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J. HARDEEii AXI) (.. 1I. '10%i%VS

8el/ Telephone Jaboratories, Vurray Hill, ~Ver Jersey

(Received October 9, 1947}

Methods are given for the computation of nuclear quadrupole interactions in molecules.
They apply primarily to the interpretation of microwave spectra of linear and symmetric top
molecules in which either one or two nuclei on the molecular axis show quadrupole coupling to
the molecular field. Tables are given of the energy values, based on Casimir's formula, for the
quadrupole coupling of a single nucleus, and also of transformation coefficients for application
to the case of intermediate coupling when two nuclei are involved. Spectral intensities are
discussed brieHy. Examples are given to illustrate various aspects of the theory. The molecules
BrCN and C1CN show quadrupole eEects resulting from the nitrogen nucleus as well as to the
halogen. In the latter case, the intermediate coupling theory is required for a complete explana-
tion of the observed microwave-absorption lines, as there are significant deviations from the
first-order linear approximation.

'UCLEAR quadrupole effects in molecules
were first discovered by Rabi' and his

associates by the use of molecular beam spec-
troscopy. Recently the resolution afforded by
microwave spectroscopy has made possible de-
tection and measurement of these effects in
microwave-absorption spectra of gases. It ap-
pears that nuclear quadrupole effects will be
found in many spectra in the microwave region
and will yield considerable nuclear and molecular
information. Casimir's formula~ for nuclear quad-
rupole-coupling energies in an isolated atom has
previously been extended' ' to cases where a
single atom shows quadrupole coupling in a linear
Or symmetric top molecule. There are also a

' J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, and J. R.
Zacharias, Phys. Rev. 57, 677 (1940).' H. B. G. Casimir, On the Interaction between Atomic
Nuclei and Ekctrons (Teyler's Tweede Genootschap, E. F.
Bohn, Haarlem, 1936).' A. Nordsieck, Phys. Rev. 58, 310 (1940).' D. K. Coles and W. E.Good, Phys. Rev. 70, 979 (1946}.

"' J. H. Van Uleck, Phys. Rev. 71, 468 (1947).

number of interesting molecules containing tv o
atoms with measurable quadrupole coupling; a
comparison between experimental and theoreti-
cally expected spectra of some of these has
already been published. ' The theory applicable
to these molecules, as well as to similar cases
involving other types of coupling, is developed
here. This theory, plus tables which are included,
allow a fairly convenient method for interpreting
quadrupole eft'ects caused by either one or two
nuclei on the axis of a linear or symmetric top
molecule. Since experimental measurements of
quadrupole eAects in molecules and their theo-
retical explanation have developed together, a
number of cases which test theoretical expecta-
tions are available, and these are brieQy discussed.

The Hamiltonian for interaction between a
nuclear quadrupole moment and molecular elec-

s C. H. Townes, A. N. Holden, J. Bardeen, and F. R.
Merritt, Phys. Rev. 71, 644 (1947); C. H. Townes, A. N.
Holden, and F. R. Merritt, Phys. Rev. 72, 513 (1947).
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YAM. E I. Values of { -,'-C{C+1)—I{I+1)J{J+1)g/2I{2I —1)(2J—1){2J+3), where C= F{F+1)—I(I+1)—J(J+1).
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tric fields is given by Casimir's expression'

H(I, J) =2eQI Q e~(3cos'it~ —1)/Ri, 'I&„F(I,J), (1)

where

3(I J)'+k(I J) —~(1+1)~(I+1)
F(I J)=

2J(2J—1)2I(2I—1)

e =electronic charge,
Q =quadrupole moment of nucleus (dehned

below),
RI, = radius vector from nucleus to individual

charge e~ in molecule,
8j,-=angle between R~ and an axis fixed in

space,
I =nuclear spin in units of h/2n,

J=angular momentum caused by molecu-
lar rotation in units of Ij',/2s. .

The average is taken over the normal elec-
tronic state, the appropriate vibrational state,
and the rotational state with mg ——J, that is,
the one for which the projection of J along the
fixed axis is a maximum.

When applied to a linear molecule, or to a
symmetric top molecule with the nucleus on the
axis of symmetry, Casimir's expression reduces to'

II(I, J) =eQg(3 cos'8 —1),„F(I,J), (2)

where 8 is now the angle between the molecular
axis and the axis fixed in space, and the average
is over the rotational wave function with mg =J.
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Our definition of q differs from previous usage,
as will be discussed below. If we define

V =electrostatic potential produced by all

i barges except those inside a sInall

sphere surrounding the nucleus,
"=coordinate along the molecular axis,

theI1 Our Q ls defined as

q =O' V/Bs'—

Notation for the expression eQ(8' V/Bz') is in a
rather confused state, a number of different
forms having appeared in the literature. Kellogg
et cl.' and Nordsieck' define and use quantities

q and q', where

q'= (1/2e)(8'V/Bs') and q = ( —2J/(2 7+3))q'.

In addition, they use a quantity written as
O'V/Be', which is our A~V/Bs' divided by e. Coles

and Good, 4 in an expression which will be dis-
cussed later, use Q for the quadrupole moment,
which is our Q multiplied by —(2I+3)/2I. They
also use a symbol q which is twice Kellogg and
Nordsieck's q'. Van Uleck' has given an expres-
sion with a symbol Q diAering from the usual Q
by a factor of 4. The Q defined here appears to
he that most widely used, and is

1
-[pr'(3 cos'8-1) jA„
e

where the average is over the nuclear charge
density p and 8 is the angle between the spin
vector and the radius r to the element of charge.
Since there is already so much notational con-
fusion, and notation used in the past does not

' B. P. Dailey, R. L. Kyhl, M. K. P. Strandberg, J. H.
Van Vleck, and E. B. Q'ilson, Jr. , Phys. Rev. 70, 984
(&946).
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seem to us particularly suited to our discussion,
we have taken the liberty of rede6ning the
symbol g as the fundamenta1 molecular quantity
8~ V/8s'.

QUADRUPOLE COUPLING FOR A
SINGLE NUCLEUS

If only one nucleus of a linear molecule sho~s
appreciable coupling, and if no vibrational bend-
ing modes are excited, the energy caused by
nuclear quadrupole effects may be expressed in
terms of the quantum number Ii for the total
angular momentum, F=I+J. The energy is' '

4 C(C+ 1) I(I+1)—J(J+1)
Z = —eQg (3)

2I(2I—1)(2J—1)(2J+3)
where

C= F(F+1) I(I+1)——J(J+1).
Table I gives the values of the factor multi-

plying —eQg in Eq. (3) for all possible values
of F, for 0(J(5, and for 1 & I&9/2. If J=O or
I&I, the quadrupole-coupling energy is identi-
cally zero. This table for energy levels plus
published tables for relative intensities of differ-
ent transitions' allows a rapid calculation of the
quadrupole splitting of molecular rotational lines
involving low values of J. It may be noted from
the table that when F=J+I or F=J I, the-
interaction energy is independent of I. The tabu-
lated function becomes, indeed, J/4(2 J+3) when
F=J+I and (J+1)/4(2J—1) when F=J I. —
If I= 1 and F=J, it becomes —0.25. The table
also shows that for any I and J, positive quanti-
ties are obtained for extreme vaIues of F, and
negative quantities for intermediate Ii's. This is
because the interaction varies approximateIy as
the square of the cosine between I and J.

Van Vleck' and Coles and Good' showed that
for a single nucleus in a symmetric top mole-
cule, expression (3) should be multiplied by
(1—3E'/J(J+1)), where E is the quantum
number for angular momentum about the sym-
metry axis. Their result follows from the fact
that (3 cos~8 —1) averaged over the symmetric
top wave function, with the magnetic quantum
number mJ equal to the total angular mo-
mentum J, is (—2J/(2J+3))(1 —3E'/J(J+1)).

I E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York 1935}.

The linear molecule is a special case of the sym-
metric top in which X=O, and in this case
(3 cos28 —1)A. is —2J'/(2 J+3).Good examples of
quadrupole effects in a symmetric top molecule
are aR'orded by the now famous ammonia in-
version spectrum, ~ ' and by the rotational spectra
of CH3I, CH38r, and CHIC1. ' Table I may be
used for energy levels of symmetric top mole-
cules if the correction factor (1—3E2/J(J+1))
is applied.

The expression for quadrupole energy levels
in a symmetric top molecule also applies to
linear molecules excited to bending vibrational
states. Because of the degeneracy of the bending
modes of a linear molecule, excitation of one of
these modes produces an angular momentum
around the molecu1ar axis. Under this condition
the moIecule is almost a symmetric top, its two
larger moments of inertia generally differing by
about one part in a thousand. It should, there-
fore, be expected that the symmetric top formula
for quadrupole splitting holds to a high degree
of accuracy if E is replaced by l, the quantum
number for angular momentum produced by this
type of vibration. The result may be more rigor-
ously demonstrated by calculating (3 cos'8 —1)Ay.

The wave functions for each of the two states
of a molecule undergoing a bending vibration
involve a combination of symmetric top functions
with l positive and l negative. " The quantity
(3 cos'8 —1)A„ is, however, independent of the
sign of l and becomes

—2J ( 3l'

2J+3 & J(J+1))
Examples of quadrupole splitting in linear mole-
cules with excited bending modes are afforded
by BrCN and ClCN. Spectra of their excited
molecules agree well with the above theory. '

QUADRUPOLE COUPLING FOR TVfO NUCLEI

In case there are two nuclei with angular
momenta I~ and I2 contributing to the inter-
action, the Hamiltonian is a combination of
functions such as expression (2):

II=II)(Ig, J)+II'(I2, J). (4)
~ %.Gordy, A. G. Smith, and J.W. Simmons, Phys. Rev.

71, 917 (1947};72, 249 (1947};72, 344 (1947}.' See, for example, G. Herzberg, Infrared and Reran
Spectra of Polyatomic Modules (D. Van Nostrand Com-
pany, Inc. , New York, 1945},p. 377.
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TABLE II. Transformation coefficients c(F», F~) for II =II, I2= 1.
z=I+J+I:+1

F2
Ft

(
(Z —2F —1){Z—2F)(Z -2J -1)(X—2J)

2J(2J+1)2F(2F +1)
2(Z —2E')(X —2I —1)Z(Z —2J -1) &

2J(2J+2)2F(2F +1)

(
{~~' —21 —1)(Z —2I)X(2+1) &

{2J+1)(2J+2)2F(2F +1)

(
2(E —2F —»)(Z —2I —1)Z(2 —2J)

2J{2J+1)2F(2F+2)
2 (F —I ){2F+2) +2 (X —2F —1)(~' —2I )

{2J(2J+2)2F{2F+2) )&

2(Z —2J —]){Z—21 ){2;—2I)(2;+I) ~

(2J+1)(2J+2)2F (2F +2)

F+1

{5—2I —1){5—2I)Z(5+1)
2J(2J+1)(2F+1)(2F+2)
2(2' —2F —1)(X —2I )(2 —2J) (~'+1)

2J(2J+2){2F+1){2F+2)
{~'—2J—1)(X—2J)(Z —2F —1)(2' —2F)

(2J+1)(2J+2)(2F+1)(2F+2)

We shall continue to represent the total angular
momentum of the molecule by F, and introduce,
in addition, the quantity F1, which is the vector
sum of J a,nd the spin Ii of the erst nucleus, ancl

the quantity F2, which is the vector sum of J
and the spin I~ of the second nucleus. Wave
functions for the combined system may be
obtained by first obtaining functions with I'»

fixed:

4'i(F, Fi) = Q c(Fi, Fg)4'2(F, F-). (5)

'I'he matrix c(Fi, F2) is unitary, and the phases
may be chosen so that the coefficients are real.

and then combining I~ with F» to obtain the total
angular momentum F:

F =~&+I2 F=
I Fi+I21

Let +i(F, Fi) be the wave functions for states
specified by the quantum numbers Ii and F».
Different values of I'», when combined with I2,
may lead to the same value of F. Thus there
may be a number of wave functions, specified
by different I'», which all have the same total
angular momentum, I'". If the interaction H2 is
negligible, the states specified by different F,
hut with the same value of F», will all have the
same energy. This degeneracy is removed if H2 is
;i.ppreciable.

Alternatively, it would be possible to first
combine I2 with J to get states for fixed F2, and
then combine F2 with I» to get states for fixed I'.
The number of different states with given Ii is
just the same as before, and the two sets of wave
functions are linearly related. Thus we may
write

The reverse transformation is then

4'2(F, Fg) = Q c(Fi, F2)%'i(F, Fi). (6)

As mill be shown below, the secular determi-
nant for the energy levels can be set up from the
transformation matrix and the energy values
for the individual interactions.

An expression for the matrix coefficients may
be found by expanding both @i(F, Fi) and
%,(F, F,) in terms of a fundamental set of wave
functions characterized by the quantum num-
bers (rnb mm, mq) representing the components
of I1, I2, and J. If these expansions are sub-
stituted into Eq. (5), and the coefficients of the
wave functions of the fundamental set on the two
sides are equated, a set of linear equations is
obtained for c(Fi, F2). These may be solved
simply in a forrnal way, but the resulting series
expression is difficult to use for numerical calcu-
lations. Dr. G. H. Shortley has pointed out to
us that Racah»1 recently obtained a closed for-
mula f'or the coefficients, which, although still
rather involved, is simpler to use than one which
we had developed independently and used in

our calculations. We sha11 accordingly refer to
Racah's paper for the formula and its derivation.
We will not reproduce it here because of its
length. Our coefficient becomes in Racah's nota-
tion:

c(F&, F,) =(JI,(F,)I,Fi JI,(F,)I,F). (7)

The closed formula of Racah" is his Eq. (5) of
III, which refers back to his Eq. (36') of II.

Since the general expression is complicated,
ave have computed expressions for the coeffi-

"G. Racah„ I Phys. Rex'. 61, 186 {1942); II 62, 438
{1942);63, III 367 (1943).
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Toast n III. Transformation coefficients c(F&, F:) for Iq I, ——I&-=~+~+~+5

Fi —F

8 (&-2F-2)(Z —2F—1)(Z—2F)(Z —2J-2)(Z —2J—1)(Z —2J)
J

2 (2F—1)2F(2F+ 1)(2J—1)2J(2J+ 1)
1 8(Z- 1)(X—2F—1)(5—2F)(E-2J-2){Z—2J-1)(Z—2I-2)J—
2 (2F—1)2F(2F+ 1)(2J—1)(2J+ 1){23+2)

1 (Z- 1)Z(Z —2F)(Z-2J—2)(Z-2I —2) (Z—2I—1)J+-
2 (2F-1)2F(2F+1}2J(2J+1)(2J+8)

(&-1)X(X+1)(Z—2I—2) (Z—2I—1}{Z—2l)J~
2 (2F—1)2F(2F+1)(2J+1)(2J+2)(2J+3)

Fi =F+a

8 8(&—1)X(X—2F—2)(Z—2J)(Z—2I—2)(Z —2l—1}J—
2 2F{2F+1)(2F+8)(2J—l)2J{2J+1)

1 [2F(—SI-J+SF+~s)+8(Z-2F—1)(Z—2I—2)] (Z(Z —2I- 1))&J—
2 (2F(2F+1) (2 F+8 }(2J-1)(2J+1)(2J+2))&

1 —[2F(-SI+J+SF+$}+3(Z-2F)(Z—2l-1)j {(Z-2F—1)(Z—2J—1))&J+-
2 (2F(2F+1}(2F+3)2J(2J+1)(2J+8))&

3(&+1)(&—2F—1){Z—2F) (Z—2J—2){Z-2J-1) (Z —2I)J+-
2 2F(2F+1)(2F+8)(2J+1)(2J+2)(2J+3)

8(Z —1)(Z—2F—2)(Z-2F—1)(Z —2J—1)(Z —2J)(Z—2I—2)

(2F-1)(2F+1)(2F+2)(2J-1)2J(2 J+ 1)
[2(2F—1)(Z —2l —1)+(5—2F)(-SI+3J+F- -';)] ((Z—2F—1){Z-2J—1))i

((2F—1)(2F+1){2F+2)(2J—1)(2J+1)(2J+2))&

[{2F—1)(Z-2I)+(Z—2F)(-SI+SJ—F+~s)] ((X)(Z-21-1))&

{(2F-1)(2F+1}(2F+2}2J{2J+1)(2J+8)}&

SZ(Z+1)(X-2F) (Z -2J—2) (Z—2I—1)(Z —2I)

(2F-1)(2F+1)(2F+2)(2J+1){2J+2)(2J+3)
F~ —F+&

(
{&-1)&(&+1)(Z—2I—2){Z-2I—1)(Z —2l)

(2F+1){2F+2){2F+3)(2J—1)2J(2J+1)

8&(2+1)(&-2F—2) (Z —2 9){Z—2I—1){Z-2l)

(2F+1)(2F+2)(2F+3)(2J—1)(2J+1)(2J+2)

(
3(X+1)(Z-2F-2)(Z-2F—1)(Z—2J—1){Z—2J) (Z —2l)

{2F+1)(2F+2)(2F+3)2J(2J+1)(2J+3)
(Z —2F—2)(Z—2F—1){Z—2F) (Z —2J-2) (Z —2J—1){Z—2J)

(2F+ 1){2F+2)(2F+8) (2 J+1)(2J+2) (2J+8)

cients c(Ft, Fs) for two cases

(1) It = 1; Is, J arbitrary
(2) I& = —', '

, I&, J arbitrary.

The values are listed in Tables I I and I I I . These
should be sufFicient for a large fraction of the
molecules of practical interest.

We turn now to the calculation of the energy
levels. In case both interactions, H1 and H2, are
appreciable, the eigenfunctions are not given by
either 0 &(F, Ft) or 4's(F, Fs), but by an appropri-
ate linear combination of either set. Let the
correct wave function be given by the expansion

~t (F) =g a(F,)e,(F, F,)

The Hamiltonian equation H+ =X'."&k' becomes

IIt(&t, J)a(Ft)+t(F, Ft)

+Z IIs(&s J)a(Ft)Z ~(Ft Fs)+s(F, Fs)

E Z a(F~)+ (F, F ), (9)

in which use has been made of (5). By use of
the relations

IIg(I), J)%'g(F, F&) =Et(F,)% &(F, Fg), (10)
II@(Is( J)%"s(Fy Fs) Es(Fs) ks(F~ Fo) y (11)

followed by replacement of 4 s by (6), Eq. (9)
reduces to

(A (Ft, Fg) +E(Ft) —E)a(Ft)

+ Q A (F„Fg')a(Ft') =0, (12)

where

A (Fg, Ft') =P c(Fi, Fs)c(Ft', Fs)Es(Fs). (13)

The energies are determined by setting the
determinant of the coeScients of the a(F&) equal
to zero. If the interaction H2 may be treated as
a smal 1 perturbation and there is n o degeneracy
eiiergy values to the first order are

E=E(Ft) +A (Fi, Ft). (14)

In general, the complete secular determinant
must be solved.

It will be noted that this method for setting
up the secular determinant makes no use of the
specific form of the operator for the quadrupole
interaction. The method can be used for any
Hamiltonian of the general form of Eq. (4).

Another method for setting up the secular
determinant is to calculate the elements of the
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determinant directly,

!

A(Fi, Fg') = %'g(F, Fg')Hm(I2, J)+g(F, Fg)dr,

making use of the form of II2(I2, J).This method
has recently been applied by Foley" to the case
of a homonuclear diatomic molecule. I t may be
easier to use in some cases than the method
described above, particularly if only first-order
effects are desired. It is perhaps also the easiest
method to use if more than two nuclei are in-
volved in quadrupole interactions.

Because of thc form of thc interaction operator

(Eq. (1)), the matrix elements of (I2 J) and of
(I~.J)' are required. Condon and Shortley (p. 71)
give a general expression for the matrix elements
of the scalar product of any two vectors P and Q.
Use may be made of their results if we make the
correlation

J o$ ja)

Q= J.
The non-vanishing matrix elements of I2 J, as
obtained from the expressions of Condon and
Shortley, are

(F| I~ Fl&. J~ Fi I~ F) =-(Fil JiFi)(F(F+1)—F (F +1)—I-(I2+1))

(Fg, Ig, F!Ig J!Fg 1, I2, F—)
= —-', (F|iJ!Fg 1) ((F+Fg —Ig)(F+I2—Fg+1)(F—+Fg+I2+1)(Fg+I. F) )', (16)—

(Fi, I, Fi» Ji Fi+1, I2, F)

= —l(Fii J~ Fi+&) {(F+Fi I2+1)(F—+I2 Fi)(F+F—i+I2+2)(I'iW I2 F+1)-}',—

ln whlcll

J(J+1)—Ii(Ii+1)+Fi(F1+1)
(Fgi JiF|)=

2'(F1+1)
(Fg —J+Ig) (Fg+JIg) (Fg+J'+—Ii+ 1)(J+Ii—Fi+1)

(F, i
JIF, —1) =

4Fg'(2Fg —1)(2Fg+1)
(17)

(Fg —J+Ig j1)(Fg+J Ig+1)(F,+J+I,—+2)(J+Ig F|)—
(Fg!J'j Fg+1) =

4(Fg+1) '(2Fg+1) (2Fg+3)

The matrix for (I2.J)' can be obtained by
squaring that for I2 J. The general expressions
are rather complicated, but it might not be too
difficult to carry out the numerical calculations
for a particular case.

The methods described above, together with
the tables, allow a fairly convenient determina-
tion of energy levels, although in some cases
considerable computation is still required.

INTENSITIES

In addition to energy levels, intensities are
generally required. Let us assume that the in-
tensity of a molecular line can be calculated if
no quadrupole effects are present, and call its

'-H. M. Foley, Phys. Rev. 71, 751 (1947).

intensity A. If the quadrupole interaction of one
nucleus splits this line, relative intensities of each
of the hyperfine components may be found from
tables in Condon and Shortley, ' as pointed out
above. The intensity of each component is then

AS(I)J!Fg i
IgJ'Fg')

2 Z S(IiJFiIIiJ'Fi')
(33)

where S(IiJFi!IiJ'Fi') can be obtained from
the tables. If a second nucleus produces a quad-
rupole interaction, but its coupling is small com-
pared with the coupling of the first nucleus, the
tables may be again applied to find intensities
of all components of the still more finely split
hyperfine structure. They are proportional to
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levels for the case J= 2, Ii ——~, I2 = 1 are plotted
in Fig. 1 as a function of the ratio of the quad-
rupole couplings of the two nuclei. This ratio,

Cr
OP 01

O'V
n= eQ

I 1

O'V
eQ

3/2

= (eQQ) r-x/(eQQ) r-six

-t0
i/~ 0

lo
&/&

FiG. 1. Energies E resulting from quadrupole coupling
of two nuclei of spin f and $, when J=2. Parameter
a = {eqQ)q„~j(eqQ) I 3f2. Minus sign should be placed in front
of eqQ.

&(IzJFi I 6J'Fi )S(I2FiF I
I2Fi'F'). lf coupling of

the two nuclei is not widely difFerent, then true
intensities cannot be found so directly, but a fair
approximation to the intensities may be ob-
tained by interpolating between the two extreme
cases when coupling of the first nucleus is large
compared to coupling of the second nucleus, and
when it is small. Intensities for these extreme
cases are thus proportional to

s(I,JF~ I I~J'F~') ~(I2F~F
I
I2F~'F')

&(6JF2
I h J'F2') ~(IiF2F

I
hF2'F'),

respectively.
Exact intensities may, of course, be obtained

in cases of intermediate coupling by making use
of the energy values obtained by the method
described above and solving equations of the
type (12) for the u(F~). Relative intensity for a
transition from state i to state j may then be
written as

is plotted along the axis of abscissae, the function
(1+a)/(1+a')& being plotted linearly for posi-
tive a and (1—a)/(1+a')& linearly for nega-
tive a. Energy is plotted along the ordinate axis,
F/[( —eqQ)q~~2(1+a')&] being plotted linearly.
Such a plot produces smooth curves and allows

0. a range from —~ to + ~. Values for 1/a
rather than n are marked ofF in the region where

I
o.

I
&1.The curves a.re very similar to those for

electronic energy levels showing coupling type
ranging from pure I.S to pure JJ. Points at
which energy values were computed are shown

by small circles; the solid curves were drawn to
pass smoothly through all computed points. In
the center of the figure the energy levels con-
verge to those that would be obtained for the
coupling of a single nucleus of spin —.,'- to a rota-
tional momentum 2, giving the various values of
the sum of these two indicated by F~ 3/2. On the
two edges, the levels converge to the proper
values for positive and negative coupling of the
nucleus of spin 1 with the rotational momentum

I Z P n;(Fi)~;(F&') X

S&(IgJFgIIgJ'Fg')Sl(I2FgFII. F&'F') I'.

Careful attention must be paid to the phases (see
Condon and Shortley, s p. 277). This procedure
would, however, be tedious and could in most
cases be replaced by the more rapid method of
the preceding paragraph.

EXAMPLES

As an illustration of the above theory for
quadrupole coupling of two nuclei, the energy

COMPLETE THEORV

MEGACYCLE 5

FIG. 2. Comparison of portion of observed spectrum of
CP~CN with first-order and complete theories.
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2 to give a sum F~ ~. Between these three points,
the levels split and are designated by the total
angular-momentum quantum number F resulting
from the sum of J and the spins of both nuclei.
It may be seen that the first-order approximation
to the complete theory, giving the initial slope
of each energy level, is fairly accurate for
(a[(0.1or

( 1/u~ (0.1, but that in intermediate
ranges the first-order approximation gives little
indication of the behavior of the energy levels.

Rotational transitions for BrCN (J=2~3)
and ClCN (J= 1—+2) have been observed in the
microwave region' and show in each case quad-
rupole effects resulting from two nuclei, N" and
the halogen. The above theory is found to fit
the observed spectra well, with a value for
a=(egQ)Nw/(egQ)H, '„, about equal to 0.005 for
BrCN and 0.05 for C1CN. In these cases the
first-order approximation to the theory is rather
good, although in the case of C1CN a deviation
from the first-order theory can be seen which is
explained by the complete theory. The rotational
line J= 1~2 for C1CN lies at about 23,885
megacycles, and the line is split by the CI quad-
rupole into a number of components with separa-

tions between 2 and 30 megacycles. Each of
these lines is further split into several com-
ponents separated by one megacycle or less
because of the N'4 quadrupole. Figure 2

shows the comparison between theoretically ex-
pected splitting and plots of a portion of the
Cl"CN spectrum as produced on the oscilloscope
of the detecting apparatus. The upper experi-
mental spectrum is at a pressure of about 20
mm Hg, while the lower one is at a somewhat
lower pressure. In the latter case this produced
narrower lines, but with considerably reduced
intensity because of saturation effects. "As may
be seen, the first-order effects account for the
main features of the spectrum, but deviations of
about 50 kilocycles from the first-order theory
can be observed which are explained by the
complete theory. These deviations are best seen
in the separations of the three strong lines in the
center of the spectrum, and in the distance
between the two weak lines at the high frequency
end of the spectrum.

Experimental details and further experimental
results will be presented in a later paper.

"C.H. Townes, Phys. Rev. 7'0, 665 {1946).


