange terms. We used the
field of Fock and Petrachen® for Na and the field

5S. R. Tibbs, Trans. Faraday Soc. 35, 1471 (1939). Also
N. F. Mott and R. W. Gurney, Electronic Processes in
Iom,c Crystals (Oxford University Press, New York, 1940),

p. 6

6 F Seitz, The Modern Theory of Solids (McGraw-Hill
Book Company, Inc., New York,

7W. Prokofjew, Zeits. f. Physik 58 255 (1929).

8 D. R. Hartree, Proc. Roy. Soc. A141, 282 (1933).

*V. Fock and Mary Petrachen, Physik. Zeits. Sowjet
union 6, 368 (1934).
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of Hartree and Hartree!® for Cl. The wave func-
tion obtained in this way is very similar to that
found by Tibbs. However, E; is 12.8 ev. Our
value is considerably larger than Tibbs’ for the
following reason. He made a correction for the
use of the self-consistent field calculations with-
out exchange. The diamagnetic susceptibility
for Cl- calculated from the field he used is
25X 107% cm?, while the measured value for Cl—
is 41.3X107% cm?. Therefore, he multiplied his
ionic radii by (41.3/25)* and obtained approxi-
mately 4.0 atomic units. We did not make this
correction and used for the atomic radius the
value obtained directly from the lattice constant.
In addition, of course, we used slightly different
fields from those used by Tibbs.

In treating Eq. (6) we shall neglect the second
term and use the simplified form of the equation,
namely,

(#/2m)Vie+(E—eV)e=0. (7

The principal justification for this procedure
rests on the fact that ¢ varies slowly in compari-
son with x so that Vx/x may be replaced by
its mean value over any single cell of the lattice
to a good approximation. This mean value is
readily seen to be zero because x is an even func-
tion relative to the center of symmetry repre-
sented by each ion in the lattice.

To determine the effect on the energy of
omitting the second term of Eq. (6), we calculate
its value by the mean value theorem. To do this,
we assume that ¢ is given by (4), where ¢ and
x are given by Egs. (5) and (7). If H is the total
Hamiltonian obtained from Eq. (1), we have

Ep= f V*Hydr

=E+E;—(ﬁ/m)fx*¢* grady-gradedr. (3a)

We shall see that ¢ is a slowly varying function
of position, and therefore, the last term can be
written as

7

> ——(p* grado)a- fx* gradxdr.
1l cells . m

We have substituted an average (over a cell) for

10D, R. Hartree and W. Hartree, Proc. Roy. Soc. A156,
45 (1936).

MARKHAM AND F. SEITZ

¢* grade, taken it out of the integrand, and
summed over all the cells. Since x is an even
function of position, the integral vanishes and
one obtains Eq. (3).

This same argument can be used to show that
the higher approximation in a perturbation
scheme vanishes. The perturbation scheme can
be built up of product functions of the type x¢:
in which the ¢; are the excited states’ wave func-
tions going with the wave (7) (¢ being the ground
state of Eq. (5)). We may therefore consider the
wave function (4) as the leading term of the
actual function given by x>_: ¢..

We note that E is the energy relative to the
electron in the conduction band, and we are,
therefore, interested in it, not Er.

Equation (7) is the form that was used by
Pekar, although, in principle at least, 'he made
allowances for the band structure by substituting
an effective mass for m.

III. THE DISPLACEMENT POTENTIAL

Since x does not enter into the evaluation of
Eq. (7), we may use Born’s'! model of an ionic
crystal. Therefore, we assume that the crystal is
made of ions, whose internal structure is of no
interest here except for the fact that they may
become polarized when placed in an electric field.
There are two main types of forces in this crystal,
the short-range Born-Mayer force and the long-
range electric force which arises from the addi-
tional electron and the polarization associated
with displacements of the ions from their equi-
librium positions. The equilibrium electric forces
have, of course, been taken into account in V7.

To simplify the problem, we assume that it is
possible to separate the polarization of the elec-
trons in the ion core from the displacement
polarization of the ions. This separation is neces-
sary because of a difference in the time of relaxa-
tion. Thus, if by some mechanism the electron is
held constant for a period which is long compared
to the time of a single lattice oscillation, 1072
sec., the surrounding ions would be displaced.
Effectively then, the electron would be sur-
rounded by dipoles. The displacements would
not follow the rapid motion of the electron after
it is released, because of the long period of relaxa-

1t See N. F. Mott and R. W. Gurney, reference 5, Chap-
ter I; F. Seitz, reference 6, Chapter II.
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tion. Thus the displacement polarization would
create a potential hole to which the electron
would be bound. The core electrons will, how-
ever, follow the detailed motion of the trapped
electron, since the velocities of the electrons are
roughly comparable. This means that the sus-
ceptibility of the core will not enter directly into
the creation of the potential hole. Strictly speak-
ing, these two effects are not entirely separable
because the local field (field at a given ion site
within the crystal) is affected by the state of
polarization of the neighboring ions. Neverthe-
less, we shall start with the assumption that the
two are separable, so as to simplify the problem.

To make this argument quantitative, we con-
sider two cases—first, for static charges the field
is given by D/k, where D is Maxwell’s displace-
ment vector and « is the static dielectric constant.
This implies that there is an induced dipole of
strength per unit volume,

(1/47)(1—1/¢)D. (8)

If, on the other hand, we have a rapidly varying
field, which cannot be followed by the ionic
displacements, the field is D/xo, where ko is the
high frequency dielectric constant. For this case
the induced dipole is

(1/47)(1—1/x0)D. )

To separate the effect of core polarization from
the effects of displacements, we may use a
method of Mott and Littleton.* If we impress a
uniform field on our crystal, the positive ions
will be displaced a distance a¢ in one direction,
while the negative ions are displaced a¢ in the
other. For small displacements the equation of
equilibrium is:

pat=eEoca), (10)

where p is an elastic constant. If we assume that
the repulsive forces are represented by a short-
ranged potential of the form (Born-Mayer)

w(r)=Aee, (11)
where p=0.326X10"8 cm, and that these forces
act only between nearest neighbors, we obtain

2(1.748)e2[1
po a].

3a?

(12)

P

The induced dipole due to the displacement is
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simply
(62/P)Elocal-

Thus €?/p behaves just like a susceptibility,
whence we may set a=¢?/p. For static fields, we
may define

fe=(ar+as)/(a1+a2+2a),
fa=2a/(a14as+2a),

where o) and a3 are the core polarizations for the
odd and even ions (see below). f; is the fraction
of polarization arising from the displacements of
the ions, and f, is the fraction resulting from core
polarization. In the equation, we have omitted
corrections for the overlap terms,! since Mott
and Littleton’s calculations indicate that this
correction is small.

One may arrive at an alternate expression for
the f’s by regarding the difference between the
expressions (8) and (9) as the displacement di-
poles per unit volume. According to this view-
point, it follows that

fe=(1=1/k)/(1—=1/),

Ja=(1/k0—1/6)/(1—1/x). (16)

The definitions (13) and (14) are not equivalent
to (15) and (16). For NaCl, the first set gives

£,=0.38,
£2=0.62.

(13)
(14)

(15)
and

(17a)

In calculating Eq. (17a) the polarization used
for Na was 0.195X 1024 and for Cl, 3.41X10-2¢
in cm3. These are averages of values quoted by
Fajan and Joos, Born and Heisenberg, and Paul-
ing (see reference 11). The second definition gives

£.=0.68,

f4=0.32. (17b)

That these definitions are not equivalent in
general can be seen with the use of the Lorentz
term!? for the local fields E+ (47/3)P. According
to this relation, « is related to the polarizability
per unit cell a, by the equation

(k—1)/(k+2) = (47/3) nocxe. (18)

Here a. is the total polarizability per unit cell
and 7, is the number of molecules per unit vol-
12 See, for example, J. N. Van Vleck, The Theory of Elec-

tric and Magnetic Susceptibility (Oxford University Press,
New York, 1932), p. 14ff, )
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ume. a. may be replaced by the electron polariza-
bility per unit cell when displacement does occur,
in which case « is to be replaced by «,. With the
use of Egs. (13), (14), and (18) we may conclude
that

fo=Lko—1)/(k0+2)JL(x+2)/(x—1)].

The derivation of this equation uses the fact that
the total polarizability per unit cell is propor-
tional to a;+as+2a and the electronic polariza-
bility is proportional to a;+a; with the same
proportionality factor.

If the electron polarization were the same be-
fore and after displacement, we would expect the
relation

[1-1/k)]=[1-(1/0)1f
=[(xo—1)/(x0+2)J[(x+2)/x].

(19)

(20)
or

&/ ko= (k+2)/(ko+2).

This evidently is not identically satisfied. How-
ever, the condition approximately valid is at
least partly satisfied. It is interesting to note that
the right-hand side of (20) is smaller than the
left, which means that the electron polarization
decreases somewhat when the displacement
polarization occurs.

The actual calculations were carried through,
using Eqgs. (15) and (16). That is, with the as-
sumption that the electron polarizability is un-
changed by the displacement, it is difficult to tell
what error this introduced without carrying
through some lengthy calculations. To be exact,
one should take account of the core polarization
in a more careful manner than we have done.
Undoubtedly, the calculations presented in this
paper give values that are correct to within an
order of magnitude.

Equations (15) and (16) give the usual expres-
sion for the displacement dipole per unit vol-
ume,>1% namely,

(1/47)(1/k0—1/x). (21)

The use of this expression is equivalent to assum-
ing a continuous medium and completely dis-
regarding the detailed crystal structure. For dis-
tant lattice points, one may assume the foregoing
relation to hold approximately, but for neighbor-

13 See N. F. Mott and R. W. Gurney, reference 2, p. 86.
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ing ions we will have to consider the crystal
structure in detail.

Zeroth Approximation

Let us, for the moment, assume that (21) holds
for all the ions. Thus the displacement dipole
induced on an ion a distance 7 (to be measured in
interionic units) from the self-trapping center is

ead(r;) =(a®/4r)(1/k0—1/k)D(ry), (22)

where 6 is the displacement of the 7;th ion in
units of ‘“a.” Here the problem is to calculate
Maxwell's displacement vector. As we shall see
subsequently, the electron is smeared over a
sphere whose diameter is approximately 10a. At
points outside this sphere, D clearly equals
e/a’r 2. Since we are only interested in the time
average dipole, we may use the time average
displacement vector obtained from the trapped
electron’s wave function for points inside the
sphere. In general, we may write

ead(r:) = (a/4xr?)(1/k0—1/x)eQ(r:), (23)

where

Q) =4x f | o(®) |22k

Here we used only the envelope of y—i.e., ¢ ignor-
ing the modulating function x in computing Q.
At large distances, Q(7) equals unity, and further,
we note ‘‘a’’ appears only in the first power on
the right-hand side because of the units selected.
Equation (23) shows the nature of the problem
to be solved. To calculate the dipoles we must
know ¢ from Eq. (7), but to evaluate that equa-
tion we must know the §'s.

Using Eq. (23) one could calculate V at any
point in the crystal. This procedure is too compli-
cated for actual use. However, we approximate V
as follows. At large distances, where the con-
tinuum approximation is applicable, the poten-
tial due to the displacement dipoles is the
difference between the static and the high fre-
quency potential,

(1/k0—1/x)e/ar,

in which we have let Q(r) equal unity. Near the
center of trapping, the field undoubtedly is
neither a simple function nor is it completely
spherically symmetric. We believe, however, that

(24)
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we can obtain a sufficiently good approximation
by cutting off expression (24) at a distance r,,
and assuming that for smaller values of 7, the
potential is a constant. That the self-trapping
potential behaves approximately in this manner
can be seen from the fact that the potential at
the very center is finite. We shall let the constant
value at which (24) is cut off be this constant
value. Our problem thus reduces itself to finding
the potential once ¢ is known.

From Eq. (23) we obtain the desired value of
the potential which we call V(0), namely,

Vo(0) = (e/4ma)(1/k0—1/k) 22 Q(ri)/rit.

all ions

(25)

The subscript denotes the order of the approxi-
mation. The summation converges slowly, since
the number of ions per shell increases as the
square of the distance. Until now we have made
no assumption concerning the geometric arrange-
ment of ions near the center of the self-trapped
electron. For simplicity, we shall assume the
center coincides with a positive ion site. In the
zeroth approximation one would obtain exactly
the same value of wave function ¢ and energy by
locating the center at a negative ion site. This
may seem paradoxical at first sight, but it should
be recalled that the detailed internal structure,
even the total charge of the ions, enters into the
problem only through x. However, the wave
function x is approximately equally distributed
between the two ions, that is S| x|2dr over the
negative ion approximately equals S| x|2dr over
the positive ion. This shows that the electron does
not distinguish strongly between the two ions.

Sums of the type found in (25) have been
carried out by Ingham and Jones!'* for Q(r) =1.
When the origin is at a positive ion, their result
may be stated as follows:

> 1/r$=10.1977,

neg. ions

T 1/rd=6.3346.

pos. ions

(26)

We can evaluate (25) accurately by assuming
Q(r) =1 for the outer ions and write

2 Q) /rié=2 Qr)/rd+2 1/rd.

all near far

(27)

1A, E. Ingham and J. E. Jones, Proc. Roy. Soc. A107,
636 (1927).
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The division between ‘“‘near’” and ‘‘far’ ions de-
pends on ¢. At first the 25 nearest shells were
considered ‘‘near.” However, it was found subse-
quently that Q(r) converged sufficiently rapidly
that it is necessary to consider only about half
that number.

We started by using Pekar’s wave function
with the assumption that the free electron mass
may be used for the effective mass. His equation
leads to a value 20.3X10~* e.s.u. for V,(0) while
Eq. (25) gives 20.1 X104 e.s.u. This implies that
to the zeroth approximation both methods give
the same results, as might have been expected.
We must go to higher approximations to include
the details of the crystal structure.

Higher Approximations

Mott and Littleton found when calculating
V(0) for a missing ion site that one may assume
that an equation analogous to (22) holds for all
but the nearest ions. It is not clear that this
approximation is valid in the present case, be-
cause the electric charge is spread out over neigh-
boring ions. Therefore, to be on the safe side,
we assumed that (22) does not hold for the three
sets of nearest ions, namely the (1,0, 0), the
(1,1, 0) and the (1, 1, 1) sets. The cases in which
these sets are successively included were referred
to as the first, second and third approximations
respectively. The displacements of these ions
(which we shall call ¢ to distinguish them from
the §’s obtained by (22)) are calculated from the
equations of equilibrium,

Fr+eEi=0v (28)

where F, is the repulsive (Born-Mayer) force due
to the neighboring six ions and E; is the local
field at the point of equilibrium. Here we ignore
all effects of lattice vibrations. Strictly speaking,
Eq. (28) gives the equilibrium position about
which the ion is vibrating. The electric field is
caused, to a good approxgimation, only by the
lattice dipoles and the extra charge. The Made-
lung field is virtually zero near an ion site and
is included in x.

As stated, the trapped electron is not affected
by the polarization of the ion core. The field E;,
to be used in Eq. (28), however, must include
two effects; the field due to the displacements of
the surrounding ions and the average core polar-
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ization of the surrounding ions. The latter must
be included because of the relatively long relaxa-
tion time of the ions. The average core polariza-
tion is simply given by the average field E; times
the ionic polarization. Hence we have the addi-
tional set of equations,

m;= aiEi. (29)

Here «; is the susceptibility of the sth ion, m; is
the average core dipole, and E; is the time aver-
age field. The subscript ¢ on the £'s and the a’s
refers to the inner ions in accordance with the
following scheme:

1 for the (1,0, 0) ion,

2 for the (1, 1, 0) ion,

3 for the (1,1, 1) ion.
In the case of the third approximation, Egs. (28)
and (29) give six conditions between six un-
knowns. From the solution of these equations we
obtain information needed to determine V(0).
We shall now derive explicit expressions for the
E's and the F,’s in terms of the other variables.

The E’s are composed of three parts:

(a) The Outer Dipoles—This term includes
those dipoles whose strength is given by the
continuum theory. Thus for the third approxima-
tion this includes all ions outside of (1,0, 0),
(1,1,0) and (1, 1, 1). To calculate their contri-
bution to the field, we note that the dipoles must
be oriented radial relative to the center of the
trapped electron. From the geometry of the lat-
tice it follows that the net field at a lattice site
arising from a shell of ions is also radial. By
‘“‘shell of ions”” we mean all the ions given by the
permutation of (x, y, z) when the x, y, and z have
both a positive and a negative sign. For NaCl, the
ion is of one type if the sum of x, ¥, and z is odd
and is of another type if the sum is even. For
our case, an odd sum represents a negative (Cl)
ion site. The outward field at about R— having
coordinates (X, ¥, Z) due to a radial dipole of
strength d at a point r— having coordinates

TaBLE 1. Comparison of the various approximations used.

Potential
Approxi- X104 e.s.u.
mation at (000) £1 X108 £2 X108 &3 X108
0 35.8
1 56.7 26.5
2 67.2 23.6 18.3
3 70.6 23.4 17.4 14.1
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(x, v, 2), can be calculated from the standard ex-
pression for the field due to a dipole. We find

E(R,r)=(d/rR|r—R[®){[(Xy— Yx)*
+(Xz—Zx)*+(Yz—Zy)*]
=2[(r—Xx—Yy—22)

X (Xx+Yy+Zz—R%)]}.  (30)

The strength d of the dipole includes the
effects due both to the displacement and to the
core susceptibility. In view of our discussion in
connection with the derivation of Egs. (13) and
(14) it would seem logical to define the average
total (displacement plus ionic core) dipole in-
duced at an odd (CI-) site as

(Ma3eQ(r)/a??) (1/47)(1—1/k), (31a)
and that for an even (Na%) site as
(M2a3eQ(r)/a??)(1/47)(1—1/k), (31b)
where
M= (ata)/(at+3(artas),  (3lc)

Mz=(a+tas)/(a+3(a1taz)).

Here the a; and a; are the core susceptibilities of
the odd and even ions.

Using Eqgs. (12), (30), and (31), we obtain for
the field from an odd (CI-) ion shell

—5.346 X104Q(r) I;;/r 2, (32a)
and from an even (Nat) shell
—2.612X10%Q(r) I;;/r%]. (32b)

The I's relate the field at site 7 to the dipoles in
the jth shell. The evaluation of the I's requires
lengthy calculations using (30). Mott and Little-
ton calculated the net effect (for Q(r) =1) due to
the 23 nearest rings at some sites. We used only
the 17 nearest rings, since a comparison with
their value indicated that our other approxima-
tions give a much larger error. The individual
values of the I's for the inner rings are given in
Mott and Littleton.

(b) The Inner Dipoles.—We consider the effect
of the ions in the ‘“near’’ shells where (22) no
longer holds. Here the displacements are given
by ¢ and the core susceptibility by m;. Their
contributions follow directly from Eq. (30) and
are

—(e/a®&;l s, (33a)
and

— (m;j/a®)I;. (33b)
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TaBLE II. Summary of data for third approximation.

V (assumed) my X10+20 ma X10+20 m3 X 10+20 V (cal.)
04 e.s.u. £1X10%3 £ X103 £Ea X10%3 e.s.u. e.s.u. e.s.u. B X108 cm™1 10t e.s.u.
70 23.5 17.4 14.1 17.8 0.72 10.6 0.3311 70.57
75 24.7 18.2 14.3 18.7 0.75 10.7 0.3405 72.89
80 25.8 18.8 14.4 19.4 0.77 10.8 0.3489 74.81

(c) The Electron Charge—Superposed on the
effects described in (a) and (b) are those of the
field due to the electron. This is given to a satis-
factory approximation by

eQ(r)/a(rik£:)? = (eQ(r:) /a®r ) (1F2¢E:/r:), (34)

where we adopt a sign convention in which out-
ward displacements are positive for odd ions but
negative for even ions. Combining (a), (b), and
(c), we can calculate E; for Eqgs. (28) and (29).

We turn now to describe the method used to
obtain F,. This term can be obtained from (11)
by calculating the potential of the inner ions and
differentiating with respect to the &'s, with due
regard to the sign convention adopted. This gives
us for F,:

F.(100) = (—A4/p) exp(—a/p)[£:1(2a/p—4)
+6<2r 0, O)G/p-'Z\/ng], (353-)

Fi(1,1,0)=(—A4/p) exp(—a/p)
X[V2ti+(4—a/p)t:
+4/(6)%52/(10)}

+(1 —2(2/[))5(1, 2v O)],

Ff(lr 1! 1) = (_A/p) CXP(_G/P)
X[ —(6)}:2+(2a/p—4)ts
V2(a/p—1)8(2, 1, ). (35¢)

4 is evaluated by requiring that the net force at
the position of equilibrium be zero. This con-
sideration gives

(1.748)e*/a*=(64/p) exp(—a/p).  (36)

To obtain (35) we have expanded terms of the
type exp{(1/p)(a+£:)}. A priori, one would ex-
pect the leading term to be of the type (a/p)¢:
Xexp(—a/p) and the next term of the type
(a/p)?2 exp(—a/p). The geometry of the lattice
clearly shows, upon detailed consideration, that
terms of the order of exp(—a/p) will not appear.
When one carries through the expansion, how-
ever, one sees that the next term after (a/p)é:
Xexp(—a/p) is of the type (a/p)*%d;exp(—a/p).
Since actual calculations show that the &’s are

(35b)

considerably smaller than the £'s, the second
term is small enough to be neglected in this
approximation. The physical reason for the can-
cellation of terms quadratic in a/p¢; is not ob-
vious. It is associated with the lattice structure
and the approximation used. Had higher ap-
proximations been necessary, the terms of the
type (a/p)%:£; would have come in, and they
might well have introduced a larger error.

We have all the necessary information to be
able to substitute the appropriate terms into
Egs. (28) and (29). In the third approximation
we thus have six unknowns and six equations.
Using standard methods,!® we solved these to
evaluate the ¢'s and the m's. Finally, to obtain
the potential at (0, 0, 0) we subtract from (25) the
contributions of the three inner shells and add

> neeat;/atr?,
i=1,23
where #; is the number of particles in the ith
shell.

We have thus developed a method to calculate
V(0) to the desired approximation once ¢ is
known.

IV. THE WAVE FUNCTION

We now require the wave function for a
spherically symmetric well given by

V(r)=V(0) for r<r,, 37)
V(r)=c/r for r>r,,
where
c=(1/ko—1/x)e.
Further, we define 7, by the relation
C/?’o= V(O) (373)

It would be possible to solve the wave equation
directly for the potential (37). However, since our
solution will be only approximate and a series of

5 R. A. Frazer, W. J. Duncan, and A. R. Collar, Elemen-

tary Matrices (Cambridge University Press, New York,
1938), p. 125.
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TaBLE IIl. Summary of data for first approximation.

V (assumed) m1 X10+0 £X10-8 V (cal.)
X10-4es.u. £ X107 e.8.u. cm™! X104 e.s.u.
40 16.1 13.9 0.2572 42.0
61.4 23.9 20.2 0.3138 52.9
70 26.5 22.3 0.3311 56.7

wave functions will be required for various trial
V(0), we decided to use the standard variational
method.’® We approximated ¢ by the simple,
normalized, wave function (8}/7) exp(—pr). We
desire the best 8 for the potential (37).

The energy calculated by this method is the
optical activation energy,'? that is, the energy to
excite the trapped electron into the conduction
band without causing any other effect. The
energy released by the relaxation of the displace-
ment dipoles is not included. By the Frank-
Condon principle, this is the energy required to
excite the self-trapped electron optically. The
energy is given by

Eo=(8°h*/2m)—eV(0)

X {1—(14Bro) exp(—2Bro)}. (38a)

The first term gives the kinetic energy of the
electron, while the second term gives the poten-
tial energy. 8 is determined in such a way that
E, has an extreme value.

When a charge induces a displacement on the
neighboring ions, there are two potential energy
terms. One arises from the fact that the charge
finds itself in a potential hole. This is given by

D oge

N
NV

D — 0

2 <4
Radial Distance in Interatomic Units

Fi1G. 1, Self-trapped electron’s wave function “¢” (de-
creasing function) and charge distribution “‘Q’’ (increasing
function) for NaCl.

6], Pauling and E. B. Wilson, Jr., Introduction to
Quantum Mechanics (McGraw-Hill Book Company, Inc.,
New York, 1935), p. 180.

17 See N. F. Mott and R. W. Gurney, reference 5, p. 160.
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the second term of Eq. (38a). A second potential
arises from the work required to displace the
neighboring charges. If the displacements are
small, Hooke's law will hold approximately, and
it follows that the second term is just half the
first term. If the trapped electron escapes, due to
thermal vibrations, the energy stored in the sur-
rounding dipoles will be released. The thermal
activation energy is thus E, plus half the poten-
tial energy in Eq. (38a) or is given by

E,= (81*/2m)—3eV(0)

X {1 —(14-Bro) exp(—26ro)}. (38b)

For consideration of thermal equilibrium, we use
(38b), but for the considerations of the optical
properties we use (38a).

V. SUMMARY OF THE CALCULATIONS

On starting to make this calculation the first
question one must answer is: To what order of
approximation should one carry the calculation
of V(0)? To answer this question, we calculated
V(0) by four approximations (starting with the
zeroth), using the wave function corresponding
to a well depth of 70X10~* e.s.u. This value of
V(0) was selected because a preliminary calcula-
tion, starting with Pekar’s wave function, indi-
cated that that depth gives approximately a self-
consistent solution. The values of a, ko, and «
used were 2.81 X 1078 cm, 2.24, and 5.62, respec-
tively. Table I gives the results. The value of V
seems to converge rapidly after the second
approximation. The sudden jump between the
zeroth and first approximation is due, in part,
to the use of Egs. (15) and (16) in place of Egs.
(13) and (14). To be on the safe side, we carried
the problem to the third. However, a great deal
of labor would have been saved with little loss
in accuracy had we used only the second approxi-
mation. The variations in the value of the £’s
which are larger than those in V(0)’s are of no
importance for the problem at hand. Table 11
summarizes our calculations. This table contains
three (assumed) values of V(0), the calculated
values of 8, the ¢’s, the m's, and the (computed)
V(0). From these values we obtained the self-
consistent solution by plotting the difference
between the two types of V's and the assumed V.
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The final values are:

V(0)=71.2X10"* e.s.u.,

B=0.331X10%8 cm™,
E¢=—0.68 ev
E;=—0.13 ev.

In Fig. 1 the final wave function ¢ and Q(r) are
plotted against 7 in interatomic units. Table 111
summarizes a similar calculation, but here only
the ¢&; and m, of the (1, 0, 0) ion are assumed un-
known. In other words, this is the first approxi-
mation. The self-consistent values here are

V(0)=44.7X10* e.s.u.,
B=0.27X10% cm™,
Ey=—0.56 ev,
E,=—0.14 ev.

(First approximation)

It is difficult to estimate the relative errors
introduced due to the various approximations
made. One may check roughly the method used
to find 8 from V(0) by comparing our wave func-
tion with Pekar’s, for the same depth of the
potential hole. He also used the variational pro-
cedure. However, he had two parameters instead
of one, his function being of the form

A(14Br+4~r?) exp(—pr),

in which 4 is a normalizing factor. In his poten-
tial there is no abrupt cut-off like ours. For com-
parison we have plotted in Fig. 2 his Q(r) against
7 for a free electron mass and the Q(r) obtained
by our method for V(0)=20.3%X10"* e.s.u., the
value of V(0) he obtained. Pekar notes that vy
does not affect his results appreciably, and con-
cludes that his method is quite accurate. Fur-
ther, Pekar’s Eq is 0.32 ev, while the value ob-
tained by our approximation is 0.35 ev. There
are, however, undoubtedly other errors in our
method such as the use of Eq. (15) and (16) in
place of (13) and (14), and one would hardly
expect agreement with experimental results to
higher accuracy than 25 percent. Actually, our
results may be somewhat less accurate.

VI. CONCLUSION

We may now examine some of the conclusions
that may be inferred from the calculated values
of E; and E,. First let us examine the life-time of
a self-trapped electron. Its magnitude is given

1023

10 l

mafy/

/

Radial Distance in Interatomic Units

o~

F1G. 2. Comparisons of Q(r) obtained from Pekar’s
wave function, with that derived in this paper.

approximately by
102 exp(E/kT) sec.

This yields a value of 10~1° sec. for room tempera-
ture (kT=1/40 ev). The self-trapped electron
will have a very short lifetime even at the boiling
point of oxygen (90°K), namely, about 10~* sec.
This means that if an electron were trapped it
could not be observed unless one worked at very
low temperatures.

In an actual crystal, there are processes which
compete with self-trapping, in particular the
trapping of an electron in a vacant lattice site.
We would like to know the differences between
the energies involved in trapping an electron by
the de Boer and Landau mechanisms. Let us
consider the energy required to absorb a free
sodium atom into the crystal, during which
process the atom becomes an ion, and the extra
electron gets trapped. This energy has been calcu-
lated for the de Boer process by Gurney and
Mott!® and is +0.23 ev. Let us now calculate this
energy for a mechanism in which the positive ion
is assumed to go into an interstitial position and
the electron becomes self-trapped. We proceed
as follows:

1. We ionize the free sodium atom; the neces-
sary work is 7, the ionization potential of sodium,
namely 5.11 ev.

2. Next we place the electron into the conduc-
tion band; the energy E, required to do this has
been calculated by Mott!® who obtains a value
of —0.53 ev.

18 R. W. Gurney and N. F. Mott, Trans. Faraday Soc.
34, 506 (1938); also ref. 12, p. 144.

1 N. F. Mott, Trans. Faraday Soc. 34, 500 (1938); also
reference 13, p. 95.
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3. The free sodium ion is placed in an inter-
stitial site (3, %, £). This process takes —1.71 ev.

4. Finally, we assume that the electron is
trapped thermally, so that it gains 0.13 ev. Thus
it takes +2.74 ev to form an F center by Landau’s
hypothesis, compared to 0.23 ev on the de Boer
picture.

We may conclude that very few self-trapped
electrons are formed during usual experimental
procedures, and those trapped have a very short
life. While some of the values used above and by
Gurney and Mott may be questioned, there is
little doubt that these calculations give values
to an order of magnitude, and that the qualita-
tive picture is correct.

One may wonder if self-trapping might be
observed under reasonably static conditions in
any crystal. In the zeroth approximation the
quantity which determines the depth of the hole
is primarily (1/k0—1/x). Further, in Pekar’s
treatment of this approximation the square of
this is the only quantity which characterizes the
crystal behavior provided it is assumed that the
effective electron mass is about the same as the
free value. Thus (1/ke—1/x) provides a rough
measure of the relative ability of a crystal to trap
an electron. We conclude that of the common
ionic crystals LiF will have the largest energy
for self-trapping, since (1/ko—1/x) is largest for
it. The value for LiF is 0.41 compared to the
value 0.27 for NaCl. If the energy parameters
increase as the square of this quantity, we would
expect E, to be about 1.6 ev and E, about 0.3 ev.
This second value means that the lifetime at the
boiling point of oxygen is about 10% sec. More-
over the relatively large value of E, implies that
Landau trapping could be observed in LiF with
a relatively simple spectrograph if not visually.
One would expect the nature of the absorption
bands produced in LiF, when irradiated by
x-ray, to be strongly temperature dependent in
the neighborhood of 100°K. Of course, one would
have to be careful to separate this effect from
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that caused by other trapping centers, which have
their characteristic temperature dependence.

Little is known at present about the cross
section for the process of self-trapping. Experi-
mental studies of the capture of electrons by
halogen ion vacancies in the formation of F
centers, and of the capture of electrons by F
centers in the formation of F’ centers, show that
the cross section for these processes is of the
order of 10~'5 cm? The experimental evidence
concerning the formation of F centers also indi-
cates that the initial trapping step which deter-
mines the magnitude of the trapping cross section
rests on the transfer of energy from the electron
to the lattice presumably by excitation of the
polarization modes of vibration. This result
strongly suggests that the cross section for self-
trapping may also be of the order of 105 cm?.

It should be pointed out that the electron need
not be trapped about a sodium ion, although our
calculations have been based on this premise.
Undoubtedly there will be small variations in the
trapping energy, depending upon the site which
is chosen for the center of the trapping polariza-
tion. Since we have found that the trapped elec-
tron is distributed over a very large volume of
the crystal, it seems reasonable to suppose that
the trapping energy is relatively insensitive to
the center chosen. This conclusion also suggests
that the self-trapped electron may require only
a small activation energy to move from one site
to another. In other words, it is possible that at
any but the very lowest temperatures the trapped
electron may diffuse through the crystal with a
velocity approaching sonic velocity. In this case,
self-trapped electrons would find other trapping
sites, such as halogen ion vacancies, in a time of
the order of 108 sec. for normal densities of the
latter.
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