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Expressions have been obtained, on the Born approximation, for the elastic and the total
scattering cross section of protons or neutrons by deuterons, on the basis of the three forms of
nucleon potentials suggested by Rarita and Schwinger, including tensor forces but with a
Gaussian function for the radial part V(r). Numerical calculations have, however, been carried
through without tensor forces for (i) the angular distribution and total cross section of elastic
scattering at 100, 150, and 200 Mev, (ii) the energy spectrum of protons scattered (elastically
plus inelastically) in different directions from that of the incident protons and total cross
section, and (iii) the energy spectra of neutrons ejected in directions making angles 0° and
30° with the direction of the incident protons, for 200 Mev. The three potentials predict
considerable differences in both the differential and the total cross sections for both elastic
and total scattering. The proton-deuteron total cross sections for 100 Mev is 0.424, 0.212,
0.089X 1072 cm? according to the ordinary, exchange, and symmetrical force, respectively,
as compared with the observed value 0.117 X 102 recently reported from Berkeley for 90 Mev.
The calculations show that the interference of the amplitudes scattered by the two particles
of the deuteron plays an important role in the determination of the total cross section for
proton-deuteron scattering. It is therefore not a good approximation to set the total p-d cross
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section equal to the sum of the p-n and p-p cross sections for free particle collisions.

I. INTRODUCTION

HERE has been a number of calculations

of the cross section of the elastic scattering
of a proton or neutron by a deuteron, with the
view of testing the various forms of nucleon
interactions by comparison with experimental
data. Motz and Schwinger and Buckingham
and Massey have calculated the cross sections
on the basis of nucleon interaction potentials
which are linear combinations of the Heisenberg,
Majorana, Bartlett, and Wigner types.! All
these calculations are made for incident protons
or neutrons of energy of the order 15 Mev. For
such energies, the calculation is usually very
lengthy and the difference between the various
forms of potentials is rather small so that a
definite choice of the interaction potential by
comparison with the experimental data on the
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angular distribution of the scattered intensities
is difficult.

For higher energies of 100 to 200 Mev the
calculation can be considerably simplified by the
use of Born's approximation. Recent calcula-
tions? of the cross sections of proton-neutron
collisions at these energies show that the angular
distribution of the scattered intensities is quite
different for the three forms of the interaction
potential suggested by Rarita and Schwinger.?
As high energy protons and neutrons (100 Mev)
are now available, it seems desirable to carry
out similar calculations, i.e., to Born's approxi-
mation, for the elastic and inelastic collisions
between a deuteron and a proton or neutron.
In the following, with some simplifying assump-
tions about the radial dependence of the po-
tentials and the wave function of the ground
state of the deuteron, expressions have been
obtained for the cross sections of both elastic and
total (elastic plus inelastic) scattering of a proton
or neutron by a deuteron on the basis of the

2 J. Ashkin and T. Y. Wu, Phys. Rev. 73, 973 (1948).

3 William Rarita and Julian Schwinger, Phys. Rev. 59,
557 (1941).
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ELASTIC AND INELASTIC SCATTERING

three potentials of Rarita and Schwinger. As
these expressions entail considerable amounts of
computational labor, the actual numerical calcu-
lations have been carried out by omitting the
tensor forces from the general formulae obtained.
The result of the present calculation and that of
the proton-neutron scattering, which includes the
tensor forces, show that the difference among the
three potentials is quite pronounced at these
high energies.

II. FORMULATION OF THE PROBLEM
A. Wave Function for the Scattering Problem

Let 1 denote the incoming proton, 2 and 3 the
proton and the neutron originally forming the
deuteron.? Let us introduce the relative coordi-
nates

r=r;—3(:+r3), p=r3—T,. (1)
State Ordinary
seren ~(1++S)T0)
8 Jedd —(4+yS)U(r)
1]even —(1=29)U(r)
1edd —(1-29U(r)

For two equal nucleons, only the 3V°dd and 1 /even
states are allowed by the Pauli principle. Here
3]even refers to a state which is symmetrical in
the spins and even in the space coordinates of
the two particles, etc. S is the tensor interaction,

3(oi 1) (0
o= D grea,
r

4)

U(r) is a central force potential. g and v are
constants. The potential for 3Veve has been
chosen to be the same in the three theories to
fit the data on the ground state of the deuteron.
The potential for !Vever has also been given the
same value in the three theories to fit the data
on proton-proton scattering at low energies.
The wave function ¥(1, 2, 3) of the system
may be developed in a series of products of a
spin wave function and a space wave function.
There are eight linearly independent and orthog-
4 To avoilgl the awkwardness of expression, we consider
the scattering of protons by deuterons in the following.
As the Coulomb interaction is neglected throughout, the
whole calculation holds also for the case of the scattering
of neutrons by deuterons. We then only have to inter-

change the names of proton and neutron throughout the
present paper.
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The wave equation, after separating off the
motion of the system as a whole, is

3h2 2
[IMAr+ﬂAp+E~ Vi 1+ (e/2)|)

V|t (e/D)]) — Vaa(| el)]\l'(l, 2,3)=0,

where M is the proton or neutron mass. The
interaction potential ¥ depends on the symmetry
property of the state of the pair of nucleons
with respect to spin and space exchange. For
convenience, we tabulate below the potentials
for a pair of unequal nucleons in various states
according to the three models of Rarita and
Schwinger :

Exchange Symmetrical
—+yS)U(r) —(1+vS)U(r)
—(1-29)U(r) —(1-290U(r)

+(1-29U(r) 31-29)U(r)

onal spin wave functions. Of these there are four
which are totally symmetrical in the three
particles. These may be put in the form

X1= aroeag,
X2 =PB1B28s,
xs= (1/V3) (a1Bzs+Bravzas + eraBs),
xs= (1/V3) (BraBs+ 18285+ B1B2cxs).

)

For the other four, we shall construct

Xs= (1/\/6) (alazﬁa+a1ﬁaaa— 2510!2013),
xs=(1/4/6) (B1B2a3+ B1asB3— 2c18:8s3),

which are symmetric in 2, 3, and

x7=(1/V2)ay(asBs —Bacxs),

()
X8= (1/\/2)131(/32113——5!233),

which are antisymmetric in 2, 3. These eight
spin wave functions are appropriate for the
description of the scattering processes treated
below.

The wave function ¥(1, 2, 3) can be expanded
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in the form

¥(1,2,3) =§1 x:f P (r)¥o(0)

6
+X x«fF""(”(f)%"‘(p)dk”
i=1

8
Y X f Fo (@) ()dk”, (8)

=1

where yo(p) is the wave function of the ground
state of the deuteron, ¥, (g), ¥i+*(p) are the
continuum triplet and singlet state wave function
of the deuteron, respectively. These satisfy the
equations

72
[ —_&Ap+3 Vas+ é]xﬁlfo(!?) =0,

4

i=1,---,6,
h? 72
[--’ Au+3V:’s“"“k”z])‘i‘h“'(e’) =0, 9
M M
i=1,---,0,
- e he ’ 7
[-—--»-—A,, F g —-- k”"’]xm“"ke) =0, j=17,8,
M M

where ¢ is the binding energy of the deuteron.
The functions f®(r), Fy.®(r), Fy D (r) satisfy
the following equations obtained by substituting
(8) into (2) and making use of the above equa-
tions,

~3th or o
LlM . +€]f x)

=2 | xMo*(0) (Vie+ Vig) ¥ (1, 2, 3)dp,

spin
i=1' -.., 6'

Ki/xd h?
[—Ar{-E-——-k"’]F“)(r)
4M M

(10)
-y f X0t () (Vs Vi) ¥ (1, 2, 3)do,

i=1,---,6,

3n? 72
[—A +E——k"2]p<n (r)
aM

=2 fx:'*ll/k*"‘(e)(Vm‘i‘ V1) ¥ (1, 2, 3)dg,
j=1,8.
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To satisfy Pauli’s principle, we must employ a
wave function which is antisymmetric in the
two identical particles 1 and 2. To this end, we
construct

¥,(1,2,3)=¥(1, 2, 3) - Pu¥(l, 2,3), (11)
where P, is the operator permuting both the

spin and the space coordinates of 1 and 2. Now
P1,¥(1, 2, 3) can also be expanded in a series

6
PI‘.’.\I/(lv 21 3) =Z Xig(i)(r)‘/’()(g)
=1

+Z % f G (1) (o) dK”

8
+2 Xif Gr ()Y (e)dk”, (12)
=7

where the functions g®(r), Gy (r), Gp-(r)
satisfy equations similar to (10), with ¥(1, 2, 3)
in the integrand replaced by P12¥(1, 2, 3). For
the wave function ¥,(1, 2, 3) we have, on sub-
tracting the corresponding equations for the
fO(r), ¢g@(r), Fp @(r), GpP(r), etc., and de-
noting by

pU=fO(r) —gO(x), @O =FO () =G(x),
= FO(r) —GI (1),

i=1)”')61 j=7781 (13)
3n2
[T
4M
=3 x¢*Wo*(0) (Via+ Vi)
spin
X (1=P12)¥(1, 2, 3)do,
3n? h*®
[—-—-A +E-———k"2]¢(’)
aM M
(14)

~ [ xtvero
X(l_P!.?)‘I’(l’ 2! s)dpy

3t 72
[—A,+E——k"2]<p<f>'
aM

e

=3 in*'Pk"*’(@) (Vie+T1s)

X (1—=P12)¥(1, 2, 3)de.
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The functions ¢®, ®®, &@ in (13) are the
correctly symmetrized wave functions. ¢ de-
scribes the elastically scattered wave with spin
wave function x; together with the incoming
wave. The ®®¥(r) describe those inelastically
scattered waves with spin wave functions which
are symmetric in 2 and 3, while ®¥(r) describe
those inelastically scattered waves which are
antisymmetric in the spins of 2 and 3.

B. Elastic Scattering Cross Section

To obtain the amplitude of the elastically
scattered wave of spin wave function x; one
calculates as usual the amplitude of the asym-
ptotic solution of ¢ (r) for large » and obtains

f(3, ¢)= —ﬁ(%)fo exp[ —ik’ 1]

X Xi*'/lo*(e) ( Vie+ Vls)

X(1—=Py)¥(1, 2, 3)dedr, (15)

where ¥, ¢ are the polar angles of the direction
k’ of the scattered wave. To calculate f(&, ¢)
one replaces, in an approximation, the function
¥(1, 2, 3) in the integrand by the initial wave
function

xif P (r)¢o(0),

where x; may be one of the six xi, -+ -x¢. For a
given initial spin state x;, the amplitude of the
scattered wave with spin function x; is then
given by the matrix element

(16)

M o
@1/, o) |1) = T > ff expl.—ik’-r]

Xx*Po*(p) (Va4 Vi) (1= Pya)
Xx1fP(r)¥o(e)dedr.

The intensity of the scattered waves of all spin
states is the sum

(17)

5161, 9]

For /=1, 2, 3, 4, une has the ‘‘quartet’ state
scattering, while for /=5, 6, one has the ‘‘doub-
let” state scattering. The intensity to be com-
pared with the observed scattered waves of an
unpolarized incident beam is the weighted
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average

I, ) =31 % L1610, 0 |D]?

l=11=1

6
+i: 2 :Lll(ilf(ﬁ, o) D> (18)

=5

For central force, all non-diagonal matrix ele-
ments ¢5%/ in (17) vanish.

The differential cross section of a proton being
scattered into the solid angle dw =2~ sindd? (the
polar axis being the direction of the incoming
beam) is, since I(#, ¢) actually does not depend
on o,

oei(Eo, 3)dw=27I(8, o) sinddd

=271(¥) sinddd, (19)

where E, denotes the energy of the incident
proton.

It is desirable to transform the above expres-
sion to the laboratory coordinate system. Let ©
be the angle between the direction of the scat-
tered proton (as seen in the laboratory system)
and the direction of the incident beam. It can
be shown that

tan® =2 sind/(1+2 cosd). (20)

The differential cross section of a proton being
scattered into directions between ® and ©4d0
is then given by

2woai(Eo, ©) sin®@d0® =27gl(0) sin®d®, (19a)

where I(®) is obtained from I(d) in (19) by
means of (20), and where

g= (142 cos?#)?/4(2+cos?) cos?@.

C. Inelastic Scattering Cross Section

For inelastic scattering, let us introduce the
wave vectors k' and k’’ corresponding to r and
o, respectively, in (1), namely,

3h2k'? Kk

E'= , E'= , €3]
4aM M

where £’ is the energy of the scattered proton
relative to the center of gravity of the other two
particles, and E” is the energy of relative motion
of the other two particles. If E, denotes the
energy of the incident proton in the laboratory
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system and e the binding energy of the deuteron,
the energy relation is

3E,=E'+E'"+e (22)

Simple energy and momentum considerations
show that while the magnitudes of k’ and k' are
restricted by (22), their directions are entirely
arbitrary so that the differential cross section
must be specified by five variables, such as the
directions of both k’ and k'’ and the magnitude
of either k’ or k”. The differential cross section
of a proton being scattered into the solid angle
dQ’ (in the center of gravity system) and k”
lying in the volume element dk’’ =k'"?dk’'dQ’ is
o(Eo, k', @ )dQR"2dE"dQ"

=(k'/R)I(Q, Q")dQR"2dR"dQ’, (23)

where I(, Q) is given by the weighted average
of the ‘“‘quartet’” and the ‘“‘doublet” scattered
intensity

I, 9 =%

+EEE 16, @) DP, @Y
where (2| f(Q', 2)|1) is given by
G, Q)|
= ———(Shz) ff exp[ —ik’-1]
Xx*¥r*(0) (Via+ Vis) (1 —Pry)
Xxif P (r)po(e)dedr. (25)

Here ¢y/(p) is ¢4 *(p) for ¢=1, ---6, and is
Yi®(p) for 2=17, 8, as shown in (8) and (12).
The calculation of I(€, Q") and the transfor-

mation to the laboratory system will be given
in Section IVB.

III. ELASTIC SCATTERING

For the energy range E,=100—200 Mev, we
shall employ Born’s approximation by replacing
the ¥(1, 2, 3) in the integrand in (15) by the
initial wave function (16) in which f®(r) is
represented by a plane wave, namely,

¥(1, 2, 3)=xa(1, 2, 3) = x: exp[ik-T Wa(p). (26)
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In integrating over r and ¢ in (17), since the
operators Vi, Vi3 depend on the symmetry of
the wave function of the state with respect to
the interchange of the two particles, it is ex-
pedient, in dealing with the term V3, to express
the wave function (1—Pi)¥(1, 2, 3) as a combi-
nation of terms which are either symmetric or
antisymmetric with respect to 1 and 3 so that
for each term the appropriate potential can be
immediately picked out from Egs. (3). Let
X1, X2, -+-Xs be the following linearly inde-
pendent combinations of the basic functions
¥, Py, Py, Pasy, P1oPasy, P1oPisy:

¥ Py Py Py PuPyy PPy
X 1 1 1 1 1 1
X 1 -1 1 1 —1 1
X; 1 1 1 -1 1 -1
Xs 1 1 -1 1 -1 -1
Xs 1 -1 -1 1 1 -1
Xs 1 -1 -1 -1 1 1

Thus X, is totally symmetric, X totally anti-
symmetric, in 1, 2, 3, X, X3 are symmetric and
X4, X5 are antisymmetric in 1, 3. Then one finds

=X+ X34+ X+ Xo),
Piy=3(X1— X+ X,—X5).

With (26), it can be shown that

¥ =Pagp =exp[ik-r]¥o(o),
Py =P1yPogy=exp[ —ik- (31+0) Wo(|r—3el),
Py =P1,Prgy=exp[ —ik- (3r— o) Wo(|r+3e|).

In the present paper, the scattered intensity
I(d, o) in (18) has been calculated with the
potentials (3) which include the tensor force.
But since the actual numerical calculation has
been performed after omitting the tensor force
on account of the excessive amount of computa-
tional work that would be involved, we shall
only give the formulas without tensor force in
the following and give the complete formulas
including tensor force in Appendix I.

Without tensor force, there are only diagonal
matrix elements in (17) and the summation
over the spin coordinates can be immediately
carried out. All integrals in (17) can be shown
to reduce to the following three:
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Li= f f expl — ik’ -1 Te* (o) U(| r-+1el)

Xexp[ik-ro(p)dedr, (27a)

L= f f exp[ —ik'- T ]o* (o) U(| r+3e])
xexp[ —ik- (3r+e)]

Xvo(|r—%e|)dedr, (27b)

L3=ff exp[ —ik’, to*(p) U(|r—3¢|)
Xexp[—ik- (3r+20)]
Xyo(|r—30|)dedr.

In order to be able to carry out the integra-
tions in (27) analytically, we shall represent the
radial wave function of the ground state of the
deuteron by a Gaussian function

Yo(p) =A exp[ —N%p%].

For the radial part of the potential U(|#|), we
shall assume a Gaussian function

U(lg])=Voexp[— e8]
Carrying out the integration, we find

(27¢)

(28a)

(28b)

o+ 8\2
Li=B; exp[— x’],

8\?
E\? ¢
x'*’=(—) sin’—,
a 2
2

a
L;=B, exp[—-———x2—-y"’],

8\?
(29)
k2
yi= (1+4cosd),
32(a?+1N?)
k2
L3;=B; exp[—~ (544 cosd) ——zz],
16\?2
2
22=——(5+4 cosd),
16(a2+22)
where
A 2 V(ﬂl‘a A 2 V(]7r3
B;= , Be=m=—rrr——————,
23a%\3 20\3(a?+3N2)3
A2V om?

By=——.
N(ot+ ]!
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After some calculation whose details we shall
omit here, it is found that I(d, ¢) in (18), which
is independent of ¢ and is hereafter denoted by
I(9), is given, on the three theories of nucleon
interaction, by the following expressions.

Ordinary force:

(3mht/ MU (9) =4(1— g+ 1) L
+3(1—Zg+g)L+ILe
—2(1+§g— 4 LiLs

—2(14-3g)L1Ls+3(1—3g)L2La.  (30a)
Exchange force:
(37h?/ M)2I(¥) = the expression above,
with 1, 2 interchanged. (30b)
Symmetrical force:
(3wh2/ M) (9) =1(11—30g+27g%) L2
+4Ls*—3(1+3g)L2Ls.  (30c)

It is to be noticed that of the three integrals
Ly, Ly, L3, L, is by far the most important one.
It has a strong maximum in the forward direction
#=0. The integrals L;, L; contain the exchange
operators Py, or P13 and give but small contribu-
tions, L3 only in the backward direction d~~,
as is seen from (29). That the scattered intensity
I(9) on the symmetrical theory does not depend
on L; is a consequence of the potential (3). This
can perhaps be brought out more clearly as
follows. We may write (3) in the form

Vie=01-02(14+2Pys) Vigoren,

According to (17), the scattered amplitudes are
proportional to the matrix elements of the
operator:

(Vie+ Vis)(1—Pyo)
=01-03V 127" (142P13)(1—P1o)
40103V (14-2P15) (1 — P1a)
=0y 0 Ve (— 14 Pyy)
+01-03V15v"(142P 13— P1o— 2P 13P1,).

The terms containing the exchange operators
give the L, and L; of (30c). The remaining
terms —o;1-02 V12 and o;1- 03V 13 give exactly equal
and opposite matrix elements since the ground
state of the deuteron is symmetrical in the
particles 2 and 3. This cancellation for the
symmetrical theory accounts for the very small
cross sections shown in Tables I and II.
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TasLE 1. Differential cross section o¢(Eo,®) in 1072 cm?,
defined in (19a), for elastic proton-deuteron scattering.

e Ordinary Exchange Symmetrical
100 Mev
0 100.5 20.2 0.010,2
10 67.7 13.6 0.010,0
20 19.6 3.82 0.009,9
30 2.79 .506 0.009,9
41 .208 .037,2 0.009,5
63 .002,9 .017,7 0.008,3
90 .003,1 .012,0 0.005,5
106 .006,6 .006,2 0.003,8
126 .025,8 .008,6 0.014,0
150 .086,9 .047,9 0.061,7
180 129 .082,4 0.099,5
150 Mev
0 101.2 20.8 0.000,184
10 56.3 11.55 0.000,184
20 9.09 1.86 0.000,184
30 498 .098 0.000,190
41 .011,4 .001,93 0.000,183
63 .000,07 .000,38 0.000,172
90 .000,06 .000,29 0.000,127
106 .000,02 .000,17 0.000,108
126 .000,80 .000,28 0.000,48
150 .006,23 .004,30 0.004,53
180 .012,0 .009,67 0.010,6
200 Mev
0 101.0 20.9 0.000,004
10 46.3 9.56 0.000,004
20 4.12 .85 0.000,004
30 .093 .019 0.000,004
41 .000,633 .000,112 0.000,004
63 .000,002 .000,009 0.000,004
90 .000,001 .000,006 0.000,003
106 .000,002 .000,005 0.000,003
126 000,025 .000,007 0.000,015
150 .000,45 .000,43 0.000,40
180 .001,17 .001,08 0.001,11

TaBLE II. Total cross section g in 10724 cm? for elastic
proton-deuteron scattering.

Ordinary Exchange Symmetrical
100 Mev 0.384 0.077 0.003,8
150 Mev 0.255 0.051 0.000,2
200 Mev 0.185 0.037 0.000,01

IV. TOTAL (ELASTIC PLUS INELASTIC) SCATTERING
A. Total Scattering

We shall again relegate the complete formula
including tensor force to Appendix II and confine
ourselves to the case of central force in the
following.

It is important to notice that since two protons
of indeterminate origin are emitted in each in-
elastic scattering event, we must divide the in-
tegral of expression (23) by two to obtain the
total inelastic cross section. Representing the in-
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cident wave by the plane wave (26), one can
express all the matrix elements (¢|f(Q/, 2”)])) in
terms of integrals £1, £2, £3 which are obtained
from those for L,, Ls, L3 in (27) by replacing
¥o*(p) by ¥u-**(g) or Yi:**(g) according as =1, 2,
--+60ri=17,8,and £1*, £2*, £3* such that £,*=
£; with k”’ replaced by —k’’. Thus fori=1, -- -6,
we have

2u= [ [ expl—ik' 100

X U(|r+3e|) exp[ik-ryo(p)dedr, (3la)
and for t=7, 8,
&,:ff exp[ — 7k’ - rJ¥s* (o)
U(|r+3el|) explik-rlgo(p)dedr. (31b)

The actual evaluation of these integrals re-
quires a knowledge of the continuum wave
functions ¢, f(p) and y¥;*(p) of the deuteron.
This is essential for any detailed investigation
of the energy spectrum or angular distribution
of the particles resulting from collisions in which
the deuteron disintegrates. For the gross infor-
mation provided by the total cross section,
however, only the following general properties
of the continuum wave functions are important,
namely, the functions {yz¢(g), ¥o(e)} and
¥iv (o) form two complete orthonormal sets, and
for large k", yi+*(p) and Yy *(9) approach the
plane wave 1/(27)! exp[<k” - o ].

If one makes the plane wave approximation

1
Yir'(0) =¥u*(0) = ~—— exp[1k” - o],

Y (32)
one finds readily
Lit=2,"=L,=D exp[ —q*—x%],
16022 = |k—k’'+2k"' |2,
4a2x2= |k—Kk’|?,
Lt=Ly"=ELr=D exp[ —q*—»%], 33)

402y?= |k+ 3k’ + k' |?
£1*=¢, with k"’ replaced by —k", etc.,
AVr?

a3
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The integrals £;, £3* corresponding to L; in
(27) can be shown to contain a §-function and
contribute nothing to the scattered intensity.
They have therefore been left out in the fol-
lowing.

To the approximation (32), the intensity
I(Q,Q") in (24) is given by the following
expressions.

Ordinary force:

(27)3(3wh2/ ML, Q)
=(1—g+g) (L34 L2+ £1*?)
—(142g—2g%) 8,8
+ (2 - 2g+g2)£1£1*
- (1 +g - g2)£2£1*. (343.)

Exchange force:

(2m)3(3wh?/ M) (', Q") = the expression

above, with 1, 2 interchanged. (34b)

Symmetrical force:

(27)3(3wh/ M) (R, Q)
= (3 —g+g) (L2 L2+ L£,¥44L:%)
+ (% - 2g+2g2) (3132—' 2£1*£2*)
—(2/9)(1—3g+(9/2)g®) £:1£1*
+ (5 —g+8)(2L1L:* — £1*L,)
+(2/9)(5§ —4g+9g5) L282*.  (34c)

It appears that (23), with I(®/, Q") given by
(34) and (33), gives the cross section for inelastic
scattering. The approximation (32), however,
has the consequence that the cross section given
by (23) and (34) also contains contributions of
the elastic scattering, since the plane waves
Vi 4(@) are not orthogonal to the wave function
of the ground state of the deuteron and hence
contains components of ¥y(p). It will be shown
below that (23), (33), and (34) actually form a
closer approximation to the total scattering
(elastic plus inelastic) than to the inelastic.’

To simplify the presentation of the argument,
let us first consider that part of I(Q', Q") that
comes from £:%, in the case of ordinary force
(34a). Without making the approximation (32,)
one would have obtained instead of (1—g+g?)£,2
the expression

(1—g+ig) (L1 +1g%(£1)

8 Cf. N. F. Mott and H. S. W. Massey, Theory of Atomic
Colllgszions (Oxford University Press, New York, 1933),
p. .
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et us define

K=k—-k', i=r+1o. (35)
From (31a), one finds
£1¢=Co (K, k")F(K), (36)
where
Curr (K, &) = [ expl (/DK ]
X *(e)¥o(p)de, (37)

F(K) = f exp[iK-E]U(| €] )dE.

F(K) is seen to be a function of the magnitude
K of K alone. Also

| Corrr(K) 2= f | Courr(K, K) 142" (37a)

can be seen to be a function of the magnitude K
of K alone. On transforming from the variables
k', @ in (23) to the variable K by means of (35),
namely,

KdK =EE' sind’dd’ = (1/2n)kk'dSY,

one obtains from (23) that part of the inelastic
scattering cross section that comes from (£,f)?

2{oine} =(1—g+{g") (M/37h%)*

1
X; ff k(L) %dQdk”

=(1—g+ig")(M/37h*)*

27
X;fIF(K)I KdK

X f [ Cowrr(K) |2E"2dk".  (38)

Now since the ground state of the deuteron is
a triplet state, it is clear from (33), (27), (18),
and (24) that every inelastic triplet amplitude
£t has a corresponding elastically scattered
amplitude L differing from £¢ in having y¥e(p) in
place of ¥4+*(p). On adding to (38) the contribu-
tion of elastic scattering (1—g+3/4g% L, from
(30a), one obtains as a typical contribution to the
elastic plus twice the inelastic cross section the
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expression
dat+201me = (1 —g+1¢%) (M/3xh?)*

27
XF f | F(K) | KdK[ | Coo(K) |

+ f |C°k~(K)]2k"2dk"], (39)

where, analogous to (37),

1
Coo<K)=feXP[_EK'9]¢o*(P)¢0(P)d9- (40)

In (39), for any fixed value K of the magnitude
of K, the range of integration of &’ is from 0 to
the maximum value k," given by the energy

equation (22), or, in view of (35),
kn'?=3k2— (M/hY)e—3(k—K)2. (41)

The range of integration of K is from

k—[k2— (4M/3h%)e ]} to k+[k2— (4M/3h%)e 2.
As y¥o(p) and the Yy t(p) form a complete

orthonormal set of functions, one can expand in

(37
exp[ —(¢/2) K- e Jo(p) = Coo(K)¥0(p)

+ f Corr (K, K" )urr!(g)dk”.

From this and
[ 1expl— /2K et o =1
one obtains the relation
| Con(K) |2+ f | Cone (B [0k =1, (42)
0

In view of (42), we can write in (39)
kmll
| Col(K) |2+ f | Cour(K) %2R
0

0

—1— f | Cour (K) |2R"2dR".  (43)
kml'

Now if one makes the plane wave approxima-
tion (32) in (37), then, instead of (37) and (37a),
one has

1
Dop (K, k') =—— | exp[—(i/2)K-¢]
(2m)}

Xexp[—1k” -0 J¥o(p)de (44)
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and

| Do (K) |2 = f | Dowr(K, &) [, (44a)
From (44), it follows that
f | Dowrr(K) [2k""2dR" =1.
0

The second integral in (38) for the inelastic
cross section will be replaced by

km'”
f | Dowrr(K) |2/"2dE"
0

—1— f | Dowro(K) |22k, (45)
km'’

But on comparing (45) with (43), it is seen that
to the approximation (32), the use of plane
waves in (38) leads to (39).

An entirely similar argument holds for the sing-
let part £,°. It cannot be applied to terms contain-
ing £, or £2* in (34). Calculations show, however,
that £, gives some contribution only for large
values of &”’. This is expected since it arises from
the effect of exchange. For large k', the plane
wave approximation would be valid. Now, for
elastic scattering, the contribution from L, in
(30) is negligibly small. Hence £ in (34), while
giving the inelastic scattering, also gives approxi-
mately the total scattering. The other terms in
(34) are either negligibly small, or give some
small contributions only for large values of £’’.

Finally let us consider the validity of the
approximation (32) which replaces (43) by (45).
In (39), the important region in K is when
| F(K)|?2K is near its maximum. With the
Gaussian potential (28b), this maximum occurs
at K =a. With the value «=0.515X10* cm™! in
(57), one finds for an incident proton of 100 Mev
the corresponding k,"'(a) at 37 Mev. For 200-
Mev protons, this &, (a) corresponds to 56 Mev.
For these %,"”, the approximation of replacing
(43) by (45) is justified. For the region of small
K in (39), however, the corresponding &, (K) is
smaller and the plane wave approximation will
be bad. Actual calculation shows that the contri-
bution to the total cross section from the region
of small & is rather small in the case of the
symmetrical theory. Hence the error committed
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by the plane wave approximation in this case is
presumnably not very great. The situation is less
favorable with the ordinary and the exchange
force, especially the former.

B. Angular Distribution and Energy Spectrum
of Scattered Protons

For comparison with experimental results, it
is desirable to transform to the laboratory
coordinate system. Let p be the wave vector
corresponding to the momentum of the scattered
proton referred to the laboratory system. It can
be shown that

p=1ik+k’ (46)

Let E, be the energy, in the lab system, of the
scattered proton. Then E,=h?p?/2M. From (21)
and (22), one has k”dk”’ =3k'dE’. Hence

kKR A A = 3k K AR AV = 3k dpd e
= (3M/4h*)pk""dE,dQdS",

where dQ is the solid angle into which p is
directed. Hence the differential cross section of
a proton being scattered into the solid angle
dQ=2r sindd¥ is given by

270 (Eq, E,, 9)dE, sinddd

3Mk”dE?. inddd | I(Q, Q")dQ’ 7
4h2kp ,,1rsm00f(, )aQ’, (47)
where I(2,Q) is obtained from I(®/,Q") in
(34) by means of the transformation (46).

The evaluation of JSI(Q,Q")dQ" involves a
large amount of work on account of the compli-
cated manner in which the directions of k’/ and
k' appear in the expressions (33). In the fol-
lowing, we have carried out a preliminary calcu-
lation without the tensor forces. The integral
IQ)=/SI(Q, Q")dQ" is given by the following
expressions for the three theories of nucleon
interaction.

Ordinary:

(2m)3(3wh?/ M) ()
=(1—g+g)(2A2+A2)
—(142g—2g)A1A,
+2(1—g+3g)MAr*
-_ (1 +g—g2)A1*A2.
Exchange:
(27)3(3wh?/ M)2I(Q) = expression above

with 1, 2 interchanged. (48)

Symmetrical :

(27)3(3wh?/ M) ()
=(3—g+g) (2A2+5A4?)
—(53—2g+2g)A1A,
—(2/9)(1—3g+(9/2)gH) A *
+GE—gtg)Ar*A:
+((10/9) — (8/3)g+2g%) A2A ¥,

(x— 2k")2]
g\?

xk/l
X(l—exp[——]), X
A2

'l 44N
A1A1*=41I'D2 exp[————— xZ:I
222 8a\?

where

A2 x?
A?=4xD?— exp[ -
xk’ 2a?

]
wjee

k—p

12

a2 +)\2 xZ y2
AgA* =47 D2 exp[ - ].

202\? 8\2 2a?
. y=3k+3p
A\lAg* = Al*A2 = 4‘7I'D2—"
yk//
R'’% a?+2\?
Xexp[ e
222 8a?\?
(y—Fk")?
———~](1 —exp[ —yk"/a?]),
402
sinhz 9 /2a%45)2
AjAp=47D? exp[ ——(————)k2
2z 64 a®\?
2a2+5)2 2a2+4 A2
—_ 2 __ kl’2
16a2\? 4a2\2
3 2a%43\2
——Fkp cosﬁ],
16  a2\?
2a2—\?
=492 &= Pk’ sind,
4o2\?
3(2a%+1?) 202 —\2
= Rk — pk'’ cosd,
8a?\? 4o2)\2
sinh¢ 9 a?4-\?
A2 =4xD> exp[ - k2
t 32 a\?
a? )\2( 't 4 ,2)+3 a"’—)\2k
- P ! - D cosz?],
8a\? 8 ai\?

(49)
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a?—)\2
t=u4v?, u= pk’’ sind,
20272
3(a2+2?) a?—\?
y= Rk — pk’’ cosd.
402)\2 2a2\?

The numerical values of the total cross section
given in Table III were obtained by integrating

TasLE III. Cross sections o; for total (elastic plus inelastic)
proton-deuteron scattering, in 1072 cm?2.

Ordinary  Exchange Symmetrical

100 Mev Tpn 0.140 0.140 0.140
Tpp 0.130 0.130 0.028
Opntop_p 0.270 0.270 0.168
Te(p—d) 0.424 0.213 0.089
200 Mev Opn 0.070 0.070 0.070
Tp—p 0.070 0.070 0.014
Tpntop_p 0.140 0.140 0.084
Ot(p~d) 0.214 0.119 0.043

(47) over the energy and angular distribution of
the emerging proton to give e+ 26ine.

C. Angular Distribution and Energy Spectrum
of Neutrons Ejected in Proton-
Deuteron Collisions

Experimentally one may have a beam of high
energy neutrons impinging on a deuterium
target and is interested in the angular distribu-
tion of the protons ejected and their spectrum for
a given direction. When the Coulomb interaction
is neglected, this situation is the same as studying
the neutrons ejected in a proton-deuteron colli-
sion. To find the differential cross section of a
neutron being scattered with energy E, (in the
laboratory system) into the solid angle dQ,, one
proceeds as follows. It can be shown that the
wave vector of the neutron in the laboratory
system is given by

pr=31k—ik'+Kk". (50)
Let us define the vector s,
s=k'"" -3k’ (51)

so that dp,=ds. Now the volume element in
(23) can be written, on introducing a é-function,

dK"dQ =dK"ddk 5(k' — g (k"))
1
=i ok = g(K"),

where the pole of the §-function is at the value
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of &’ related to k" by the energy equation (22),
namely,

4M\1 /2 B2\
k’=g(k”)5(——) (—Eo—e— ) . (52)
3n2/ \3 M

di

On changing the variables k’, k’’ into k/, s, the
differential cross section for k’, s being directed
into dk’ and ds, respectively, is

o(E,, s, K')dsdk’ = (k' /kk'?)I(Q,, Q)

X 8(k'—g(|s+3Kk'|))dsdk’, (53)

where 1(Q,, Q') is obtained from (34) by means
of (51). Writing

K= (M/h*)(3E)—¢) =3k2— (Me/R?),
and inserting (51) into (52), one obtains
b’ = — sp=t (st —4sP+4x?)1. (54)

The condition that at least one of the two roots
ki, k' be real and positive imposes a restriction
on the values that s and p may assume. A little
consideration shows that for 0<s2<?, the root
k1 corresponding to the positive sign in (54) is
real and positive for all values of u between —1
and 1. For «*<s?<4/3«?, and positive values of
, both roots are negative and must be excluded.
For negative values of p between —1 and
—2[1—(x2/s?) ]}, both roots are real and positive.
s? cannot exceed (4/3)«? since in that case the
roots become complex.
Let us denote by v(%’)

oK)=k —g(|s+3K'|).
To transform the é-function §(v(k’) —0) so that

the variable is the same as that of integration %/,
we have

u=cosk’s,

8(v—0) = X (k' /dv)umod (k' — k)

where k/ is a positive real root of (54), or,
9(k’)=0. For the two ranges of s? discussed
above, we have

@ 0<s2<«? —1<Zu<l,
d(v—0)=3k/Woa(k'—ky),
k2\ ¥
(1) «2<s2<(4/3)«?, —ISpS—Z(l———;),
S
S(v—0)=3k/Ws(k' — ki) + 3k Wo(k'— k'),

where
W= (4 —4s2+s2u?)~%.
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Putting these into (53), one finds, for the
differential cross section for a neutron being
ejected with energy E,.=#%p,*/2M (in the lab
system) into the solid angle dQ.,,

Mp,
o(Eo, En, sz,,)dE,,dQ,.=-h—2k—I(Q,.)dE,.dsz,,. (55)

Here I(2,) is obtained from I(Q,) by means of
(50) and (51), and I(,) is given, in the two
ranges of values for s? above, by

3 27 1
1) I(Q,)=- RV2WI(Q,, Q)dude’,
() I(2) ZJ;L WI(Q,, @)dude
3 27 —y
) I(e)=- f f_ RO, Wiy’ (56)

3 2r —y
42 f f kW, @)dude,
0

2 -1
k2\ %
v=2(1 ——) .
SZ

Calculations show that the important contri-
bution to I(2) comes from those terms in (34)
which are significant only for large values of &".
For large k”/, the plane wave approximation
(32) may not be seriously in error. Hence (55)

may be expected to give the cross section for
inelastic scattering only.

where

V. CALCULATION AND RESULT
A. Elastic Scattering

While the cross sections of elastic scattering
on the basis of the three theories of nucleon
interaction can be calculated from (19), (29),
and (30), it is seen that the amount of numerical
work is very great. In the present preliminary
calculation, we have neglected the tensor force
and so chosen the constants g, Vi, o? as to fit
the data on the proton-proton scattering and
the ground state of the deuteron. For the singlet

even state, the potential is, according to (3)
and (28b),

1peven= — (1—2g) Vo exp[ —a?%].
The analysis of Breit et al.® gives
(1—2g)Vy=26 Mev, a?=0.266X10?® cm~2, (57)

6 L. E. Hoisington, S. S. Share, and G. Breit, Phys. Rev.
56, 88 (1939).
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For this value of o?, the binding energy of the
deuteron gives the depth V.7

Vo=45 Mev. (58)

For the constants of the approximate wave
function (28b) of the ground state of the deu-
teron, we take the variational wave function of
Gerjuoy and Schwinger,®

A=0.312X10"%, A2=0.0716X10% cm™2. (59)

With these constants, the cross sections for
incident protons of 100, 150, and 200 Mev (in
the lab system) have been calculated from (19a),
(29), and (30). Table I gives the differential
cross section ¢, (Ey, ©) defined by (19a). Table
II gives the total elastic scattering cross section.

ae(Eo) = ZTerl(EOy ) sinBdB.

It is seen that the difference predicted by the
three theories of nucleon interaction is rather

»
o

2

cm

TG E,u. (47) in /0."

£
=

O (€, E, )

[ 10 zlo 30 40 so 60 70 &0 90
Ep in Mev.

FicG. 1. Differential cross section o(Eo, Ep, 9)dE, defined
in Eq. (47) of proton-deuteron total scattering. Eo=100
Mev, #=30° and dE,=1 Mev.

7H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
111 (1936).

8E. Gerjuoy and J. Schwinger, Phys. Rev. 61, 138
(1942).
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ENERGY SPECTRUM OF NEUTRONS
EMITTED IN FORWARD DIRECTION PER UNIT
SOLID ANGLE RESULTING FROM COLLISION
OF 200 MEV PROTON WITH DEUTERON

Svmﬂ
20

2
vV

26
I(Jz

oRD.
EXCH.
oDNNSM- ORD

o 40 80 120 160 200
Eq n MEV

F1G. 2. Energy spectrum of ejected neutrons in the forward
direction ¢ =0 in proton-deuteron scattering at 200 Mev.

large. The very much smaller values of ¢.; on
the symmetrical theory have been discussed at
the end of III. The sharp contrast from the two
other models lends some interest to an experi-
mental investigation of the elastic scattering at
high energies.

B. Total (Elastic Plus Inelastic) Scattering

The differential cross section ¢(Ey, E,, ¢) de-
fined by (47) has been calculated without tensor
forces by using (48), (49) and the constants in
(57), (58), and (59). It is found that in (48),
the most important terms are A;? and A;A* which
are large for small ¢ and large values of E,, i.e.,
in the neighborhood of E;—e¢, and decrease
rapidly with decreasing E,. In Fig. 1 are given
as examples the o(E,, E,, #)dE, for $=30° and
dE,=1 Mev for 100-Mev protons. These curves
give the spectral distributions of the scattered
protons for this particular direction. For smaller
angles ¢, the maximum at large E, is further
accentuated in all the three theories. For larger
angles ¢, the terms A and A;A* become
negligible and the other terms such as A% give
rise to a small maximum at the low energy end
of E,. While no quantitative significance should
be attached to these spectral distributions,
especially for small 8, on account of the failure
of the plane wave approximation (32) for large
E, and hence small %", as discussed in §IVA,
the qualitative differences among the three
potentials is believed to be of significance for
comparison with experimental observations.

In Table III are given the integrated total
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ENERGY SPECTRUM OF NEUTRONS

J—

EMITTED AT 30° WITH INCIDENT

PROTON DIRECTION

ORD

EXCH

27 cM?
MEV

EXCH. SYMM,

k SYMM
o

o 40 80

120 160 200
En in MEV

F1G. 3. Energy spectrum of neutrons ejected in directions
¥ =230° in proton-deuteron scattering at 200 Mev.

scattering (elastic plus inelastic) cross sections
for 100- and 200-Mev protons on the basis of the
three potentials. In the same table are also given
for comparison the total cross sections for proton-
neutron and proton-proton scatterings calculated
with the same potential constants in (57) and
(58). The total proton-deuteron cross section o,
is to be compared with the sum op—n+0,—p of
the proton-neutron and the proton-proton cross
sections. It is evident that the effect of inter-
ference of the scattered waves in the proton-
deuteron scattering plays a large role in deter-
mining the final value of the total cross section.

It is of interest to compare the relative
importance of elastic and dissociating collisions
on the basis of the three theories of nucleon
interaction. From ¢, in Table II for elastic
scattering and ¢, in Table III for total scattering,
one finds for the ratio ¢,;/0: the values 0.83, 0.22,
and 0.022 for 100 Mev and 0.40, 0.106, and
0.000,06 for 200 Mev, according to the ordinary,
the exchange, and the symmetrical potential,
respectively.

It is also of interest to make the following
indirect comparison with the observed cross
sections now available.? Recent calculations have
shown that in the case of proton-neutron and
proton-proton scatterings, the usual Born ap-
proximation is quite unsatisfactory for 100
Mev.1? As the above calculation was made to
this approximation, we do not expect the numer-
ical values for the ¢'s to be very accurate at 100

* L. J. Cook, E. M. McMillan, J. M. Peterson, and D. C.
Sewell, Phys. Rev. 72, 1264 (1947).
10 M., Camac and H. A. Bethe, Phys. Rev. 73, 191 (1948).
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Mev. The ratio ¢p—n/04p—a), however, may not
be in as serious error as the individual ¢’s. This
ratio for 100 Mev is, for the three potentials,

0.33 (ordinary); 0.66 (exchange);
1.6 (symmetrical).

The observed values are ¢,_,=0.083X10~2* cm?
and oyp-ay=0.117X10~2¢ cm?, giving for the
ratio ¢,—n/0i(p—ay the value 0.71. It is seen that
the ordinary and symmetrical theories are in
definite disagreement with the observed data.

C. Energy Spectrum of Neutrons Ejected in
Proton-Deuteron Collisions

By means of (55) and (56) the energy spectra
of the neutrons for the forward direction and for
directions making an angle of 30° with that of
the incident protons have been calculated. The
result for 200-Mev incident protons is given in
Figs. 2 and 3. As expected, the exchange and
the symmetrical potential give neutrons with a
well defined narrow energy peak near 200 Mev
in the forward direction. These neutrons are the
result of a direct exchange between the incident
proton and the neutron in the deuteron. That
this is essentially a two-body collision is made
evident by the fact that the area under the high
energy peak for either theory is very nearly
equal to the proton-neutron cross section at
zero degrees. The low energy peak may be
regarded as due to the proton-proton collision
in which the outgoing proton pulls the neutron
along with it.

At 30° the high energy peak is very much
reduced in intensity and becomes very much

INELASTIC SCATTERING

999

wider. The maximum occurs at 150 Mev, corre-
sponding to the conservation of energy and
momentum in a two-body collision in which the
neutron goes off at 30° but the spectrum
extends all the way to 173 Mev. This upper
limit comes from collisions in which both protons
come off with the same momentum. All collisions
therefore involve the interactions between the
three particles in an essential way. The low
energy peaks are practically the same as at 0°,
as should be expected from their physical
interpretation.

The writers wish to thank Professor G. E.
Uhlenbeck for suggesting the problem and Pro-
fessor H. A. Bethe for helpful discussions.

APPENDIX L.t

Elastic Scattering with Tensor Force

When the potentials (3) including tensor force
are employed, in summing over the spin coordi-
nates in (17), it is necessary to evaluate the
matrix elements (2|.S12|2), (¢|S1]l) of the oper-
ators S;; in (4). These are readily obtained. We
shall not give all these except the following few
as examples.

(1]512[1) =(1]Slall)=3 COSZ#—I,
(1]S12]2) = (1| S13]2) =0,
(3] S12|1) = (3| S13] 1) = 2V3 sinu cospe’,

where p, v are the polar angles of the line joining
the two particles with respect to the direction of
quantization of the spin.

The integrals in (17) that arise from the terms
S12 and Si3 can be shown to reduce to the
following nine:

I, (3 cos?u—1 )

J1 ='yff exp[ — ik’ -t o*(p) U(| t+3%e]|) | sinu cospe® | exp[ik- r o(p)dodr, (27A)
K, Lsin2ue?®

I, 3cos?2u—1)

Ja| = [ [ expL—ik-£]0e*(0) U1+ o) |sinu cosue® | expl k- (hr-+ 1) ol — ho D,

K, Lsin2ue?” (27B)
I (3 cos?u—1)

Js ='rff exp[ —ik’ -t Yo*(p) U(| r—30|) | sinu cosue® | exp[ —ik- (3r+F0) Wo(|r —3e|)dedr.

K,) \sin%ue?> ) 270)

1 This appendix refers to Section III.
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The angles u, v are again the polar angles of the
vector r+3%p or r—1p in the argument of the
potential U with respect to the direction of
quantization.

It can be shown that these integrals are given
by

2 )
Il=g'yL1x2(1—3 sin”—z—) 1Fa(1;7/2; x2),

1
I,= —E7L2y2(1+3 cos?d) 1F1(1;7/2; %),

2 3 R
Ia=‘5“YL3[Z2“—

(1+2 cosﬂ)2]
16 a2+\?

X1F1(1;7/2; 2%,

1
J1=;yL1x2 sind (F1(1;7/2; x?),

1 3k\?2 1
Ja =—7L2(—) sind(1+4cosd)
10 4/ arir
X1F1(1;7/25y%), (29A)
k2
Js=—xLs sind (142 cosd)
20  a?+$?

X1Fi(1;7/2; 2%),

2 P
K1=g'yL1x2 cosZE 1Fi(1;7/2; x9),

1 2 3
_- 2 2 . a2
Kz 407L2x a2+%)‘2 COS 21F1(1,7/2,y ),
2 o? D
K3=—yLg3x? cos*—1Fi(1;7/2;2%),
a?+2\? 2

where the x, vy, z are given in (29). For the
convenience of calculation, the confluent hyper-
geometric functions can be expressed in terms
of the error integral as follows.

4
—x2 1 F1(1;7/2; x?)
15 )

1 = 1
=— exp[xz:lf exp[ —£2)dt———-.
x3 0 x2 3

The scattered intensity is given, in the three
theories, by the following expressions.

AND J.

ASHKIN

Ordinary force:

(37h?/ M)*I () =expression (30a)
+Q2I,—I)?— (21, —I)I;+31 2
+12{(27,— J,)?
—(2J1—J2) T3+ 372}
+3{(2K1—K,)?

—(2K,1— K»)K3+3K5}. (30A)

Exchange force:

(3wh?/ M)*I(8) = expression above,

with 1, 2 interchanged. (30B)

Symmetrical force:

(3wh?/ M)*I (¥) =expression (30c)
+ T2 =L Is+1g)
F12(T2— ToJs+J52)

+3(K2— K. K3+ K3?). (30C)

That the central force and the tensor force in
(3) contribute additively to the scattered in-
tensity is due to the fact that the spur of the
tensor interaction S;; is zero.

APPENDIX II.tt
Total Scattering with Tensor Force

The integrals arising from the terms S, and
S13in (25) can be shown to reduce to nine which
are obtainable from (27A), (27B), (27C) above
by replacing ¥o*(p) by the continuum functions
Vi *4(@) or Y *3(p), and the nine others obtained
from these by replacing k'’ by —k’’. Of these
eighteen, the six integrals 93, Js, K3, 935*, $5*, Ks*,
can be shown to contain a §-function and con-
tribute nothing to the scattered intensity. They
have therefore been omitted in the following.
To the approximation (32), these 12 integrals
are as follows.

2 3
g1 =—7£1[x2——(k — k' cost’) 2]
5 4a?

(s 3
X1F1(1;7/2; x2),
2 3 ~
92=—‘y£2[y2————(k+K coskK)2]
5 4o

X1Fi(157/2;9Y), K=3k'+k”,

11 This appendix refers to Section IV.
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1
Jr=—vL1-—k’ sind’ (k—k’ cos?’)
10 a?

X1Fi(1;7/2; %),
(33A)

1
gr=—v&s—K sinfK (k+K coskK)
o
X1Fi(1;7/2;9%),

1 k\?
Xy= —E'yeﬁl(—-) sin?¥’ (F1(1;7/2; x?),

@
1 K\? A

Ke= ——732(_) sin’kK 1 F1(1;7/2;y%),
10 a

gr1* = g1 with k" replaced by —k”’, etc.,

where x, y, D are those expressions given in (33).
The scattered intensity in the three theories
is given below.

1001

Ordinary force:
(27)3(3xh2/ M) I(Q, Q")
=expression (34a)+43(9:1— 92)?
+ (91— 92+591%) 9% +18(g1— 92)*
+12(g1— g2+ 391 91*
+(9/2)(X1—Ko)?
+3(K1— K2+ 3K *) K *.

Exchange force:

(2m)3(3wh?/ M)*1(Q', Q") = expression
above, with 1, 2 interchanged.

(34A)

(34B)
Symmetrical force:

(2m)3(3wh2/ M)2I(Q', Q')
=expression (34c)+1(9:1— 92)2
—3(91—92)(91*+2497%)
+ 595 +29:%)24-2(g1— g2)?
— (4/3)(g1—g2) (9r*+292*)
+2(91*+29:*)2+3 (K1 — K2)*
—3(X1— XKo) (K 1*+235%)

+3(F 42572 (34C)



