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Neutron-Proton and Proton-Proton Scattering at High Energies*
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'i'he tensor force has been taken into account in calculating the neutron-proton and proton-

proton scattering at energies in the range from 100 to 200 Mev. Most of the calculations are

performed in the Born approximation using a square well potential and the exchange models

of Rarita and Schwinger. The rigorous scattering theory has also been applied to the neutron-

proton scattering with the symmetrical force model at 100 and 200 Mev. The results show

that the Born approximation is inaccurate at 100 Mev but not bad at 200 Mev. Comparison

with the experimental neutron-protron scattering at 90 Mev shows that the theoretical cross

section for symmetrical forces is too large by a factor of about 1.6.

~HE scattering of neutrons by protons at
energies up to 80 Mev has recently been

calculated by Camac and Bethe. ' Throughout
this work central forces alone were used, the
tensor force being consistently neglected. The
primary object was to investigate the scattering
under difkrent assumptions concerning the
exchange character of the forces and their range.

In the present article the scattering has been

calculated in the higher energy range from 100 to
200 Mev, taking account of the tensor forces.
For this we have used the square well potential
adjusted by Rarita and Schwinger' to fit the
ground state of the deuteron and the low energy
neutron-proton scattering. Calculations were

made for three types of forces' ordinary forces,
Majorana (spatial) exchange forces, and "sym-
metric" exchange forces. The work may there-
fore be regarded as an extrapolation of the
results of Rarita and Schwinger to the high

energy range.
Preliminary measurements at Berkeley of the

neutron-proton scattering at 90 Mev indicate
important qualitative differences from all three
of the above exchange models. The experiment
is consistent with a force containing equal
amounts of ordinary interaction and spatial

*This work was supported in part by the Once of Naval
Research Contract N6ori-126 T. O. II.
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exchange. ' Ke feel, nevertheless, that the
present calculations are worth reporting. The
lack of agreement with experiment is in itself
interesting. Further, the exact calculations at
100 and 200 Mev, which were made with the
symmetrical forces, should serve as a valuable
check on any approximate method for obtaining
the cross section.

In Section I the neutron-proton and the
proton-proton scattering has been calculated in

the Born approximation for energies 100, 150,
and 200 Mev. In IA we obtain the amplitude
scattered by the tensor force alone in the Born
approximation, and in IB and C the amplitudes
are combined according to the three exchange
models to give the differential cross section.
Section II contains an exact calculation of the
neutron-proton scattering for the symmetric
force model. Comparison with I shows that the
Born approximation is fairly good at 200 Mev
but is untrustworthy at 100 Mev.

I. SCATTERING IN THE BORN APPROXIMATION

A. Effect of the Tensor Forces

Since the operator representing the tensor
force between neutron and proton gives zero
when applied to any singlet spin function, we

need consider only the triplet scattering in this
section. Separating out the motion of the center
of mass, the wave function in the relative coor-

' R. Serher, private communication.
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dinate system representing the initial incident
wave will bc of the form

1

lit'inc exp (Zknii 1') Q Qrnzxm„
'IrIB = 1

Here r is the vector from proton to neutron, no

is a unit vector in the direction of the initial
relative motion, and hkno is the momentum of
the incident neutron in the center of mass coor-
dinate system. The xm, (m, =1, 0, —1) are the
three triplet spin functions taken for con-
venience with respect to nf) as axis of quan-
tization, and the cm, are three arbitrary con-
stants.

Under the inHuence of the tensor force the
spin function will, in general, change upon scat-
tering, giving rise to a scattered wave of asymp-
totic form

1

0'- «(1/&) &*'" 2 x
mg' ———1

1

X P S . .(e, &)a.. (2)
mg~ —1

The amplitude of the scattered wave in the
direction 8, q with respect to no depends on the
azimuthal angle q as well as on the polar angle 8,
since the tensor force is non-central. The an-

gular dependence of the matrix of coefficients
Sm, 'm, (8, y) gives a complete description of the
scattering of any wave with definite initial spin
state. In this section we shall calculate this
matrix in the Born approximation. In II we
shall use the rigorous scattering theory.

In most experiments the neutrons in the
incident beam will be unpolarized with respect
to spin. To find the triplet scattering cross
section per unit solid angle in this case we must,
therefore, average the square modulus of the
scattered amplitude in (2) over the phases of
the three amplitudes cm, of' the triplet spin
functions. Since the ym, are orthogonal and
normalized to unity, and since am. *em,"averages
to zero if m, &m,"and to 3 if m, =m,",we find

0'«iy =Average(Q Q Q S m~'I~Sm~'m~ "G mgQmg")
fll g f@g fPl g

I II

Slg f7kg
I tl
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Vx-. = Z I'-. ' .(r)x"',
7N8 = —1

we find, from (1) and (4)

(5)

Ste, e~, (8, y) = —(M/4irk ) exp( —ikn r)

X Vm 'm (r) exp(iknp'r)dl. (6)

In the case of exchange forces, Vm, '~, (r) will in

general contain an operator which exchanges
proton and neutron, i.e. , changes r to —r. It is
therefore essential to keep the order of the
factors in (6) as it is instead of combining the
exponentials as is usually done in atomic scat-
tering problems.

The linearity of the scattered amplitude in the
interaction potential V allows us to calculate
separately the amplitude scattered by the tensor
force and by the central forces, and then to
combine the two at the end according to what-
ever model of the forces one wishes to consider.
Apart from a possible Majorana (spatial)
exchange operator whose effect will be discussed
later, the term in the potential containing the
tensor force will be of the form —Sing(r), where

J(r) giv—es the shape of the potential and

(e, r)(em r)
S12=3 0'1 ' I72. (&)

y2

e~ and e2 are the spin operators of neutron and
proton, respectively.

In calculating the amplitude scattered by the
tensor force, however, we shall not expand
Simx~, as in (5), btit rather perform the integra, l

4 Mott and Massey, Theory of Atomic Collisions {The
Clarendon Press, Oxford, 1933), p. 88.

The Born approximation for scattering prob-
lems' gives a simple explicit expression for the
asymptotic scattered wave in terms of the inter-
action potential V between the neutron and
proton.

—(1/r) e""(AI/4nh').

X~I exp( —ikn r) VP; .dr, (4)

M is the neutron or proton mass and n is the
unit vector in the direction of scattering. If we
define a set of matrix elements Vm, 'm. (r) by the
equation
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in (4) directly treating the spin operators simply
as constant vectors in the spatial integration.
The result is:

.)0

,08
C iKol

(cVl/4s. h') exp(ik(np —n) r) J(r)
05

where

&({(3/r')(e&.r)(ep r) —et ep}dr

=C(8)r(8 p). (8) 02
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t'sinKr sinKr Kr cosKr y-
X{ —3— }dr,

E. Xr
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FIQ. 1. The amplitude c(Ea) scattered by the tensor
force for a square well potential. The central force ampli-
tude f(lto) (multipled by 0.3) is given for comparison.

and
V(8, pp) =et es —3ol, np-no'2, np-n. (Sb)

v' is an angular average of the tensor operator
weighted by exp} pk(np —n) .r]. a'1, np —n and
cr2, no-n are the components of e~ and am in the
direction of no —n, i.e., in the direction of the
momentum transfer.

To find the contribution to the matrix 8 of (6)
me need to knom the result of applying the
operator W to the triplet spin functions. Defining
the matrix elements of E by the equation

1
r'xm, —— Q r'm, m, (8, pp)xm, ,

m8' = —1

me find, after a simple calculation,

gm,
m, 'g 1 0

1 —s(1 —3 cos8) (3/v2) sin8e '+

{9'm, m, (8, pp') } = 0 (3/V2) sin8e'" 1 —3 cos8

—3 cos'(8/2) e—"&

—(3/V2) sin8e-'&.

—1 —3 cos'(8/2) e"& —(3/v2) sin8e'" —st (1 —3 cos8)

The azimuthal angle y of the direction of scatter-
ing enters only in the off-diagonal elements where
it enters in terms of unit modulus. Since the
remaining central interaction in V contributes
only additional diagonal terms to the matrix S
of (6), we see that in the averaging process (3)
for the cross'section there is no dependence on y.
For an unpolarized incident beam the scattering
is axially symmetric.

It is also evident from (9) that the sum of the
diagonal elements of E vanishes. This is impor-
tant since it leads to the result that in the Born
approximation the cross section (3) is composed
additively of a contribution from the tensor
forces and one from the central forces. The
central forces give the same contribution to each
diagonal element of S since they do not mix the

triplet spin functions. In the calculation of the
triplet cross section (3) the sum of the squares
of the diagonal elements of S mill contain cross
terms between tensor force and central force
amplitudes of the form: central force amplitude
multiplied by the sum of the diagonal elements
of K Since this vanishes, the above-mentioned
additivity follows.

If the function J(r), giving the shape of the
nuclear potential, is taken as a square mell of
range a and depth V, evaluation of the function
C(8) of (8a) is simple:

3fVa' 1 I
~' sint

C(8) =a — 3 dt
h' (Ka)' & p t

—4 sinKa+Ka cosKa . (10)
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Thus, C(8) is proportional to a dimensionless
function of Ee which may be calculated once for
all energies. This function, which we call c(Ka),
is plotted in Fig. 1. For any given energy, Xu
varies from 0 to 2&a as the angle of scattering
in the center of mass system varies from 0 to m.

Ori the graph there are indicated the values uf
2ka. for 100, I50, and 20() Mev calculated for t/ie

t ange 8 = 2.80 g 10 ' cm. ln this energy I dIlgt'.

C(8) has its maximum value somewhere between
50' and 80' as we can see readily from the graph.
This has the eftect of bolstering up the triplet
scattering cross section for intermediate angles.
The vanishing of C(8) for 8=0 is not a special
property of the square well, but holds for any
potential J(r) which does not have too bad a.

singularity at r =0. In particular it holds for the
V ukawa-type potential.

B. Neutron-Proton Cross Sections Correspond-
ing to Various Types of Exchange

In this section we shall calculate the neutron-
proton scattering cross section using the nuclear
force models of Rarita and Schwinger. ' For
states of even parity all the models must give
the same potential since they are adjusted to fit
the ground state of the deuteron, and the low
energy neutron-proton scattering. The former
gives the potential for triplet spin states and the
latter for singlet. These have the form

'V--= —(1+vSu) J(r)
' V-- = —(1—2g) J(r).

J(r) is taken as a square well of depth 13.89 Mev
and range a = 2.80)(10—"cm, y =0.775 and
1 —2g=0.857. S~2 is the tensor operator (7).

The dÃerences between the models arise in
the states of odd parity which play an increas-
ingly important role as the energy increases.
Three cases are chosen. (i) Ordinary forces in
which the potential is the same for odd as it is
for even parity, (ii) 3IIajorana exchange forces in
which the potential changes sign in going from
even to odd parity, and (iii) "Symmetric" ex
change forces described by

Vodd 3 ~even s ~odd 3 ~even

This dependence of the potential on the parity
of the wave function may be described alter-
natively in terms of the Majorana exchange

sy ir&metric forces:"

Vsyin 3 (1+2' .M) I evenq

'V, r ———(1 2Psc)—'V, ,„. (12l) )

The effect of the P~ operator on the scat-
tered amplitude is strikingly demonstrated in
the exchange force case (12a). Insertion of this
potential into (4) produces a change' in P;, from
exp[ikn~. r] to exp[ —ikno r]. This has the same
e8'ect, however, as changing n to —n in

exp[ —ikn rj and leaving t;1„laoen. As a result,
the amplitude scattered in the direction —n with
exchange forces is identical in the Born ap-
proximation with the amplitude in the direction
n with ordinary forces. The exchange forces
produce a simple exchange of identity between
the interacting particles. Thus, if a beam of high
energy neutrons is incident on a material con-
taining protons in the laboratory system, the
pattern of scattered particles will contain a large
fraction of energetic protons peaked in the
forward direction. Recent experiments at Ber-
keley' show such an effect but indicate an ex-
change interaction more complicated than the
simple exchange model (12a). The possibility of
such a phenomenon was first pointed out by
Wick and Bhabha soon after the exchange forces
were introduced into nuclear physics.

With this observation on the effect of the
operator P~ we may write down immediately
the scattered amplitudes for each model. De-
noting by

p(8) = (~/4s. h'-) exp[1k(no —n) r]J(r)dr

= (M/h'), I (sinKr/Kr) J(r) r'dr, (13)

' H. A. Bethe, ZlemenAxry Nuclear Theory (John Wiley
and Sons, Inc. , New York, 1947},pp. 80-84.

'In the isotopic spin notation the potential for sym-
metric forces may be written —$e&'4'~], 9 Veven.

7 P;„is now considered to include the singlet as well as
the triplet part of the incident wave.

operator, P~, which interchanges the spatial
coordinates of the two particles. ' Thus, since P~
does not afI'ect wave functions of even parity
but changes the sign of a wave function of odd
parity„we have

exchange forces:
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the amplitude scattered in the direction n by a
central force of potential —J(r), we have for the
triplet amplitudes (6), according to (11), (12),
and (8):
01dinar y:
')m, 'm, (8, &p) = F(8)8m. 'm. +yC(8) f'm, 'm, (8, y),

exchange:

Sn, ,( 8, y) =F(»—8)8m, s.

+yC(» —8) Km, m, (» —8, »+ q),

symmetric:

S . .(8, s) =)IF(8)+2F(»—8)}8.. .
+-,'y{C(8)v'm, m, (8, q)

+2C(» —8)v'm, m, (» —8, »+rp) }. (14)

separately to the cross section, as has been noted
earlier.

For a square well potential F(8) is propor-
tional to a dimensionless function, f(Za), of the
variable Xc.

iV Va' sinEa —Xa costa
F(8) =a

(Ea) '

N-P CROSS SECT}ON

4
IJ

Cl
Ol

0

» —8 and»+ s are the polar and azimuthal angles
of —n ~ith respect to the incident direction no.
b~, 'm, is unity or zero according as m, ' and ns,
are equal or unequal.

For the singlet amplitudes me have, according
to (11), (12), and (13):

IO
0'

0
COS e

90

N-P CROSS SECTION

-5
I20' I&0

ordinary: (1—2g) F(8),
exchange: (1—2g) F(» —8),
symmetric: —(1—2g) I F(8) 2F(» 8)}. — —

(15)

Ol
X
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Q

The complete cross section for the neutron-
proton scattering is obtained from the singlet
and triplet cross sections by

(8) =-'u. (8)+ .' (8).
0

IO

00 600

0
COSe
900

-5
IRO'

-I 0
180'

Squaring the amplitudes (15) for the singlet
cross section and performing the sum in (3) we
find:

ordinary:

~(8) =k(3+ (1 —2g)') F'(8)+6m'C'(8),

exchange:

(r(8) = $(3+ (1—2g)') F'(» —8)+6y'CI(» —8),

sym metric:

N

~0
OI

O

N -P CROSS SECT iON

~(8) = (3+ (1—2g)') (k F'(8)+F'(» —8))
+ (-', —(1 —2g)') F(8)F(» —8)

+ (8/3) v'(~ C'(8)+ C'(» —8))
—(4/3) v'C(8) C(» —8). (16)

Tensor forces and central forces contribute

0
IO
00

5
60'

0
COB 8

90~

-5
l20»

"IO
IBO'

C

FIG. 2. Neutron-proton scattering cross section (center
of mass system) in the Born approximation for a square
we11 potentia1 including the tensor forces. {a) 100 Mev,
(b} 150 Mev, (c}200 Mev.
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This is plotted in Fig. 1 (multiplied by 0.3 for
convenience) to show the contrast between the
central and tensor force amplitudes. The cross
sections based on these functions f(Ka) and
c(Ka) are shown in Fig. 2a, b, c for the energies
100, 150, and 200 Mev. The general qualitative
features are evident from (16) and Fig. 1. Thus
the exchange curve is the reflection of the
ordinary cross section about the 90' position. It
is clear also, that as the energy increases the dif-
ferences between the. diferent models become
sharper. In Table I we have summarized some of

TABLE I. Neutron-proton scattering in the Born approxi-
mation for different exchange models.

Neutron
energy
(lab. )
Mev Or

Total cross section
(10 '4 cm') o (180')/e (90')

d. Exch. Symm. Ord. Exch. Symm.

100 0.205 0.205 0.167 0.31 3.69 13.1
150 0.143 0.143 0.114 0.011 5.43 17.6
200 0.108 0.108 0.090 0.030 12.1 35.5

the information to be obtained from the curves.
The comparison with the Berkeley experiments
will be made later in Section II where the cross
section is computed more accurately than in the
Born approximation.

Table I shows that for the exchange and sym-
metric forces the ratio of the scattered inten-
sities at 180 and 90 is a rapidly increasing
function of the energy as expected. For ordinary
forces, however, this ratio shows an erratic
behavior which is clarified by the graphs in

Fig. 1. Thus the low value 0.011 at 150 Mev is
due to the accidentally low values of f(Ka) and
c(Ka) for 180' relative to 90'. The subsequent
increase to 0.030 at 200 Mev seems at first sight
surprising, but can be readily explained in terms
of the oscillatory behavior of f(Ka) and may,
be attributed, therefore, to the special nature of
the square well potential. This eEect was first
pointed out by Camac and Bethe' who inves-
tigated the ratio 0(180')/o(90') in the absence
of tensor forces and found an extraordinary
increase from 1.1 to 93 in going from 40 Mev to
80 Mev. From Fig. 1 we see that this may occur
if the value of Xa for 90' at some energy happens
to be near the node of f(Ka) In the Born. ap-
proxirnation the node occurs at the 90' angle for
106 Mev. With tensor forces the eR'ect is not so

pronounced since f(Ka) and c(Ka) do not have
a node for a common value of Xu, in general.

As we shall see in Section II, the Born ap-
proximation is a poor one at 100 Mev. Apart from
numerical disagreements, however, it is possible
at this point to notice an important qualitative
deficiency in the approximation which may be of
importance in making comparisons with experi-
ment. Thus for exchange forces the curves in
Fig. 2 are the reflections of the ordinary curves
about 90, the behavior near 0' being identical
with the behavior of the ordinary cross section
near 180'. In actual fact the exact cross section
for exchange forces shows a pronounced maxi-
mum at 0 which is entirely lacking in the Born
approximation.

The explanation for this is given most directly
if we restrict the consideration to ordinary and
exchange central forces leaving out the tensor
forces and the spin dependence. In the Born
approximation the phase shift for the partial
wave of angular momentum l is given in terms of
the potential V by'

b i = —(7rM/2k') ~ V(r) J~+~'(kr) rdr (18).
~O

Due to the change of sign of V for odd l in the
case of exchange forces, the phase shifts are
alternately the same and opposite to the phase
shifts for ordinary forces as l goes through the
sequence 0, 1, 2, 3, . If the energy is high
enough and the potential V is not too large, the
approximate phase shifts (18) will not be very
different from the exact values. In terms of the B~

the scattered amplitude in the direction 8 is given
rigorously by

f(e) = (1/2ik) Q (21+1)(e""—1)P~(cosa).
L=O

If we take an energy like 200 Mev and U ap-
proximately 20 Mev, the phase shifts are com-
paratively small, of the order 0.4 radians, and are
appreciable up to l =5. It is therefore legitimate
to expand exp(2ib~) —1. Taking the exchange
force amplitude at 0=0,

f(0) = (1/2ik) Q (2l+1)(2ib& 2bP+ —).
L 0

Reference 4, p. 28.
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As is well known, ' the Born approximation
results if only the terms 2ib~ are kept in the ex-
pansion, with 8g given by (18).Since these terms
alternate in sign like (—1)' they contribute very
little to the sum. They give the same contribution
at 8=0 as the similar terms at 8=180' for ordi-
nary forces where the Legendre polynomials
P~( —1) contribute the alternation of sign instead
of the 8~. However, the bg' terms all contribute
with the same sign to f(8) and give maximum
effect at 8=0 where the Legendre polynomials
give the strongest constructive interference.
Some idea of the size of the effect can be seen
from Fig. 3 where the energy 200 Mev and a
square well of depth 20 Mev and range e = s'/mc'
were chosen. With tensor forces the same phe-
nomenon should manifest itself. As a result the
angular dependence of the neutron-proton cross
section for exchange forces and for symmetric
forces should be qualitatively the same, contrary
to the Born approximation.

C. Neutron-Neutron or Proton-Proton
Cross Section

If it is assumed that the forces between neutron
and neutron and between neutron and proton are
the same if the pairs of particles are in the same
state, we may use the same set of scattered
amplitudes (14) and (15), appropriately modified
by the Pauli exclusion principle, to calculate the
n nor the p —p—scattering. For singlet scat-
tering the spatial part of the wave function
must be symmetric and all three of the models
give the amplitude:

singlet: (1—2g) (P(8)+F(~—8)).

For the triplet case the spatial wave function
must be antisymmetric giving:

triplet: Im 'm, (8, p) —Sm, 'm, (~—8, n+y).

N-P SCATTERING IN C.o/Q. SYSTEM

200 MEV PURE MAJORANA FORCE ]

EXACT
BORN APPROX

IO 6 2COSe -I 0

FrG. 3. Existence of a forward maximum in the scattered
intensity for exchange forces. Spin dependence and tensor
forces are neglected m this illustration.

P-P CROSS

exchange: same as ordinary, '

symmetric:

~(8) = (T's+-'(1 —2g)') (~'(8)+~'(~ —8))
+(-', (1-2g)'--.')~(8)&( -8)

+-*y'(C'(8)+ C'(m. —8)+C(8) C(s —8)).

From the curves in Fig. 4 we see that the cross
section in the symmetrical force theory is much
smaller than the one corresponding to ordinary
forces or exchange forces. This is due to the fact
that for symmetric forces in the odd triplet
states the interaction is one third as large as for
ordinary or exchange forces. Since the even
triplet states are excluded for identical particles,
the triplet cross section with symmetrical forces
is reduced by a factor 9. The admixture of the
singlet cross section, which is the same in all
three models, makes the ratio somewhat less than
9 but still large. An absolute measurement of the

The cross sections resulting from these ampli-
tudes are:

ordinary:

o4

O

b
2

NARY

HANGE

0 ME

I

200 MK

~(8) =k(3+ (1—2g)') (~(8)+~'(~ —8))
+6y'(C'(8) +C'(s —8))
—:(3-(1-2&)*)~(8)~(--8)

+6y'C(8) C(~ —8);
' Reference 4, p. 90.

0
IO

Ov 60

IOO lSKV

zoo aaav

cos e0
90' I20v

-LO

I80'

FIG. 4. Proton-proton cross section in the Born approxi-
mation for the same potentials as Fig. 2. Coulomb scat-
tering is neglected.
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proton-proton scattering cross section at some
intermediate angle should, therefore, give an
indication of the character of the exchange forces
involved. Tensor forces have the effect of bring-
ing up the cross section in the intermediate
angular range. The change from maximum to
minimum at 90' as the energy increases can be
explained in terms of the slope and curvature of
the curve for t:(Xu) in Fig. 1.

Table II gives the total p —p (or n —n) cross

TABLE II. Proton-proton and neutron-proton scattering
compared in the Born approximation.

Energy
{lab.)
Mev

100
150
200

ay y (10 s4 cms)
Ord. Exch. Symm.

0.278 0.278 0.0414
0.182 0.182 0.0289
0.115 0.115 0.0208

~.-~/~~-n
Ord. Exch. Symm.

0.738 0.738 4.04
0.788 0.788 3.96
0.944 0.944 4.34

section and its comparison with the n —p cross
section. A simple estimate of the ratio of cross
sections a „/r~ ~ can be made if the energy is

large enough so that angular integrals of the type
J'F(8)F(m 8)des or J'C—(8)C(s —8)d&o may be
neglected. Comparison of (16) and (19) shows
that the ratio should be approximately I.o for
ordinary or exchange forces and 5.0 for sym-
metric forces. It should be noted that the total
proton-proton cross section is obtained from (19)
by integrating over all solid angles and then
dividing by two, since in each scattering event
two protons are ejected with no means for dis-
tinguishing the initial particle from the target
particle.

II. NEUTRON-PROTON CROSS SECTION IN THE
RIGOROUS SCATTERING THEORY

The extension of the method of partial waves
to scattering problems with non-central forces,
like the tensor force, has been made by Rarita
and Schwinger. ' Since their final results are
somewhat condensed, however, we shall Erst
put them in a form more suitable for computation
a,nd then apply them to the neutron-pmton
scattering with the symmetric force model.

We consider the triplet n —p scattering under
a non-central force of potential V(r, e~, e~) which
rommutes with the total angular momentum

J=L+S, with the magnitude of the spin S', and
with the space exchange operator I'~. U will, in

general, not commute with any of the com-
ponents of the orbital angular momentum L, or
of the spin angular momentum S. These are the
commutation properties of the tensor force. To
facilitate the phase shift analysis, which is the
basis of the method of partial waves, it is con-
venient to transform to the SI.Jns representation
in which states are labeled according to the value
of total spin S, total orbital angular momentum
I, total angular momentum J, and z-component
of Jequal to m. In this representation we de6ne a
set of functions I'I,J", the "normalized spherical
harmonics with spin,

" which are eigenfunctions
of the operators S, L, J', J„and I'~. The total
spin S=i and the eigenvalue of the exchange
operator, P~, is the parity (—1)~.

These functions, FI.J, may be obtained by a
unitary transformation applied to the orthogonal
functions Yimq(8, y)y~„hwich are appropriate
for the SI.mL, m, representation, where the I'J. I,

are the ordinary spherical harmonics and the y~.,
are the triplet spin functions (m, = 1, 0, —1).

1

Fg~~ —— Q YL,.m —~,ym.

X (Si.m —n4m,
~

SI,Jm),
(20)

L,+I
YL~rrl, xm, —— P FI.

J=L—1

For a given value of J we must have ~m~ =J
and I. one of the values J—1, J, 1+1 as is
shown by the vector model. Condon and
Shortley' give a table for the transformation
coeScients which is reproduced in (21) for the
special case of m~ =0.

(SI.Om,
~
SI.Jn4)

0

(2+1 q
&

&21,+I)
(21)

i. 1y &
~ J. —

J=l. 1—
(2(21.+1)& 421.+1)

'o Condon and Shortley, Theory of Atomic Spectre (The
Macmillan Company, New York, 1935},p. 76, Table 2'.
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Taking the s axis as the direction of propaga-
tion of the incident triplet wave and using this
same direction as axis of quantization for the
angular momentum„we make the usual ex-
pansion:

Cl«qg«~ = Q p (2L+ 1)f
L —0 tel = -- i

& [a.(kr) /kr][«/(»-+1) ]'

interaction. The complete wave function for the
scattering problem is obtained by first writing
the incident plane wave as a sum of partial
waves in the SLJm representation and then
replacing the radial function gl. (kr) by

exp(i bl, ~™)u g.
~"(r),

where uq~"'(r) is the radial function with the
non-central interaction and 5L,

J is the phase
shift for this partial wave:

where
&& Yg.o(8)x n,,c«„

(22)
ul ~"'(r) sin(kr 2Ls+—bl. J"')

g L (kr) = (skr/2) &J~~(kr) si n(kr ,'L~)——

is the Lth radial wave function in the absence of

Subtracting the incident wave gives for the
asymptotic form of the scattered wave, in the
customary way,

1 00 L+1
[4s(2I +1)]&}exp(2ibI, ""')—1}(SLJm. ! SLOm. )I'I.' a«.

2zgr m,-—s 1.-0 J=L—i

Q [4n(2L+1)]&}exp(2ib~ "")—1}(SLm, m. '—m, '!SLJm.)
2ikr m„m, ~,J

X(SLJm, !SLOm, ) Fr. . .—,(8,y)x, a, .

The coefficient of a«, in this formula is the matrix element S«. «.(8,y) of (2) given in the
Born approximation by (6).

Application of the table of Condon and Shortley gives:

00 L —1
2 L4 (2L+1)]'~io(8) [exp(2ib ' ') —1]+~[exp(2ibr, ~ ') —1]

2ik i-0 2(2L,+1)

l
L+2

+ [exp(2ibr, ~+' ') —1],
2(2L,+1) !

Nl.„=1~

00 Fg, g(8, p) L' 1—
So)= — Q [4s(2L+1)]L — [exp(2ibg~ ' ') —1]

2zk L-i [2L(L+1)]& 2L+1

(L+')
1—[exp(2ib~~ ') —1]+ [exp(2ibI. ~+' ') —1],

00

& [4~(2L+1)]'~~2(8 &)DL —1)L(L+1)(L+2)]'
2ik L=2

2L(2L+1)

exp(2ibr, ~ ' ') —1 exp(2ib~L" ') —1 exp(2ibl. ~+' ') —1
lX +

2L(I+1) (2L+1)(2L+2)

(23)

QO L(L+1) &

[4x(2L+1)]&7'I. g(8, y)—
2Q L=& 2 2L+1 2L+1

exp(2ibr~ ")—1 exp(2ibL~+") —1
+

L(L+1) & exp(2ib ~ '') —1 e—xp(2ibg +' ') —1
& io= Q [4~(2L+1)]&YI~(8,s) +

2zk I-i 2 2I +1 2I +1
Zqsatioe (Z3) costi@lcd on 8bcxt Page)

00 I L+1
m.; = 0& Soo = Q [4x(2L+1)]&Fqa)8) [exp(2ibl, ' ') —1]+ [exp(2ibl. ~+")—1]

2Zk I--o 2L+1 !'
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Sj, &. change TL,& in S» to FI, & and replace the phase shifts by those for m, = —1;

m= —1&'So ~. change FL,~ in So~ to FI„~and replace the phase shifts;

i.S» .. replace the phase shifts in S~j by those for m, = —1.

N"P CROSS SECTION C. ~ G. IOOME'V

SYMMETRICAL FORCE
I
I
IEXACT

BORN APPROX

N

'O

Actually, for interactions of the symmetry of
the tensor force the phase shifts for m, =1 and

for m, = —1 are the same. In the averaging
process (3) the amplitudes with m, =1 and —1

give the same contribution to the sum. It is also
understood in the formulas that the phase shifts
8I.J ' which appear formally must obey the con-
ditions Im. I

~J and 0»J; otherwise they are
to be replaced by zero.

To obtain numerical values for the phase
shifts it is necessary to integrate the radial wave
equations for the functions uz, ~"(r). These equa-
tions are obtained from the Schrodinger equation

0
lO 2 cos e -I .0

(&'+&')P —(M/h') V(r, e), e~)P =0

by expanding f in the form

ao J J+&

(24)

t2
S INGLE T CROSS SECTION

IOO MEV

BORN APPROX

EXAC T

~s~l

I
I
I
I
I
I
I
I
I

J=O m~—J I J—1
(l/r)~ Jm(r)F Jm

Using the orthogonality of the spin angular func-
tions FI,~ and the fact that Vcommutes with J,
we find for each Jm three coupled equations for
NI, ~" with I.=J $„J,J+1—:

0
lo 2 -2

cos e
-6 -I 0

M
VI I. ~(r)ug ~ "(r)=0. (25)

$2 I'~J—1

TRIPLET CROSS SECTION

IOQ MEY

BORN APPROX

EXACT

Vl, I,'~(r) is the matrix element (FI, , VEr, ~ ).
These matrix elements are easily shown to be
independent of m and are given for the tensor
force S~~ in the appendix of Rarita's and
Schwinger's paper:

O

2 4

0
10 cos 8 -6

(~—1)J—1 —2
2J+1

$1.1. J = J

6[2(7+1))&
0

2J+1
(26)

FIG. 5. The rigorous scattering theorY and the Born
approximation compared at 100 Mev for the neutron-
proton scattering with sYmmetrical forces. (a) the complete
differential cross section; {b} the singlet cross section;
(c) the triplet cross section.

6L~(~+1)3' 2(J+2)
1 0

21+1 2J+1
Actually the three Eqs. (25) split into two
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coupled equations for ug ~ and uJ+~ and one
equation for N,g~ alone. This is an immediate
consequence of the fact that t/' commutes with
the spatial exchange operator and hence cannot
couple states of diferent parity.

Integration of the equations is greatly sim-

plified for the case of a square well potential.
Following the procedure of Rarita and Schwinger,
one can express the solutions inside the well for
ug ~~" and I~+i~ by power series" involving
two arbitrary constants which must be adjusted
to give continuity of the functions and their
derivatives at the boundary. The solution out-
side will be a linear combination of the regular
solution g 1,(kr) and the irregular solution

g r, i(kr) which has asymptotic form

sin(kr ——,'L,s+ br, ~").
Since

g r, r(kr) = [mrkr/2j J I, I(kr)

(—1)~ cos(kr ~sL7r),

the outside solutions are:

ur, "=AL~™I CO$8r, "gr, (kr)

+(—l)~ sinhr~"g-z, -i(kr) }. (27)

This solution must represent the incident wave
plus an outgoing spherical wave. From (22), (20),
(21), and (24) the incident wave is represented by

(ur, '")g.. Cr, '"gl, (kr), —— (28)
where

L4s (2L+1)1IJm- i ~(SLJm
~
SLOm). (28a)

If the difference between (27) and (28) is to be
an outgoing wave proportional to exp(ikr), the
constant AI.~ must be chosen so that

uL~" = Cr~" exp(iver~") Icosbl~ g~(kr)

+(—1)~ i sbn~r"g r. r(kr) }. (29)

In this formula the index m is identical with m„
the projection of the spin in the incident direc-
tion, since the orbital angular momentum of the
incident wave with respect to this direction is
zero. Equating the values and derivatives on
both sides of the boundary gives the pair of

n W. Rarita and J. Schwinger, Phys. Rev. 59, 436
(1941), Eqs. (10) and (11).

N-P CROSS SECTION Co&G. 200 MEV

SYMMETRICAL FORCE MODEL

E XACT

BOR N APP ROX

I

I
I

I
f
I

I
I

~s

Ll
IO

~+
2'

phase shifts bJ i.
~ ' and bJ+~~ ' for each J and

m, =a1, 0. The phase shifts" bJ~m and the
singlet phase shifts are obtained in the usual way.

The method given above has been applied to
the neutron-proton scattering with the sym-
metrical force model and calculations performed
for 100 and 200 Mev. Figure Sa, b, c and Fig. 6
give the results in graphical form. For the total
scattering cross section one finds:

Symm. forces:

O„p=0.129X10 "cm', 100 Mev,
(30)

0'& p 0.090 X 10 '4 cm', 200 Mev.

Experiments by E. M. McMillan and co-
workers" with 90-Mev neutrons give

(0 083+0.004) X10 "cm'
for the total cross section, in serious disagree-
ment with the theory. Judging from the Born
approximation, the discrepancy should be even
larger for the pure exchange forces. Furthermore,
the measured angular distribution is qualita-
tively very much in disagreement with the sym-
metrical theory. Experimentally the ratio

a (180')/o (90')

is about 3, whereas the curve of Fig. Sa shows
about 10. Although the angular distribution has
not been measured to very small angles in the
center of mass system for the neutrons (angles
near 90' in the laboratory for the recoil protons)

'~ Only the phases bp J~' enter. This is because
(SL=JJrn [ SJOrn) vanishes for m =0 as can be seen from
{21)."L. J. Cook, E. M. McMillan, J. M. Peterson, and
D. C. Sewell, Phys. Rev. 72, 1264 (1947).

2 Gos 0 -2

FrG. 6. Neutron-proton cross section at 200 Mev for
symmetrical forces. Comparison of the rigorous theory
with the Born approximation.
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'I'ABLE III. Phase shifts (in radians) for the neutron-proton
scattering at 100 Mev with the symmetrical force model.

Coupled triplet phases
Exact Born

K100 0,3022 0.2920|100 0 0

Exact Born

g pie

gplp

Kl ju

l~ sip

0.5743
O.OZ71
0.1047
0.0500

0.9137
0
0.1535
0

Kpll
gpll
Kpil

ip

0.4191
0,0498

-- 0.2602-0.0773

0.1976
0

--0.5b24
0

K 1""
f104

K000
fb00

—0.1553—0.0087—0.0578
0.0059

—0.18eu A. 1st

0 $10l
-0.0578 Kp&'

0 fspl

—0.0064
0.0059
0.0911—0.0087

—0,0358
0
U.

O'tbsp,

k

0

K p&0 0.2413 0.1416 K2&l 0.1292 0.0443—0.0122 0 f'pbl 0.0095 0
K430 Q 0515 0 0413 K401 0 0610 0 0559

0.0095 0 —0.0122 0

Kb40 -0.0055 —0.0068 K041 —0.0016 —0.0029
f040 Q 0 f041 Q 0
Kb40 —0.0017 -0.0018 Kb41 0.0022 0.0022
g040 Q 0 3'041 Q 0

J=5
K400
(450
Kpbp
f050

0.0026
0
0.0004
0

0.0018
0
0.0003
0

K40' 0.0016 0.0010
fpbl Q 0
Kpbl -0.0006 -0.0004
fpbl Q 0

Uncoupled triplet phases
hJ» Exact Born

Singlet phases
L Exact Born

gill
b001

~1
$441

bb pl

—0.3214
0.6777—0.0219
O.'0096

—0.0002

-0,3546
0.3937—0.0241
0.0079—0.0002

0.3193-0.7438
0.1577-0.0562
0.0028-0.0007

0.3Z40-1.0724
0.1323—0.0730
0.0027-0.0006

the indication is that the cross section is sym-
metrical about 90 . This would imply a potential
of the type

V= —,'(1+P~)J(r, si, e2),

in which ordinary and exchange forces enter with
equal weight. Investigation of the cross section
with such a potential, taking (1/r) exp( —r/u) for
the spatial dependence, is being carried on by
Serber.

Relativistic corrections to the cross section
would be expected to play a role at energies com-
parable with the rest energy of the meson. Since
it is the energy in the center of mass system
which is important for this consideration it is
unlikely that at 100 Mev in the laboratory any
relativistic efFects could account for the dis-

crepancy between the theory and the experi-
ment. An estimate of the corrections to the total
cross section can be obtained from the formulas
of Snyder and Marshak" which are valid in the
Born approximation. At 100 Mev the difFerences
are only 5—10 percent but they increase rapidly
with increasing energy

'4 H. Snyder and R. E. Marshak, Phys. Rev. 'T2, 1253
{1947).

From the curves of Fig, 5 and Fig. 6 we can
estimate the reliability of the Born approxima-
tion used in Section I. The weakness of the
approximation is especially evident from Fig. Sb,
showing the singlet scattering cross section at 100
Mev. Jn the Born approximation, the total
singlet cross set. tion is 0.39/10 "cm', while the
cxdc t calculation gives 0.1 7 Q 10 '" cm '. Such
large differences have already been noticed by
('amac and Bethe. ' The primary reason for the
discrepancy is the failure of the approximation
for the I.=1 phase shift. Comparison of the
exact phase shifts and the Born phase shifts as
given in Table III shows that this is the only
serious difference for the singlet scattering. This
may be attributed to the fact that for odd singlet
states with the symmetrical model the potential
is especially large, —3 'U,„, . For the triplet
phases the differences between the exact calcula-
tion and the Born approximation are much more
erratic but the resulting cross sections, as shown
in Fig. Sc, agree somewhat better than for the
singlet case. Presumably, this is due to accidental
cancellation of errors. We must conclude that the
Born approximation is untrustworthy for ener-
gies as low as 100 Mev. At 200 Mev, however,
the situation is much improved as is shown by the
curves in Fig. 6. Both the singlet and triplet
parts of the cross section are also in much better
agreement with the approximation.

The triplet phases in the Born approximation
are obtained from a generalization of the well-
known formula (18) valid for central forces.
Since this formula may be of some value for
estimating phases at energies high enough where
the Born approximation is valid it is included in
the Appendix. Table III gives the real and
imaginary parts of the phases using the notation

Jme Q Joe+j|. Jsrls

A check on the calculations can be made by
seeing if the real and imaginary parts of the
phases obey the relations (42), (43), and (44) of
Rarita and Schwinger:"

XJ 1
' —EJ 1 '=XJ 1

' —XJ
fJ-1 (J+1 l fJ—1 fJ+1 y

exp(2ibJ )~') exp(2ibg+—~~')

=exp(2ibz & ') exp(2ibJ—+g ).
'~ W. Rarita and J. Schwinger, Phys. Rev. 59, 436

(1941), especially page 445.
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In conclusion we should like to thank Professor
R. E. Marshak and Professor G. E. Uhlenbeck
for interesting discussions.

Vor central forces the phase shifts for diBerent
angular momenta I. are given in the Born ap-

proximation by the formula (18) as obtained in
Mott and Massey, page 28. Applying the same
method to the Eqs. (25), starting from the un-

perturbed solution

ul.'" Ci,——'" g I, (kr),

given by (28), we find an expression for the phase
shift, correct to the hrst order in the potential:

L2(2L'+1) j&i
' (SL'Jm, lSL'Om, ) gi, (kr)gl. (kr) Vii. ~(r)dr

3I Jo

[2(2I.+1)]&(SLJm,
l
SLOm, )

In spite of the factor i~' ~ in the summation,
these phase shifts are real since this factor is real
for 1.' —L equal to 0 or 2 and VI,I,.~ is equal to
zero if I and I' differ by unity. In the higher
approximation the phase shifts are in general
complex. It is not very difFicult to show that if
in the rigorous expressions (23) for the 3~, ~,(8, e)
one replaces exp(2itii, s"') —1 by 2ibi, "" with
b~~ ' given by the approximate formula above,
the Born approximation of Section I results. This
is completely analogous to the results for central
for ces.

As an example, for the symmetrical force
model we find, using (26), (11), (12b), and (21):

M p 2L,
ti&~+''=

I
1 —y l

' gi, 'J(r)dr
kh' I 2L+3J &e

6(I +1)
g r,g x+2J(r) d. r,

2I+3 ~p

hZ t' 2L+2q
i, r in ,

l
1 ~ l

t gi, 2J(r)dr
kh E 2r. 1) &, —

6(L—1)
+7 g Lg L 2J(r)d»-

2I.—1 ~p

cV t' 2L
8i,~+i 0=

l
1 —y l g 'J(r)dr

kh' E 2L+3) ~,

I even:
Triplet phases 6(L,+2)

+7 g~gi+2J(r)« .
2I +3 ~ 0

M ( 2L+2q
b,~-i i=

l

1 —
Y l g, 'J(r)dr

kh' I 2L 1) &. - I- odd: Phases are ——', times those for even I-.

oo

gi,g», 2J(r)dr, I, even:
21.—& "o

Singlet phases

lii, ~ ' —— (1+2') gi, 'J(r)dr,
kh L odd: Phases are —3 times those for even I.


