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Shapes of Nuclear Induction Signals*
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The various shapes of nuclear induction signals are discussed for small values of the r-f field.
In the case of a linear variation arith time of the strong magnetic 6eld, numerical results are
given for various values of the svreep rate and the total relaxation time.

i. INTRODUCTION

HE equations of motion of the total nuclear
magnetic moment in the nuclear induction

experiment have been given by Bloch. ' He dis-
cusses the solution for the adiabatic case, i.e, ,
when the rate of change of the strong magnetic
field is su%ciently small. Homever, for rapid
variations of the strong field, oscillations are
experimentally observed in the tails of the curves.
These were first explained by Purcell, ' who
pointed out that when the magnetic moment
does not have time to follow the adiabatic solu-

tion through resonance, the moment mill be
found pointing in a non-equilibrium direction
mhen the strong field is so far beyond resonance
that the effect of the rotating field can be neg-
lected. From this point on the moment mill

precess about the direction of the strong field,
with a damping determined by the relaxation
time and with the instantaneous Larmor fre-

quency. The beats between this varying fre-
quency and that of the r-f field will appear as
damped oscillations on an oscilloscope screen.
In the course of our detailed discussion of these
oscillations it mill be shomn that in certain cases
they can be used for a relatively accurate
determination of the total relaxation time.

%e shall consider the case where the r-f field

is weak enough to be treated as a small perturba-
tion. The equations can then be solved for arbi-
trary dependence of the sweep field on the time.
The use of a weak r-f field can be of advantage,
since it enables one to obtain the sharpest pos-
sible lines. A detailed analysis of the signa1 shape
for this case is of considerable importance since,
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as long as there remain essential features in the
line shape mhich are unexplained, ' a resonance
value can hardly be knomn with a limit of error
less than the line width.

2. SYMMETRY PROPERTIES OF THE EQUATIONS

The equations of motion of the magnetic
moment of a collection of nuclei in a homo-
geneous magnetic field H0(t) in the s direction,
acted upon by a rotating magnetic field of
amplitude H& and angular frequency co, are

(du/dt) +(u/Ti)+ (h(a)s = 0, (1a)

(ds/dt) + (s/Ti) —(6&»)u = —
i y i

HiM„(1b)
(dM, /d&)+ (M,/T, ) —

~ v ~
His = Mo/Ti (1c)

u and e are components of the magnetic
moment in- and out-of-phase, respectively, with
the rotating field Hi, ~y~ is the absolute value
of the gyromagnetic ratio; hid= ~y~HO(t) io;—
and 3fp= XHp is the equilibrium polarization. In
practice, the percentage variation in Hp is very
small, and 3fp will be treated as a constant.
Finally, T& is the longitudinal relaxation time
which governs the approach to thermal equi-
librium, and T2 is the "transverse relaxation
time" which contributes only to the broadening
of the resonance line.

Equations (1) possess a symmetry property of
considerable practical interest. Suppose that
h&o(t) is a periodic function of the time with
period r, and further that A&a(t+r/2) = Are(t)—
for all times t. Then, if u(t), s(t) and M, (t) are a
solution of Eqs. (1), the functions —u(t+r/2),
s(t+r/2), and M, (t+r/2) are likewise solutions.
This can be seen from direct substitution into
the equations provided that the very small
variation in Mp is neglected. The most genera1

'A. Roberts, Phys. Rev. V2, 979 (1947).
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solutions of (1) consist of a superposition of a
damped homogeneous solution and an inhomo-
geneous solution. It mill be only the latter which
is left after initial transients have damped out
and it must, therefore, possess the above prop-
erty of even periodicity in a half-cycle r/2 for v

and 3f„and "odd" periodicity for u. Seen on
the screen of an oscilloscope, the horizontal
sweep of which has the same periodicity as b,ou,

the v traces will thus appear symmetrical about
the resonance point at the center of the screen
while the @ trace will be antisymmetrical, once
stationary conditions have established them-
selves. Either phase can, of course, be observed
by proper phase adjustment in the receiver circuit.

This property, since it is independent of the
magnitudes of H~, T~, T2 or the rate of sweep,
is quite useful in practice. . For example, one
may wish to compare the resonance frequencies
of two different nuclei simultaneously in the
same magnetic field. ' It is not always practicable
to adjust the parameters so that simple line
shapes are seen. A sinusoidal sweep, however,
has the property that h~(t+r/2) = —Ae(t), pro-
vided that one sweeps equally on either side of
resonance. If one, therefore, uses the e mode and
adjusts the r-f frequencies so that the two sets of
traces are completely symmetrical about a com-
mon symmetry point, one has a very sensitive
method of ascertaining that the two resonances
occur at the same value of Ho. In this way, the
proton-deuteron magnetic moment ratio has
been determined" with a precision much better
than that given by the line widths.

S. SOLUTION OF THE EQUATIONS

Equations (1a) and (1b) can be rewritten in
terms of a complex function F=v+iu as follows:

(dF/dt) +[(1/Tg) +iA(d (t) 5F= —
~ y ~

H/M„(2)
which has the solution

F= —~q(H&jt Ch'M, (t')

Xexp (t t'/T&) i —fA—~(t")dt"—. (3)

In our case, H~ is small enough so that the
effect of the rotating field can be treated as a
small perturbation. We see from (3) and (1c)
that, to terms proportional to (H~)', one can
take for 3f, the approximately constant value
MD, so that in this approximation

v+iu=- (p)H„lI,j" d('

Experimental conditions for which this approxi-
mate solution is valid can be obtained by de-
creasing the r-f power until the shape of the
signal remains unchanged and its magnitude
varies proportional to Hj.

lt is interesting to see that the solution (4)
can be found from a slightly diR'erent viewpoint.
Fo11owing Bloch, ' one can think of the transverse
relaxation time e6'ects as due to an effective
inhomogeneity in H, . If X(H')dH' is the fraction
of nuclei for which H, lies between Ho(t)+H'
and H0(t)+H'+dH', and also, if u(t,H')dH', for

example, is the in-phase component of the total
moment of such nuclei, then Eqs. (1) can be
replaced by

du(H') u(H')
+ +(Ace+ iyiH')v(H') =0, (Sa)

d

dv(H') v(H')
+ —(As)+ /y fH')u(H')

dt
= —

i y i
II,M, (H'), (Sb)

dM, (H') M.(H')
+ —

i q i H,v(II')

= (Mo/Tg) N(H'). (Sc)

Rewriting (Sa) and (Sb) in a form corresponding
to (3), we find for the total v and u

v+iu = [v(H')+iu(H') 5dH'

dt' exp

4 F. Bloch, A. C. Graves, M. Packard, and R.
Spence, Phys. Rev. Tl, 551 (1947).
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For strong r-f fields the above expression is
not equivalent to (3) for any plausible choice of
N(H'), and Eqs. (1) are not, in general, mathe-
matically equivalent to an effective inhomo-
geneity in JI,. However, for very small H~ we
have 3f,(H') =3EpN(H'). If one assumes a
broadening of the simple form

N(H')dH' = 1/sr[I'dH'/(H')'+I'p5,

one again obtains Eq. (4) with neglect of terms
proportional to (Hl)'; Tp is now given by
I/Tp = (1/Tl)+ I ~ I

I'

4. ASYMPTOTIC BEHAVIOR

The general characteristics of the solution far
from resonance can be seen immediately by
performing an integration by parts on (4) which
yields

and is seen to depend only on the instantaneous
value of tlc»(t). Upon this contribution is super-
imposed a damped free oscillation which is
excited by the passage through resonance. The
amplitude and phase of this oscillation will of
course depend on the explicit time dependence
of Am. In the case that 12 is shorter than about
~ cycle of the sweep, the oscillations will have
been damped out before hc»(t) becomes so small
that (7) is no longer valid, and the signals will
be seen to have oscillations immediately after
resonance and none before resonance. The occur-
rence of the damping factor in (8) provides a
method for measuring 12 in favorable cases.

In the limiting case where (dLLc»/dt)(Tp)' is at
all times negligible one has the situation of slow
passage without the excitation of transien t
oscillations.

+exp ———g l Q~"d$" ' df'

tI gl

cxp +i —jI hc»"dt"
-T2

dhc»'/dt'

[(I/Tp)+i~~'5'

If two times v~ and ~~ exist, so that

l y l HITpMp(1 inc»Tp)—
Ic+iIC =— i l pl HI—liter

1+(ac»Tp)
'

5. LINEAR SWEEP

In practice, the strong magnetic field may be
swept sinusoidally back and forth about reso-
nance. If the total relaxation time 12 is less than
about one-tenth of the sweep period, the perio-
dicity and the variation of dtlc»/dt can be

(6) neglected, and the sweep can be approximated
by a linear function of the time.

We shall let A~=at where

l Y l (dHO/dt)resenenee
dhc»'/dt'

x=a&t, A =1/(a&Tp), (9)

(7) and consider only positive values of a; for a
(1/T ) +(6 ')

negative, the only change is in the sign of u.
t}cn thc mtc~ai ln (6) ls roughly If wc Introduce thc dlmcnslonlcss qllaIltltlcs

constant for times t between r~ and v2, and

s(t) +ig(t) =—l y l
HITpllf p(1 inc»Tp)—

1+(Ac» Tp) '
and express all components of the magnetic
moment in units of Mp, (4) becomes

t—8 exp ———i A~"dt",
T2

rl &t «P, (8)

&=plvlHI~oJ «'

v+icc = —( l y l HI/a&) exp[ Ax z—(x'/2)—5

X~I exp[Ax'+i(x"/2) 5dx'

= —(l y l
H /aI&) 2& exp[ —in/4 —s,'5

tt~

Xexp —+i ' Aced"dt"
T, J,

dtccc»'/dt'

[(1/Tp) +inc I»'5'

X exp[s'5ds; (10)
~ () exp[ —3Irij4)

sp=(1/2&)(xe' "+Ae ' I').

The first term of this solution represents the Thus, the solution is expressed in terms of the
familiar contribution obtained from slow passage, error function of complex argument.
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0.8

F so. i. In-phase resonance
shapes (small r-f field and linear
sweep) for various values of
a&T& given by the numbers near
the first maximum, a=in-phase
component; Tg = total relaxa-
tion time; Aced =ct deviation
from resonance angular fre-
quency; Hi amplitude of rotat-
ing r-f field; and Ip I

=absolute
value of gyromagnetic ratio.
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For A =0(T2 ——ce), v and u can be expressed
in terms of the Fresnel integrals. ' Values at the
points x= ~A and 0 can likewise be expressed
in terms of tabulated functions:

u( —A) =v( —A) = —(Iy I Ht/a&)(s&/2)

XI expA']I 1 —erf(A)];

(du/dx) g =0. (12)

u(0)
I = —(I vfIIt/~')

v(0)

[ cos(A '/2)
Xxl ' . (k- ~(A'/2))

I —sin(A '/2)!

sin A' 2 l

(st-S(A'/2)) . (13)
cos(A '/2) I

1 fyfHt
(2s) & expL —1/Tg]

0 e&

(x' —A' n.) I y I HtT2(harT2)——I+
2 4J 1+(hruT2)a

Iy IHif sin38

g& I (A'+x')&

1l fifa,
v= I ' (2s)& exp I

—t/Ta]
lo e&

(x' —A' s.) I y I KTs
xcos

I

2 4~ 1+(aa)T2)'

I~IH& cos38
l ~ ~ ~

a& (A'+x') l

0~& 8=arctan(A/x) ~& s.

u(A)
I - —(I v I ~t/~')

v(A) a&T'g

First maximum
x -d /a& (a&/)g[a1)~

First minimum

(d/)~)a&)~

TABLE I. In-phase component N.

XLexp —A'] (s&/2)W I exps'ds . (14) 1.0
2.0

2.32 0.296
2.06 0.697
2.08 1.303
2.14 2.93

~ ~ ~

3.45
3.35
3.32

~ ~ ~

0.202—0.178—2.22

C and 5 are the Fresnel integrals. '
By performing successive integrations by parts

on (10), one finds the following asymptotic
expressions, valid when A'+x')) 1:

First maximum
x dpi/a& -(a&/IyIH&)e

First minimum
-(a&/fy)H1)y

TABLE II. Out-of-phase component e.

'F. Bitter et e/. , M.I.T. Research Laboratory of Elec-
tronics, Quarterly Progress Report, July 15, 1947, p. 26.

Jahnke and Emde, TeNes of Feectioss (Dover Pub-
lications, New York, 1945), pp. 35-36.

0.5
1.0
2.0

0.60
1.00
1.09
1.32

0.49
0.866
1.323
2.33

~ ~ 0

2.92
2.78
2.80

~ ~ ~

—0.058—0.590—2.54
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FK'. 2. Out-of-phase resonance
shapes (small r-f field and linear
sweep)+, for various values of
c&T given by the numbers near
the first maximum. @=out-of-
phase component. Other symbols
same as for Fig. j.
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The coeScient of the damped oscillation is 1 for
x&A. , while the term is absent for x&A. At
x=2, the discontinuity in Eq. (15) is of the
same order as the error in the semiconvergent
sums.

Equations (12) through (15) are sufficient to
cover most of the range of values of x, except
for the first maximum and minimum beyond
resonance. In these cases, the integrals (10) were
found by following an integration path through
the origin and making an angle of +45' with
the real axis (Fresnel integrals), and then from

an appropriate point integrating numerically
along a —45' angle path to the point so.

6. RESULTS

The curves for u and —v for various values of
a&T2 are shown in Figs. 1 and 2, plotted against
h&vTz= x/A. The free oscillations are completely
damped out for a&T2&~y.

For c&T2~I, the ratio of the first maximum of

u and —e to the first minimum serves as a fairly
sensitive measurement of the total relaxation
time. These values are given in Tables I and II.

For values of 0,& rg&~ ~2, the free oscillations
about the slow passage tail appear far enough
out so that the total relaxation time can be
measured from their damping rate,

The curves shown in Figs. 1 and 2 were in
existence when measurements on the proton-
deuteron magnetic moment ratio were made at
Stanford. ' It was realized that, because of their
smaller gyromagnetic ratio, the relaxation time
due to the presence of paramagnetic ions had to
be appreciably longer for the deuterons than
for the protons in the same sample. The agree-
ment between the aspect of the theoretical curves
and that of the signals which were observed lent
confidence to the precision attached to the
experimental results.

We wish to thank Professor F. Bloch for
suggesting this problem and for many valuable
discussions concerning it.


